Next Issue
Volume 3, September
Previous Issue
Volume 3, March

Table of Contents

Environments, Volume 3, Issue 2 (June 2016) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessOpinion
A Proposal on the Restoration of Nostoc flagelliforme for Sustainable Improvement in the Ecology of Arid Steppes in China
Environments 2016, 3(2), 14; https://doi.org/10.3390/environments3020014 - 02 Jun 2016
Cited by 2 | Viewed by 2989
Abstract
Nostoc flagelliforme, a filamentous nitrogen-fixing cyanobacterium, is widely distributed in arid steppes of the west and northwestern parts of China. However, as a food delicacy this species has been overexploited from 1970 to 2000. Moreover, overgrazing, land reclamation and the removal of [...] Read more.
Nostoc flagelliforme, a filamentous nitrogen-fixing cyanobacterium, is widely distributed in arid steppes of the west and northwestern parts of China. However, as a food delicacy this species has been overexploited from 1970 to 2000. Moreover, overgrazing, land reclamation and the removal of medicinal herbs have caused severely reduced vegetation coverage there. In this communication, a badly damaged but slowly rehabilitating N. flagelliforme-inhibiting steppe is described, and the rehabilitation of desertified steppes by the renewed growth of N. flagelliforme is proposed. The restoration of this dominant nitrogen supplier would be an ecologically sustainable solution for supplementing current measures already taken in the desertified regions. In addition, a goal of 50%–60% vegetation coverage is proposed by the N. flagelliforme restoration. Full article
Show Figures

Figure 1

Open AccessArticle
Quantifying the Driving Forces of Informal Urbanization in the Western Part of the Greater Cairo Metropolitan Region
Environments 2016, 3(2), 13; https://doi.org/10.3390/environments3020013 - 02 Jun 2016
Cited by 4 | Viewed by 3048
Abstract
This paper discusses the driving forces (DFs) of informal urbanization (IU) in the greater Cairo metropolitan region (GCMR) using the Analytic Hierarchy Process (AHP). The IU patterns in the GCMR have been extremely influenced by seven DFs: geographical characteristics, availability of life facilities, [...] Read more.
This paper discusses the driving forces (DFs) of informal urbanization (IU) in the greater Cairo metropolitan region (GCMR) using the Analytic Hierarchy Process (AHP). The IU patterns in the GCMR have been extremely influenced by seven DFs: geographical characteristics, availability of life facilities, economic incentives, land demand and supply, population increase, administrative function, and development plans. This research found that these forces vary significantly in how they influence urban growth in the three study sectors, namely, the middle, north, and south areas in the western part of the GCMR. The forces with the highest influence were economic incentives in the middle sector, population increase in the north sector, and the administrative function in the south sector. Due to the lower availability of buildable land in the middle sector, the land demand and supply force had a lesser influence in this sector compared to in the north and south sectors. The development plans force had medium influence in all sectors. The geographical characteristics force had little influence in both the middle and the north sectors, but higher influence than economic incentives, availability of life facilities, and development plans in the south sector. Because of the spatial variances in life facilities organizations in the GCMR, the life facilities availability force had little effect on IU in the south sector. Full article
(This article belongs to the Special Issue Land Use Change in the Changing Environment)
Show Figures

Figure 1

Open AccessCommunication
Making Rice Production More Environmentally-Friendly
Environments 2016, 3(2), 12; https://doi.org/10.3390/environments3020012 - 03 May 2016
Cited by 14 | Viewed by 5579
Abstract
Irrigated rice production is one of the most essential agricultural activities for sustaining our global population, and at the same time, one of the agricultural sectors considered most eco-unfriendly. This is because it consumes a larger share of available freshwater resources, competing with [...] Read more.
Irrigated rice production is one of the most essential agricultural activities for sustaining our global population, and at the same time, one of the agricultural sectors considered most eco-unfriendly. This is because it consumes a larger share of available freshwater resources, competing with varied ecosystems as well as other economic sectors; its paddy fields are responsible for significant emission of greenhouse gases; and the reliance on chemical fertilizers and various agrochemicals contributes to pollution of soils and water systems. These stresses on soils, hydrology and atmosphere are actually not necessary for rice production, which can be increased by modifying agronomic practices though more agroecologically-sound management practices. These, combined under the rubric of the System of Rice Intensification (SRI), can reduce requirements of irrigation water, chemical fertilizer and agrochemicals while increasing paddy yields and farmer’s net incomes. Here we discuss how irrigated rice production can be made more eco-friendly for the benefit of farmers, consumers and the environment. This is achieved by introducing practices that improve the growth and functioning of rice plants’ root systems and enhance the abundance, diversity and activity of beneficial soil organisms that live around plant roots and within the plants themselves as symbiotic endophytes. Full article
Show Figures

Figure 1

Open AccessArticle
Relating Water Quality and Age in Drinking Water Distribution Systems Using Self-Organising Maps
Environments 2016, 3(2), 10; https://doi.org/10.3390/environments3020010 - 20 Apr 2016
Cited by 10 | Viewed by 3602
Abstract
Understanding and managing water quality in drinking water distribution system is essential for public health and wellbeing, but is challenging due to the number and complexity of interacting physical, chemical and biological processes occurring within vast, deteriorating pipe networks. In this paper we [...] Read more.
Understanding and managing water quality in drinking water distribution system is essential for public health and wellbeing, but is challenging due to the number and complexity of interacting physical, chemical and biological processes occurring within vast, deteriorating pipe networks. In this paper we explore the application of Self Organising Map techniques to derive such understanding from international data sets, demonstrating how multivariate, non-linear techniques can be used to identify relationships that are not discernible using univariate and/or linear analysis methods for drinking water quality. The paper reports on how various microbial parameters correlated with modelled water ages and were influenced by water temperatures in three drinking water distribution systems. Full article
(This article belongs to the Special Issue Data-Modelling Applications in Water System Management)
Show Figures

Figure 1

Open AccessReview
Making Mechanization Accessible to Smallholder Farmers in Sub-Saharan Africa
Environments 2016, 3(2), 11; https://doi.org/10.3390/environments3020011 - 19 Apr 2016
Cited by 17 | Viewed by 4470
Abstract
This paper summarizes the deliberations at a meeting convened by the Bill & Melinda Gates Foundation held in Beijing in October 2015. Farm power and mechanization are agricultural production inputs that will be essential to raise the labor and land productivity required if [...] Read more.
This paper summarizes the deliberations at a meeting convened by the Bill & Melinda Gates Foundation held in Beijing in October 2015. Farm power and mechanization are agricultural production inputs that will be essential to raise the labor and land productivity required if Sustainable Development Goals 1 and 2 (ending poverty and hunger) are to be achieved. The smallholder farm sector demand for mechanization needs to be raised to stimulate the product value chain and activate input supply (that is to raise farm productivity, stimulate value addition, and encourage private sector custom hire service provision). The sustainability of mechanization from a natural resource conservation point of view is discussed with reference to conservation agriculture principles. Mechanization appropriate for the smallholder sector covers the range of possible power sources human, draft animal and motorized. The key is to engage all the stakeholders in the supply chain and offer a range of suitable options from which the user can select. Sustainability of mechanization includes financial and social, as well as environmental factors. Local manufacturers should be supported where feasible as they can provide implements and machines adapted to local conditions—and better technical service and replacement part supply. The public sector role in providing access to mechanization should be restricted to promulgating enabling policies, building technical and business management skills and stimulating demand. The lessons to be learnt from Chinese experience in making mechanization available to smallholder farmers include subsidies, strong extension services, infrastructure development and a solid manufacturing sector that prioritizes the smallholder sector. The implications for sub-Saharan Africa appear to be that group ownership and custom hire service provision are the models to follow. Finally, the relevance of an African Center for Sustainable Agricultural Mechanization, on the model of CSAM in Beijing, is considered and recommended. Full article
Show Figures

Figure 1

Open AccessArticle
Estimating the Probability of Vegetation to Be Groundwater Dependent Based on the Evaluation of Tree Models
Environments 2016, 3(2), 9; https://doi.org/10.3390/environments3020009 - 02 Apr 2016
Cited by 8 | Viewed by 3668
Abstract
Groundwater Dependent Ecosystems (GDEs) are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. [...] Read more.
Groundwater Dependent Ecosystems (GDEs) are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. Probabilities are obtained by modeling the relationship between the known locations of GDEs and factors influencing groundwater dependence, namely water table depth and climatic aridity index. Probabilities are derived for the state of Nevada, USA, using modeled water table depth and aridity index values obtained from the Global Aridity database. The model selected results from the performance comparison of classification trees (CT) and random forests (RF). Based on a threshold-independent accuracy measure, RF has a better ability to generate probability estimates. Considering a threshold that minimizes the misclassification rate for each model, RF also proves to be more accurate. Regarding training accuracy, performance measures such as accuracy, sensitivity, and specificity are higher for RF. For the test set, higher values of accuracy and kappa for CT highlight the fact that these measures are greatly affected by low prevalence. As shown for RF, the choice of the cutoff probability value has important consequences on model accuracy and the overall proportion of locations where GDEs are found. Full article
(This article belongs to the Special Issue Data-Modelling Applications in Water System Management)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop