# Optimizing Support Locations in the Roof–Column Structural System

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optimal Column Locations

#### 2.1. Problem Definition

#### 2.2. Problem Statement

#### 2.3. Optimization Algorithm

## 3. Controlling Optimization Tendency

#### 3.1. Initial Discrete Candidates

#### 3.2. Roof–Column Relative Stiffness

#### 3.3. Filtering Scheme

## 4. Numerical Analysis

#### 4.1. Method

^{3}, respectively. The optimization solver considered all three improved techniques introduced in Section 3.

#### 4.2. Optimization Results

#### 4.3. Result Validation

## 5. Extended Designs

#### 5.1. Eye-Shaped Roof

#### 5.2. Bean-Shaped Roof

#### 5.3. Pavilion with Bean-Shaped Roof

#### 5.4. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Charleson, A. Structure as Architecture; Routledge: London, UK, 2014. [Google Scholar]
- Adriaenssens, S.; Block, P.; Veenendaal, D.; Williams, C. (Eds.) Shell Structures for Architecture: Form Finding and Optimization; Routledge: London, UK, 2014. [Google Scholar]
- Michell, A.G.M. The limits of economy of material in frame-structures. Philos. Mag.
**1904**, 8, 589–597. [Google Scholar] [CrossRef] [Green Version] - Huang, X.; Xie, Y.M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications; Wiley: Chichester, UK, 2010. [Google Scholar]
- Stromberg, L.L.; Beghini, A.; Baker, W.F.; Paulino, G.H. Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Struct. Multidiscip. Optim.
**2011**, 43, 165–180. [Google Scholar] [CrossRef] [Green Version] - Turnbull, J. Toyo Ito: Forces of Nature; Princeton Architectural Press: New York, NY, USA, 2012. [Google Scholar]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng.
**1988**, 71, 197–224. [Google Scholar] [CrossRef] - Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim.
**1989**, 1, 193–202. [Google Scholar] [CrossRef] - Zhou, M.; Rozvany, G.I.N. The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng.
**1991**, 89, 309–336. [Google Scholar] [CrossRef] - Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech.
**1999**, 69, 635–654. [Google Scholar] [CrossRef] - Xie, Y.M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct.
**1993**, 49, 885–896. [Google Scholar] [CrossRef] - Querin, O.M.; Steven, G.P.; Xie, Y.M. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput.
**1998**, 15, 1031–1048. [Google Scholar] [CrossRef] - Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, O.M. Bidirectional evolutionary method for stiffness optimization. AIAA J.
**1999**, 37, 1483–1488. [Google Scholar] [CrossRef] - Huang, X.; Xie, Y.M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des.
**2007**, 43, 1039–1049. [Google Scholar] [CrossRef] - Sethian, J.A.; Wiegmann, A. Structural Boundary Design via Level Set and Immersed Interface Methods. J. Comput. Phys.
**2000**, 163, 489–528. [Google Scholar] [CrossRef] - Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng.
**2003**, 192, 227–246. [Google Scholar] [CrossRef] - Luo, Z.; Tong, L.; Kang, Z. A level set method for structural shape and topology optimization using radial basis functions. Comput. Struct.
**2009**, 87, 425–434. [Google Scholar] [CrossRef] - Sasaki, M.; Ito, T.; Isozaki, A. Morphogenesis of Flux Structure; AA Publications: London, UK, 2007. [Google Scholar]
- Dorn, W.; Gomory, R.; Greenberg, M. Automatic design of optimal structures. J. Mec.
**1964**, 3, 25–52. [Google Scholar] - Feng, R.Q.; Zhu, B.; Hu, C.; Wang, X. Simulation of nonlinear behavior of beam structures based on discrete element method. Int. J. Steel. Struct.
**2019**, 19, 1560–1569. [Google Scholar] [CrossRef] - Cheng, G.D.; Gu, X. ε-relaxed approach in structural topology optimization. Struct. Optim.
**1997**, 13, 258–266. [Google Scholar] [CrossRef] - Zhang, J.Y.; Ohsaki, M. Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct.
**2006**, 43, 5658–5673. [Google Scholar] [CrossRef] [Green Version] - Ohsaki, M. Genetic algorithm for topology optimization of trusses. Comput. Struct.
**1995**, 57, 219–225. [Google Scholar] [CrossRef] - Lamberti, L. An efficient simulated annealing algorithm for design optimization of truss structures. Comput. Struct.
**2008**, 86, 1936–1953. [Google Scholar] [CrossRef] - Ray, T.; Liew, K.M. A swarm metaphor for multiobjective design optimization. Eng. Optim.
**2002**, 34, 141–153. [Google Scholar] [CrossRef] - Imbert, F.; Frost, K.S.; Fisher, A.; Witt, A.; Tourre, V.; Koren, B. Concurrent geometric, structural and environmental design: Louvre Abu Dhabi. In Advances in Architectural Geometry 2012; Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., Raynaud, J., Eds.; Springer: New York, NY, USA, 2021; pp. 77–90. [Google Scholar]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim.
**2001**, 21, 120–127. [Google Scholar] [CrossRef] - Svanberg, K. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng.
**1987**, 24, 359–373. [Google Scholar] [CrossRef] - Bremicker, M.; Papalambros, P.Y.; Loh, H.T. Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm. Comput. Struct.
**1990**, 37, 451–461. [Google Scholar] [CrossRef] [Green Version] - Zhao, Z.L.; Zhou, S.; Feng, X.Q.; Xie, Y.M. On the internal architecture of emergent plants. J. Mech. Phys. Solids
**2018**, 119, 224–239. [Google Scholar] [CrossRef] - Jodidio, P.; Calatrava, S. Calatrava: Santiago Calatrava, Complete Works, 1979–2009; Taschen: Cologne, Germany, 2009. [Google Scholar]
- Sejima, K. Yu-xi garden. El. Croquis
**2018**, 139, 268–273. [Google Scholar]

**Figure 1.**Designing columns under a flat roof using optimization. Subfigures in top row represent initial setup, including flat roof with (

**a**) a continuous design domain, (

**b**) 3 × 3 discrete design domain, and (

**c**) 8 × 8 discrete design domain. Subfigures in second row represent optimization result obtained using (

**d**) bidirectional evolutionary structural optimization (BESO) topology method and (

**e**,

**f**) proposed new optimization method.

**Figure 2.**Designing column locations under a flat roof using (

**a**) 8 × 8 and (

**b**) 6 × 6 candidate columns.

**Figure 3.**Controlling optimization tendency with filter utilization. (

**a**) Intermediate state of optimization process. Optimization result generated (

**b**) without a filter and (

**c**) with a filter.

**Figure 5.**Finding 8 optimal column locations under a square roof. (

**a**) Three-dimensional illustration of candidate columns. Optimization results of ${t}_{s}$ = (

**b**) 0.2 and (

**c**) 0.3.

**Figure 6.**Manual test results of square-roof example with 8 columns arranged in (

**a**) ring and (

**b**) random configurations. (

**c**) Summary of comparison compliance.

**Figure 7.**Designing column locations under eye-shaped roof. (

**a**) Design domain. (

**b**) Optimization result. (

**c**) Manual results.

**Figure 8.**Designing column locations under bean-shaped roof. (

**a**) Design domain. (

**b**) Optimization result. (

**c**) Manual results.

**Figure 9.**Design of pavilion with bean-shaped roof. (

**a**) Roof–column structural system. (

**b**) Installation of curved panels. (

**c**) Intermediate optimization results.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Meng, X.; Lee, T.-U.; Xiong, Y.; Huang, X.; Xie, Y.M.
Optimizing Support Locations in the Roof–Column Structural System. *Appl. Sci.* **2021**, *11*, 2775.
https://doi.org/10.3390/app11062775

**AMA Style**

Meng X, Lee T-U, Xiong Y, Huang X, Xie YM.
Optimizing Support Locations in the Roof–Column Structural System. *Applied Sciences*. 2021; 11(6):2775.
https://doi.org/10.3390/app11062775

**Chicago/Turabian Style**

Meng, Xianchuan, Ting-Uei Lee, Yulin Xiong, Xiaodong Huang, and Yi Min Xie.
2021. "Optimizing Support Locations in the Roof–Column Structural System" *Applied Sciences* 11, no. 6: 2775.
https://doi.org/10.3390/app11062775