Cavity Formation during Asymmetric Water Entry of Rigid Bodies
Abstract
:1. Introduction
2. Problem Statement: Water Entry of Asymmetric Wedges
- and —symmetric wedge with an horizontal velocity component;
- and —asymmetric wedge with pure vertical velocity;
- —asymmetric wedge with an horizontal velocity component.
3. Coupled FEM/SPH Numerical Model
4. Symmetric Wedges with Horizontal Velocity Component— and
5. Asymmetric Wedges with Pure Vertical Velocity— and
5.1. Impact Dynamics of Asymmetric Wedges
5.2. Hydrodynamic Pressure
6. Asymmetric Wedges with Horizontal Velocity Component—
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Karman, T. The Impact on Seaplane Floats, during Landing. NACA-TN-321, October 1929. Available online: https://ntrs.nasa.gov/citations/19930081174 (accessed on 30 January 2021).
- Nikfarjam, M.; Koto, J.; Yaakob, O.B.; Seif, M.S.; Aref, A. Pressure Distribution at Water Entry of a Symmetrical Wedge. J. Ocean Mech. Aerosp. 2014, 12, 13–17. [Google Scholar]
- Wu, G.X.; Sun, H.; He, Y.S. Numerical simulation and experimental study of water entry of a wedge in free fall motion. J. Fluids Struct. 2004, 19, 277–289. [Google Scholar] [CrossRef]
- Dobrovol’skaya, Z.N. On some problems of similarity flow of fluid with a free surface. J. Fluid Mech. 2006, 36, 805. [Google Scholar] [CrossRef]
- Korobkin, A.A. Second-order Wagner theory of wave impact. J. Eng. Math. 2006, 58, 121–139. [Google Scholar] [CrossRef]
- Mei, X.; Liu, Y.; Yue, D.K.P. On the water impact of general two-dimensional sections. Appl. Ocean. Res. 1999, 21, 1–15. [Google Scholar] [CrossRef]
- Battistin, D.; Iafrati, A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J. Fluids Struct. 2003, 17, 643–664. [Google Scholar] [CrossRef]
- Judge, C.; Troesch, A.; Perlin, M. Initial water impact of a wedge at vertical and oblique angles. J. Eng. Math. 2004, 48, 279–303. [Google Scholar] [CrossRef] [Green Version]
- Korobkin, A.A. Inclined entry of a blunt profile into an ideal fluid. Fluid Dyn. 1988, 23, 443–447. [Google Scholar] [CrossRef]
- Seif, M.S.; Mousaviraad, S.M.; Sadathosseini, S.H. The effect of asymmetric water entry on the hydrodynamic impact. Int. J. Eng. Trans. A Basics 2004, 17, 205–212. [Google Scholar]
- Algarín, R.; Tascón, O. Hydrodynamic Modeling of Planing Boats with Asymmetry and Steady Condition. In Proceedings of the 9th International Conference on High Performance Marine Vehicles (HIPER 11), Naples, Italy, 18–19 September 2011; Volume 2, pp. 1–9. [Google Scholar]
- Truong, T.; Repalle, N.; Pistani, F.; Thiagarajan, K. An experimental study of slamming impact during forced water entry. In Proceedings of the 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 5–9 December 2010. [Google Scholar]
- Spinosa, E.; Iafrati, A. Experimental investigation of the fluid-structure interaction during the water impact of thin aluminium plates at high horizontal speed. Int. J. Impact Eng. 2021, 147, 103673. [Google Scholar] [CrossRef]
- Iafrati, A.; Grizzi, S. Cavitation and ventilation modalities during ditching. Phys. Fluids 2019, 31, 052101. [Google Scholar] [CrossRef] [Green Version]
- Iafrati, A.; Grizzi, S.; Olivieri, F. Experimental Investigation of Fluid–Structure Interaction Phenomena During Aircraft Ditching. AIAA J. 2020, 1–14. [Google Scholar] [CrossRef]
- Riccardi, G.; Iafrati, A. Water impact of an asymmetric floating wedge. J. Eng. Math. 2004, 49, 19–39. [Google Scholar] [CrossRef]
- Xu, G.; Duan, W.; Wu, G. Numerical simulation of oblique water entry of an asymmetrical wedge. Ocean. Eng. 2008, 35, 1597–1603. [Google Scholar] [CrossRef]
- Chekin, B.S. The entry of a wedge into an incompressible fluid. J. Appl. Math. Mech. 1989, 53, 300–307. [Google Scholar] [CrossRef]
- Krastev, V.K.; Facci, A.L.; Ubertini, S. Asymmetric water impact of a two dimensional wedge: A systematic numerical study with transition to ventilating flow conditions. Ocean Eng. 2018, 147, 386–398. [Google Scholar] [CrossRef]
- Semenov, Y.A.; Yoon, B.S. Onset of flow separation for the oblique water impact of a wedge. Phys. Fluids 2009, 21, 112103. [Google Scholar] [CrossRef]
- Yu, B.; Semenov, Y.A.; Iafrati, A. On the nonlinear water entry problem of asymmetric wedges. J. Fluid Mech. 2006, 547, 231. [Google Scholar] [CrossRef]
- Semenov, Y.A.; Wu, G.X. Asymmetric impact between liquid and solid wedges. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20120203. [Google Scholar] [CrossRef]
- Goman, O.G.; Semenov, Y.A. Oblique entry of a wedge into an ideal incompressible fluid. Fluid Dyn. 2007, 42, 581–590. [Google Scholar] [CrossRef]
- Shams, A.; Jalalisendi, M.; Porfiri, M. Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys. Fluids 2015, 27, 027103. [Google Scholar] [CrossRef]
- Xu, G.D.; Duan, W.Y.; Wu, G.X. Simulation of water entry of a wedge through free fall in three degrees of freedom. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2219–2239. [Google Scholar] [CrossRef]
- Panciroli, R.; Abrate, S.; Minak, G.; Zucchelli, A. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results. Compos. Struct. 2012, 94, 532–539. [Google Scholar] [CrossRef]
- Panciroli, R. Water entry of flexible wedges: Some issues on the FSI phenomena. Appl. Ocean Res. 2013, 39, 72–74. [Google Scholar] [CrossRef]
- Panciroli, R.; Porfiri, M. Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp. Fluids 2013, 54, 1630. [Google Scholar] [CrossRef]
- Panciroli, R.; Abrate, S.; Minak, G. Dynamic response of flexible wedges entering the water. Compos. Struct. 2013, 99, 163–171. [Google Scholar] [CrossRef]
- Panciroli, R.; Porfiri, M. Analysis of hydroelastic slamming through particle image velocimetry. J. Sound Vib. 2015, 347, 63–78. [Google Scholar] [CrossRef]
- Jalalisendi, M.; Zhao, S.; Porfiri, M. Shallow water entry: Modeling and experiments. J. Eng. Math. 2016. [Google Scholar] [CrossRef]
- Qin, H.; Zhao, L.; Shen, J. A modified Logvinovich model for hydrodynamic loads on an asymmetric wedge entering water with a roll motion. J. Mar. Sci. Appl. 2011, 10, 184–189. [Google Scholar] [CrossRef]
- Panciroli, R.; Pagliaroli, T.; Minak, G. On Air-Cavity Formation during Water Entry of Flexible Wedges. J. Mar. Sci. Eng. 2018, 6, 155. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panciroli, R.; Minak, G. Cavity Formation during Asymmetric Water Entry of Rigid Bodies. Appl. Sci. 2021, 11, 2029. https://doi.org/10.3390/app11052029
Panciroli R, Minak G. Cavity Formation during Asymmetric Water Entry of Rigid Bodies. Applied Sciences. 2021; 11(5):2029. https://doi.org/10.3390/app11052029
Chicago/Turabian StylePanciroli, Riccardo, and Giangiacomo Minak. 2021. "Cavity Formation during Asymmetric Water Entry of Rigid Bodies" Applied Sciences 11, no. 5: 2029. https://doi.org/10.3390/app11052029
APA StylePanciroli, R., & Minak, G. (2021). Cavity Formation during Asymmetric Water Entry of Rigid Bodies. Applied Sciences, 11(5), 2029. https://doi.org/10.3390/app11052029