Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, H.; Song, H.; Choi, J.-r.; Kim, K. A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors 2018, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Gish, D.A.; Nsiah, F.; McDermott, M.T.; Brett, M.J. Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition. Anal. Chem. 2007, 79, 4228–4232. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, D.J.; Moon, S.; Kim, D.; Byun, K.M. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings. Nanotechnology 2009, 20, 315501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, S.A.; Byun, K.M.; Kim, K.; Jang, S.M.; Ma, K.; Oh, Y.; Kim, D.; Kim, S.G.; Shuler, M.L.; Kim, S.J. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays. Nanotechnology 2010, 21, 355503. [Google Scholar] [CrossRef]
- Valsecchi, C.; Brolo, A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649. [Google Scholar] [CrossRef] [PubMed]
- Kugel, V.; Ji, H.F. Nanopillars for sensing. J. Nanosci. Nanotechnol. 2014, 14, 6469–6477. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ren, K.; Zhou, J. Aluminum-based localized surface plasmon resonance for biosensing. Trends Anal. Chem. 2016, 80, 486–494. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, K.; Hwang, S.; Ahn, H.; Oh, J.-W.; Choi, J.-r. Recent advances of nanostructure implemented spectroscopic sensors—A brief overview. Appl. Spectrosc. Rev. 2016, 51, 656–668. [Google Scholar] [CrossRef]
- Choi, J.-r.; Kim, K.; Oh, Y.; Kim, A.L.; Kim, S.Y.; Shin, J.-S.; Kim, D. Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging. Adv. Opt. Mater. 2014, 2, 48–55. [Google Scholar] [CrossRef]
- Wei, F.; Lu, D.; Shen, H.; Wan, W.; Ponsetto, J.L.; Huang, E.; Liu, Z. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014, 14, 4634–4639. [Google Scholar]
- Choi, J.-r.; Lee, S.; Kim, K. Plasmon based super resolution imaging for single molecular detection: Breaking the diffraction limit. Biomed. Eng. Lett. 2014, 4, 231–238. [Google Scholar] [CrossRef]
- Oh, Y.; Son, T.; Kim, S.Y.; Lee, W.; Yang, H.; Choi, J.-r.; Shin, J.-S.; Kim, D. Surface plasmon-based nanoscopy of intracellular cytoskeletal actin filaments using random nanodot arrays. Opt. Express 2014, 22, 27695–27706. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Domínguez, A.I.; Liu, Z.; Pendry, J.B. Coherent four-fold super-resolution imaging with composite photonic–plasmonic structured illumination. ACS Photon. 2015, 2, 341–348. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.; Kim, D. Electromagnetic near-field nanoantennas for subdiffraction-limited surface plasmon-enhanced light microscopy. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1684–1691. [Google Scholar]
- Wertz, E.; Isaacoff, B.P.; Flynn, J.D.; Biteen, J.S. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. Nano Lett. 2015, 15, 2662–2670. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.; Limberopoulos, N.I.; Walker Jr., D.E.; Urbas, A.M.; Liberman, V.; Astratov, V.N. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis. Ann. Phys. 2015, 527, 513–522. [Google Scholar] [CrossRef]
- Lin, H.; Centeno, S.P.; Su, L.; Kenens, B.; Rocha, S.; Sliwa, M.; Hofkens, J.; Uji-I, H. Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. Chem. Phys. Chem. 2012, 13, 973–981. [Google Scholar] [CrossRef]
- Ishikawa, S.; Hayasaki, Y. Super-resolution complex amplitude reconstruction of nanostructured binary data using an interference microscope with pattern matching. Opt. Express 2013, 21, 18424–18433. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kaneda, S.; Sasaki, K. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett. 2013, 13, 2146–2150. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Tiecke, T.G.; de Leon, N.P.; Feist, J.; Akimov, A.V.; Gullans, M.; Zibrov, A.S.; Vuleti, V.; Lukin, M.D. Coupling a single trapped atom to a nanoscale optical cavity. Science 2013, 340, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Kotnala, A.; Gordon, R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. Nano Lett. 2014, 14, 853–856. [Google Scholar] [CrossRef]
- Berthelot, J.; Aćimović, S.S.; Juan, M.L.; Kreuzer, M.P.; Renger, J.; Quidant, R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 2014, 9, 295. [Google Scholar] [CrossRef]
- Kim, T.; Ahn, H.; Song, H.; Kim, K.; Choi, J.-r. Comparative study of nanolithography based on extraordinary and diffracted optical transmissions. Opt. Laser Technol. 2019, 119, 105658. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.J.; Kim, D. Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: A theoretical study. Opt. Express 2006, 14, 12419–12431. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Guillot, N.; Rouxel, J.; de la Chapelle, M.L.; Toury, T. Optimized plasmonic nanostructures for improved sensing activities. Opt. Express 2012, 20, 21278–21290. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Z.; Song, C.; Hao, P.; Wu, Y.; Liu, Y.; Korvink, Y.G. Topology optimization of metal nanostructures for localized surface plasmon resonances. Struct. Multidiscip. Optim. 2016, 53, 967–972. [Google Scholar]
- Wei, H.; Zhang, S.; Tian, X.; Xu, H. Highly tunable propagating surface plasmons on supported silver nanowires. Proc. Natl. Acad. Sci. USA 2013, 110, 4494–4499. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, H.; Pan, D.; Xu, H. Controlling the radiation direction of propagating surface plasmons on silver nanowires. Laser Photonics Rev. 2014, 4, 596–601. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Byun, K.M.; Kim, S.J.; Kim, D. Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Opt. Express 2005, 13, 3737–3742. [Google Scholar]
- Wan, C.; Gaylord, T.K.; Bakir, M.S. Rigorous coupled-wave analysis equivalent-index-slab method for analyzing 3D angular misalignment in interlayer grating couplers. Appl. Opt. 2016, 55, 10006–10015. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, D.; Yang, H.; Tao, C.; Huang, Y.; Zhuang, S.; Mei, T. Sensitivity of a label-free guided-mode resonant optical biosensor with different modes. Sensors 2012, 12, 9791–9799. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.A.; Chen, K.; Chen, C.D.; Ma, K.J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 141–149. [Google Scholar] [CrossRef]
- Hicks, E.M.; Zou, S.; Schatz, G.C.; Spears, K.G.; Van Duyne, R.P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Käll, M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005, 5, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Hammond, J.; Rosamond, M.; Sivaraya, S.; Marken, F.; Estrela, P. Fabrication of a horizontal and a vertical large surface area nanogap electrochemical sensor. Sensors 2016, 16, 2128. [Google Scholar] [CrossRef]
- Ionescu, R.; Aybeke, E.; Bourillot, E.; Lacroute, Y.; Lesniewska, E.; Adam, P.M.; Bijeon, J.L. Fabrication of annealed gold nanostructures on pre-treated glow-discharge cleaned glasses and their used for localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) detection of adsorbed (bio) molecules. Sensors 2017, 17, 236. [Google Scholar] [CrossRef]
- Manfrinato, V.R.; Stein, A.; Zhang, L.; Nam, C.Y.; Yager, K.G.; Stach, E.A.; Black, C.T. Aberration-corrected electron beam lithography at the one nanometer length scale. Nano Lett. 2017, 17, 4562–4567. [Google Scholar] [CrossRef]
- Agrawal, A.; Majdi, J.; Clouse, K.; Stantchev, T. Electron-beam-lithographed nanostructures as reference materials for label-free scattered-light biosensing of single filoviruses. Sensors 2018, 18, 1670. [Google Scholar] [CrossRef]
- Khlebtsov, N.G. T-matrix method in plasmonics: An overview. J. Quant. Spectrosc. Radiat. Transf. 2013, 123, 184–217. [Google Scholar] [CrossRef]
- Son, T.; Lee, C.; Moon, G.; Lee, D.; Cheong, E.; Kim, D. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging. Biosens. Bioelectron. 2019, 146, 111738. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wu, J.B.; Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 050901. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Antaris, A.L.; Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 10. [Google Scholar] [CrossRef]
- D’Orlando, A.; Mevellec, J.-Y.; Louarn, G.; Humbert, B. Atomic force microscopy nanomanipulation by confocal Raman multiwavelength spectroscopy: Application at the monitoring of resonance profile excitation changes of manipulated carbon nanotube. J. Phys. Chem. 2020, 124, 2705–2711. [Google Scholar] [CrossRef]
- D’Orlando, A.; Bayle, M.; Louarn, G.; Humbert, B. AFM-nano manipulation of plasmonic molecules used as “Nano-Lens” to enhance Raman of individual nano-objects. Materials 2019, 12, 1372. [Google Scholar] [CrossRef]
- Heeg, S.; Clark, N.; Vijayaraghavan, A. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes. Nanotechnology 2018, 29, 465710. [Google Scholar] [CrossRef]
- Simoncelli, S.; Li, Y.; Cortés, E.; Maier, S.A. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics. ACS Nano 2018, 12, 2184–2192. [Google Scholar] [CrossRef]






Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Ahn, H.; Kim, T.; Choi, J.-r.; Kim, K. Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. Appl. Sci. 2021, 11, 9133. https://doi.org/10.3390/app11199133
Song H, Ahn H, Kim T, Choi J-r, Kim K. Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. Applied Sciences. 2021; 11(19):9133. https://doi.org/10.3390/app11199133
Chicago/Turabian StyleSong, Hyerin, Heesang Ahn, Taeyeon Kim, Jong-ryul Choi, and Kyujung Kim. 2021. "Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting" Applied Sciences 11, no. 19: 9133. https://doi.org/10.3390/app11199133
APA StyleSong, H., Ahn, H., Kim, T., Choi, J.-r., & Kim, K. (2021). Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. Applied Sciences, 11(19), 9133. https://doi.org/10.3390/app11199133

