Metal Accumulation Properties of Eight Traditionally Utilized Nutritional Plants and Their Potential as Suitable Crops for Cultivation on Acidic Soils of the Northern Province Uíge, Angola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Analytical Methods
2.2.1. Leaf Tissue Analyses
2.2.2. Soil Analyses
3. Results
3.1. Soil Properties
3.2. Element Contents and Nutritional Status of Leaves
4. Discussion
4.1. Anisophyllea quangensis
4.2. Annona stenophylla subsp. cuneata
4.3. Canarium schweinfurthii
4.4. Eugenia malangensis
4.5. Landolphia lanceolata
4.6. Raphionacme madiensis
4.7. Tristemma mauritianum
4.8. Vitex madiensis subsp. madiensis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; ISBN 978-92-5-109004-6. [Google Scholar]
- McCann, J.C. Maize and Grace: Africa’s Encounter with a New World Crop, 1500–2000, 1st ed.; Harvard University Press: Cambridge, MA, USA, 2005; ISBN 978-0-674-02557-8. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Acadamic Press: London, UK, 1995. [Google Scholar]
- Da Rocha, M.J. Desigualidades e Assimetrias Regionais em Angola—Os Factores de Competitividade Terriorial; Universidade Católica de Angola Centro de Estudos e Investigação Científica: Luanda, Angola, 2010. [Google Scholar]
- Hauser, S.; Norgrove, L. Slash-and-Burn Agriculture, Effects of. In Encyclopedia of Biodiversity; Academic Press: Waltham, MA, USA, 2013; pp. 551–562. ISBN 978-0-12-384720-1. [Google Scholar]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; FAO Fertilizer and Plant Nutrition Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; ISBN 978-92-5-105981-4. [Google Scholar]
- Farina, M.P.W.; Channon, P.; Thibaud, G.R. A Comparison of Strategies for Ameliorating Subsoil Acidity I. Long-Term Growth Effects. Soil Sci. Soc. Am. J. 2000, 64, 646–651. [Google Scholar] [CrossRef]
- McDonald, C.; Hyder, Z.; Albino Cossa, H. Angola Nutrition Gap Analysis; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Lautenschläger, T.; Monizi, M.; Pedro, M.; Mandombe, J.L.; Bránquima, M.F.; Heinze, C.; Neinhuis, C. First Large-Scale Ethnobotanical Survey in the Province of Uíge, Northern Angola. J. Ethnobiol. Ethnomed. 2018, 14, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabearivony, A.D.; Kuhlman, A.R.; Razafiariso, Z.L.; Raharimalala, F.; Rakotoarivony, F.; Randrianarivony, T.; Rakotoarivelo, N.; Randrianasolo, A.; Bussmann, R.W. Ethnobotanical Study of the Medicinal Plants Known by Men in Ambalabe, Madagascar. Ethnobot. Res. Appl. 2015, 14, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Youmsi, R.D.F.; Fokou, P.V.T.; Menkem, E.Z.; Bakarnga-Via, I.; Keumoe, R.; Nana, V.; Boyom, F.F. Ethnobotanical Survey of Medicinal Plants Used as Insects Repellents in Six Malaria Endemic Localities of Cameroon. J. Ethnobiol. Ethnomed. 2017, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Novotna, B.; Polesny, Z.; Pinto-Basto, M.F.; Van Damme, P.; Pudil, P.; Mazancova, J.; Duarte, M.C. Medicinal Plants Used by ‘Root Doctors’, Local Traditional Healers in Bié Province, Angola. J. Ethnopharmacol. 2020, 260, 112662. [Google Scholar] [CrossRef]
- Beernaert, F.R. Development of a Soil and Terrain Map/Database for Angola; Food and Agriculture Organization of the United Nations: De Pinte, Belgium, 1997. [Google Scholar]
- Barbosa, L.A.G. Carta Fitogeográfica de Angola; Instituto de Investigação Científica de Angola: Luanda, Angola, 1970. [Google Scholar]
- Briggs, D.J.; Smithson, P. Fundamentals of Physical Geography; Rowman & Littlefield: Lanham, MD, USA, 1986; ISBN 978-0-8476-7520-3. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Missão de Pedologia de Angola e Moçambique & Centro de Estudos de Pedologia Tropical Carta Generalizada Dos Solos de Angola (3a Aproximação); Ministério do Ultramar: Luanda, Angola, 1968.
- Baumgärtel, C.; Götzke, L.; Weigand, J.J.; Neinhuis, C.; Panzo, M.H.G.; Afonso, F.; Lautenschläger, T. Comprehensive Study of Beneficial and Hazardous Minerals of 43 Traditionally Consumed Fruits and Vegetables of the Province Uíge, Angola. Food Sci. Nutr. 2021. manuscript submitted. [Google Scholar]
- National Research Council. Lost Crops of Africa: Volume III: Fruits; The National Academies Press: Washington, DC, USA, 2008; p. 11879. ISBN 978-0-309-10596-5. [Google Scholar]
- Koudou, J.; Abena, A.A.; Ngaissona, P.; Bessiere, J.M. Chemical Composition and Pharmacological Activity of Essential Oil of Canarium schweinfurthii. Fitoterapia 2005, 76, 700–703. [Google Scholar] [CrossRef]
- Nkwor, A.N.; Ukoha, P.O.; Wise, W.R.; Nwaji, N.N.; Flowers, K. Fatty Acid Profile and Production of Fatliquor from Canarium schweinfurthii Mesocarp Oil. Pertanika J. Sci. Technol. 2019, 27, 2221–2243. [Google Scholar]
- Georges, A.N.; Olivier, C.K.; Simard, R.E. Canarium schweinfurthii Engl.: Chemical Composition of the Fruit Pulp. J. Am. Oil Chem. Soc. 1992, 69, 317–320. [Google Scholar] [CrossRef]
- Mawunu, M.; Makuntima, P.; Masidivinga, L.; Lautenschläger, T.; Luyindula, N.; Ngbolua, K.N.; Lukoki, L. First Survey on the Edible Non-Wood Forest Products Sold in Uíge Province, Northern Angola. Eur. J. Agric. Food Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Zbíral, J. Determination of Plant-Available Micronutrients by the Mehlich 3 Soil Extractant—A Proposal of Critical Values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, L.; Slaton, N.; Mozaffari, M. Understanding the Numbers on Your Soil Test Report; University of Arkansas Cooperative Extension Service Printing Services: Fayetteville, AR, USA, 2010. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M. Metal-Accumulating Plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; John Wiley: New York, NY, USA, 2000; pp. 193–229. ISBN 978-0-471-19254-1. [Google Scholar]
- White, P.J.; Brown, P.H. Plant Nutrition for Sustainable Development and Global Health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.A.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Diagnosing Sulfur Deficiency in Field-Grown Oilseed Rape (Brassica napus L.) and Wheat (Triticum aestivum L.). Plant Soil 2000, 225, 95–107. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Ramig, R.E.; Skin, L.G.; Rohde, C.R. Tissue Analyses Guidelines for Diagnosing Sulfur Deficiency in White Wheat. Plant Soil 1977, 46, 153–163. [Google Scholar] [CrossRef]
- Calvo, N.I.R.; Echeverría, H.E.; Rozas, H.S. Usefulness of Foliar Nitrogen-Sulfur Ratio in Spring Red Wheat. J. Plant Nutr. 2008, 31, 1612–1623. [Google Scholar] [CrossRef]
- Sánchez, P.A.; Salinas, J.G. Low-Input Technology for Managing Oxisols and Ultisols in Tropical America. In Advances in Agronomy; Academic Press: Washington DC USA, 1981; Volume 34, pp. 279–406. ISBN 978-0-12-000734-9. [Google Scholar]
- Torre, A.R.; Gonçalves, A.E. Rhizophoraceae. In Flora Zambesiaca; Kew Publishing and Flora Zambesiaca Managing Committee: London, UK, 1978; Volume 4. [Google Scholar]
- Jansen, S.; Broadley, M.R.; Robbrecht, E.; Smets, E. Aluminum Hyperaccumulation in Angiosperms: A Review of Its Phylogenetic Significance. Bot. Rev. 2002, 68, 235–269. [Google Scholar] [CrossRef]
- Bari, N.A.A.; Ferdosh, S.; Sarker, M.Z.I.; Yunus, K.; Shahari, R.; Hamzah, N.N. Phytochemical Composition, Biological Activities and Processing Method of Genus Anisophyllea: A Review. Nat. Prod. J. 2017, 7, 176–185. [Google Scholar] [CrossRef]
- Nkengurutse, J.; Mansouri, F.; Bekkouch, O.; Ben Moumen, A.; Masharabu, T.; Gahungu, G.; Serghini, H.C.; Khalid, A. Chemical Composition and Oral Toxicity Assessment of Anisophyllea boehmii Kernel Oil: Potential Source of New Edible Oil with High Tocopherol Content. Food Chem. 2019, 278, 795–804. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Aluminium; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2008; p. 357. [Google Scholar]
- Traoré, L.; Hien, M.; Ouédraogo, I. Usages, disponibilité et stratégies endogènes de préservation de Canarium schweinfurthii (Engl.) (Burseraceae) dans la région des Cascades (Burkina Faso)—Uses, availability and endogenous conservation strategies of Canarium schweinfurthii (Engl.) (Burseraceae) in the Cascades region (Burkina Faso). Ethnobot. Res. Appl. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Njoukam, R.; Peltier, R. L’aiélé (Canarium Schweinfurthii Engl.): Premier Essai de Plantation Dans l’ouest Du Cameroun. Fruits 2002, 57, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Obeta, N.A.; Azike, G.C.; Asogwa, I.S. Nutritional Composition, Physical Characteristics, and Sensory Attributes of Wheat Based Biscuits Enriched with Bullet Pear (Canarium schweinfurthii) Fruit Pulp. J. Food Sci. Technol. 2020, 57, 832–839. [Google Scholar] [CrossRef]
- Malaisse, F.; Parent, G. Edible Wild Vegetable Products in the Zambezian Woodland Area: A Nutritional and Ecological Approach. Ecol. Food Nutr. 1985, 18, 43–82. [Google Scholar] [CrossRef]
- Jansen, S.; Watanabe, T.; Smets, E. Aluminium Accumulation in Leaves of 127 Species in Melastomataceae, with Comments on the Order Myrtales. Ann. Bot. 2002, 90, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Masunaga, T.; Kubota, D.; Hotta, M.; Wakatsuki, T. Mineral Composition of Leaves and Bark in Aluminum Accumulators in a Tropical Rain Forest in Indonesia. Soil Sci. Plant Nutr. 1998, 44, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Persoon, J.G.M. The African Species of Landolphia P.Beauv. Series of Revisions of Apocynaceae XXXIV; Wageningen Agricultural University Papers: Wageningen, The Netherlands, 1992; p. 234. [Google Scholar]
- Venter, H.J.T. A Taxonomic Revision of Raphionacme (Apocynaceae: Periplocoideae). S. Afr. J. Bot. 2009, 75, 292–350. [Google Scholar] [CrossRef]
- Mapongmetsem, P.M. Domestication of Vitex madiensis in the Adamawa Highlands of Cameroon: Phenology and Propagation. Akdeniz Üniversitesi Ziraat Fakültesi Derg. 2006, 19, 269–278. [Google Scholar]
- Mapongmetsem, P.; Kapchie, V.; Tefempa, B. Diversity of Local Fruit Trees and Their Contribution in Sustaining the Rural Livelihood in the Northern Cameroon. Ethiop. J. Environ. Stud. Manag. 2012, 5, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Heinze, C.; Dundão, M.D.F.; Neinhuis, C.; Lautenschläger, T. Economic Potential of Selected Native Plants from Cuanza Norte, Northern Angola. Econ. Bot. 2019, 73, 96–111. [Google Scholar] [CrossRef]
Plant | Coordinates | Habitat | |
---|---|---|---|
Anisophylleaceae Anisophyllea quangensis Engl. ex Henriq.; Mfungu; DR 055143; Fruit | 6°33′55.4″ S 16°12′54.5″ E 835 m asl (Figure 1, plant 8) | Subshrub on sandy soils | |
Annonaceae Annona stenophylla subsp. cuneata N. Robson; Muloloa; DR 056627; Fruit | 8°01′55.8″ S 15°51′28.3″ E 1152 m asl (Figure 1, plant 4) | Subshrub with woody rhizome in grassland | |
Apocynaceae Landolphia lanceolata (K. Schum.) Pichon; Mata; DR 056634; Fruit | 6°33′55.4″ S 16°12′54.5″ E 835 m asl (Figure 1, plant 7) | Rhizomatous shrub on sandy savannas and woodland | |
Apocynaceae Raphionacme madiensis S. Moore; Sani; DR 056633; Root | 6°45′01.9″ S 16°07′14.2″ E 992 m asl (Figure 1, plant 6) | Geophytic herb in savanna | |
Burseraceae Canarium schweinfurthii Engl.; Jimbidi; DR 055139; Fruit | 7°39′21.7″ S 14°59′40.1″ E 807 m asl (Figure 1, plant 3) | Forest tree | |
Lamiaceae Vitex madiensis subsp. madiensis; Mfilo; DR 063748; Fruit | 7°31′32.5″ S 14°34′32.9″ E 434 m asl (Figure 1, plant 1) | Subshrub, small tree on sandy woodland | |
Melastomataceae Tristemma mauritianum J.F. Gmel.; Mankondo ma Nfinda; DR 056629; Fruit | 7°39′34.5″ S 14°58′22.5″ E 705 m asl (Figure 1, plant 2) | Perennial herb on forest margins, river banks | |
Myrtaceae Eugenia malangensis (O. Hoffm.) Nied.; Ndamba Dimi; DR 056619; Fruit | 7°53′42.6″ S 15°55′42.0″ E 1100 m asl (Figure 1, plant 5) | Subshrub in grassland | |
Anisophyllea quangensis | Annona stenophylla subsp. cuneata | Canarium schweinfurthii | Eugenia malangensis | Landolphia lanceolata | Raphionacme madiensis | Tristemma mauritianum | Vitex madiensis subsp. madiensis | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling depth | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 0–5 cm | 25–30 cm |
Stones (Mass%) | 1.7 | 0.1 | 12.2 | 11.8 | 66.7 | 11.4 | 28.3 | 2.4 | 0.3 | 1.2 | 0.9 | 62.6 | 1.7 | 0.2 |
Bulk density (g/cm3) | n.d. | n.d. | 1.2 | 1.4 | 0.7 | 1.2 | 1.2 | 1.4 | 1.5 | 1.3 | 1.5 | 1.4 | 1.4 | 1.5 |
Texture: | ||||||||||||||
Sand | 92 | 92 | 48 | 64 | 06 | 70 | 35 | 95 | 96 | 96 | 98 | 56 | 94 | 95 |
Silt | 05 | 07 | 30 | 23 | 52 | 14 | 31 | 04 | 01 | 03 | 00 | 25 | 02 | 01 |
Clay | 02 | 01 | 22 | 13 | 42 | 16 | 34 | 02 | 03 | 01 | 01 | 19 | 04 | 04 |
Textural class | Fine sand | Fine sand | Sandy clay loam | Sandy clay loam | Silty clay | Sandy loam | Clay loam | Fine sand | Fine sand | Fine sand | Fine sand | Sandy clay loam | Fine sand | Fine sand |
Anisophyllea quangensis | Annona stenophylla subsp. cuneata | Canarium schweinfurthii | Eugenia malangensis | Landolphia lanceolata | Raphionacme madiensis | Tristemma mauritianum | Vitex madiensis subsp. madiensis | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 25–30 cm | 0–5 cm | 0–5 cm | 25–30 cm |
pH (CaCl2) | 4.4 | 4.3 | 4.2 | 4.0 | 5.9 | 4.3 | 4.1 | 4.2 | 4.3 | 4.2 | 4.1 | 4.1 | 4.2 | 3.7 |
Ctotal [g/kg] | 5 | 2 | 2 | 10 | 40 | 16 | 9 | 7 | 4 | 6 | 3 | 6 | 9 | 3 |
Ntotal [g/kg] | 0.3 | 0.2 | 1.1 | 0.7 | 3.3 | 1.0 | 0.6 | 0.4 | 0.3 | 0.3 | 0.2 | 0.9 | 0.5 | 0.2 |
C:N | 18:1 | 12:1 | 16:1 | 14:1 | 12:1 | 17:1 | 15:1 | 17:1 | 16:1 | 20:1 | 13:1 | 7:1 | 12:1 | 19:1 |
PM [mg/kg] | 9.8 (0.1) | 2.5 (0.1) | 5.8 (0.1) | 2.7 (0.1) | 26.9 (1.1) | 3.3 (0.1) | 6.9 (0.1) | 18.3 (0.2) | 5.6 (0.1) | 12.7 (0.6) | 4.4 (0.1) | 3.5 (0.2) | 15.4 (0.6) | 16.9 (1.1) |
KM [mg/kg] | 12.8 (0.1) | 2.2 (0.1) | 96.2 (0.8) | 37.5 (0.5) | 175 (0.8) | 295 (3.0) | 64.4 (1.3) | 7.8 (0.2) | 1.9 (0.1) | 13.4 (1.0) | 7.1 (0.3) | 289 (0.3) | 11.8 (0.3) | 1.8 (0.1) |
SM [mg/kg] | 3.9 (0.1) | 2.5 (0.1) | 10.2 (0.1) | 4.9 (0.1) | 40.0 (6.0) | 43.8 (1.8) | 9.2 (0.2) | 7.2 (0.1) | 5.1 (0.2) | 3.2 (0.2) | 2.7 (0.1) | 44.3 (0.3) | 3.3 (0.1) | BDL (<1.7) |
CaM [mg/kg] | 37.0 (0.9) | BDL (<0.7) | 218 (1.8) | 30.9 (0.1) | 2552 (82.9) | 298 (4.2) | 220 (4.1) | 6.1 (0.5) | BDL (<0.3) | 55.9 (5.3) | BDL (<0.1) | 310 (5.4) | 137 (1.8) | BDL (<0.5) |
MgM [mg/kg] | 9.3 (0.2) | 0.6 (0.2) | 36.6 (0.2) | 5.4 (0.1) | 103 (2.4) | 63.2 (0.9) | 31.4 (0.7) | 2.6 (0.1) | 0.5 (0.4) | 13.2 (0.8) | 1.2 (0.1) | 65.1 (0.8) | 34.6 (0.6) | 1.5 (0.1) |
FeM [mg/kg] | 69.9 (0.4) | 58.7 (3.3) | 112 (1.7) | 73.5 (1.1) | 177 (16.4) | 30.0 (0.9) | 122 (5.3) | 133 (6.2) | 114 (5.9) | 69.4 (4.8) | 63.5 (1.8) | 31.6 (1.0) | 26.6 (0.9) | 44.5 (2.4) |
AlM [mg/kg] | 445 (8.2) | 415 (16.7) | 908 (31.5) | 1032 (14.9) | 1108 (15.4) | 541 (0.8) | 885 (8.9) | 713 (25.9) | 611 (13.1) | 451 (32.4) | 451 (4.2) | 554 (22.9) | 68.8 (1.3) | 89.3 (5.9) |
MnM [mg/kg] | 7.8 (0.1) | BDL (<0.2) | 14.9 (0.2) | 1.7 (0.1) | 44.3 (1.1) | 5.0 (0.1) | 27.0 (1.1) | 1.5 (0.1) | BDL (<0.3) | 5.4 (0.5) | 0.4 (0.1) | 5.5 (0.1) | 23.0 (0.1) | BDL (<0.2) |
Anisophyllea quangensis | Annona stenophylla subsp. cuneata | Canarium schweinfurthii | Eugenia malangensis | Landolphia lanceolata | Raphionacme madiensis | Tristemma mauritianum | Vitex madiensis subsp. madiensis | |
---|---|---|---|---|---|---|---|---|
C [g/kg] | 502 | 490 | 501 | 522 | 526 | 486 | 448 | 460 |
N [g/kg] | 9.5 | 20.3 | 20.7 | 11.8 | 11.7 | 14.6 | 11.9 | 12.0 |
P [g/kg] | 0.42 | 1.26 | 1.23 | 0.37 | 0.86 | 1.83 | 1.33 | 0.76 |
K [g/kg] | 2.92 | 12.40 | 6.78 | 2.03 | 4.54 | 15.63 | 11.72 | 3.19 |
S [g/kg] | 8.32 | 1.58 | 1.66 | 6.11 | 1.87 | 1.28 | 0.87 | 1.23 |
C:N | 53:1 | 24:1 | 24:1 | 44:1 | 45:1 | 33:1 | 38:1 | 38:1 |
N:P | 23:1 | 16:1 | 17:1 | 32:1 | 14:1 | 8:1 | 9:1 | 16:1 |
N:S | 1:1 | 13:1 | 12:1 | 2:1 | 6:1 | 11:1 | 14:1 | 10:1 |
Ca [g/kg] | 3.53 (0.11) | 12.10 (0.14) | 6.98 (0.06) | 3.56 (0.04) | 4.96 (0.22) | 5.74 (0.01) | 16.44 (0.08) | 4.91 (0.05) |
Mg [g/kg] | 1.57 (0.03) | 2.28 (0.03) | 1.69 (0.01) | 1.45 (0.01) | 2.65 (0.05) | 3.04 (0.01) | 3.52 (0.01) | 1.38 (0.01) |
Mn [mg/kg] | 331 (13.2) | 49.5 (0.4) | 108 (1.0) | 222 (0.8) | 578 (3.3) | 67.6 (0.7) | 286 (4.6) | 63.2 (0.7) |
Fe [mg/kg] | 64.7 (13.0) | 171 (78.5) | 160 (2.3) | 56.3 (1.2) | 334 (3.5) | 1086 (31.4) | 1307 (2.1) | 1643 (95.1) |
Na [mg/kg] | 23.3 (7.0) | 120 (73.2) | 39.4 (5.7) | 30.7 (5.3) | 29.6 (14.5) | 28.4 (9.5) | 18.9 (0.5) | 16.4 (1.9) |
Zn [mg/kg] | 14.1 (1.5) | 10.6 (1.8) | 8.4 (0.9) | 10.3 (0.9) | 13.6 (1.4) | 21.8 (3.0) | 19.0 (0.8) | 9.7 (0.6) |
B [mg/kg] | 10.2 (2.4) | 29.4 (0.8) | 7.8 (0.6) | 14.6 (0.6) | 23.7 (1.1) | 26.8 (0.4) | 36.4 (0.2) | 35.7 (0.8) |
Cu [mg/kg] | 1.8 (0.7) | 0.7 (0.1) | 0.8 (0.1) | 1.3 (0.1) | 4.0 (0.1) | 3.5 (0.1) | 5.7 (0.2) | 4.3 (0.2) |
Al [mg/kg] | 7884 (181) | 196 (51.4) | 120 (27.2) | 13,989 (6.5) | 6809 (122) | 722 (29.2) | 4674 (35.7) | 179 (12.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumgärtel, C.; Lautenschläger, T.; Panzo, M.H.G.; Afonso, F.; Neinhuis, C.; Feger, K.-H. Metal Accumulation Properties of Eight Traditionally Utilized Nutritional Plants and Their Potential as Suitable Crops for Cultivation on Acidic Soils of the Northern Province Uíge, Angola. Appl. Sci. 2022, 12, 792. https://doi.org/10.3390/app12020792
Baumgärtel C, Lautenschläger T, Panzo MHG, Afonso F, Neinhuis C, Feger K-H. Metal Accumulation Properties of Eight Traditionally Utilized Nutritional Plants and Their Potential as Suitable Crops for Cultivation on Acidic Soils of the Northern Province Uíge, Angola. Applied Sciences. 2022; 12(2):792. https://doi.org/10.3390/app12020792
Chicago/Turabian StyleBaumgärtel, Christin, Thea Lautenschläger, Mazekana H. G. Panzo, Francisco Afonso, Christoph Neinhuis, and Karl-Heinz Feger. 2022. "Metal Accumulation Properties of Eight Traditionally Utilized Nutritional Plants and Their Potential as Suitable Crops for Cultivation on Acidic Soils of the Northern Province Uíge, Angola" Applied Sciences 12, no. 2: 792. https://doi.org/10.3390/app12020792
APA StyleBaumgärtel, C., Lautenschläger, T., Panzo, M. H. G., Afonso, F., Neinhuis, C., & Feger, K.-H. (2022). Metal Accumulation Properties of Eight Traditionally Utilized Nutritional Plants and Their Potential as Suitable Crops for Cultivation on Acidic Soils of the Northern Province Uíge, Angola. Applied Sciences, 12(2), 792. https://doi.org/10.3390/app12020792