A New Explanation for the Attitude-Behavior Inconsistency Based on the Contextualized Attitude
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Attitude–Behavior Inconsistency and the IPE
2.2. Regulatory Focus and Social Distance
2.3. EEG Component Hypothesis
3. Materials and Methods
3.1. Participants
3.2. Procedure
Formal Experiment
3.3. Data Collection and Analysis
4. Results
4.1. Behavioral Data
4.2. Event-Related Potential Data
4.2.1. N1 Component
4.2.2. P2 Component
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechler, C.J.; Tormala, Z.L.; Rucker, D.D. The attitude–behavior relationship revisited. Psychol. Sci. 2021, 32, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Glasman, L.R.; Albarracín, D. Forming attitudes that predict future behavior: A meta-analysis of the attitude-behavior relation. Psychol. Bull. 2006, 135, 778–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroesen, M.; Handy, S.; Chorus, C. Do attitudes cause behavior or vice versa? An alternative conceptualization of the attitude-behavior relationship in travel behavior modeling. Transp. Res. Part A Policy Pract. 2017, 101, 190–202. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the theory of planned behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef] [Green Version]
- Gibb, B.E.; Ma, M.S.A.; Beach, S.R.H. Suicidal Ideation and Attitudes Toward Suicide. Suicide Life-Threat. Behav. 2006, 36, 12–19. [Google Scholar] [CrossRef]
- Wicker, A.W. Attitudes versus actions: The relationship of verbal and overt behavioral responses to attitude objects. J. Soc. Issues 1969, 25, 41–78. [Google Scholar] [CrossRef] [Green Version]
- Bizer, G.Y.; Krosnick, J.A. Exploring the structure of strength-related attitude features: The relation between attitude importance and attitude accessibility. J. Pers. Soc. Psychol. 2001, 81, 566–586. [Google Scholar] [CrossRef]
- Cooper, J.; Croyle, R.T. Attitudes and attitudes change. Annu. Rev. Psychol. 1984, 35, 395–426. [Google Scholar] [CrossRef]
- Priester, J.R.; Nayakankuppam, D.; Fleming, M.A.; Godek, J. The A2SC2 Model: The Influence of Attitudes and Attitude Strength on Consideration and Choice. J. Consum. Res. 2004, 30, 574–588. [Google Scholar] [CrossRef] [Green Version]
- Conner, M.; Norman, P.; Bell, R. The theory of planned behavior and healthy eating. Health Psychol. 2002, 21, 194–201. [Google Scholar] [CrossRef]
- Hagger, M.S.; Chatzisarantis, N.L.D. First- and higher-order models of attitudes, normative influence, and perceived behavioural control in the theory of planned behaviour. Br. J. Soc. Psychol. 2005, 44, 513–536. [Google Scholar] [CrossRef]
- Trafimow, D.; Trafimow, J.H. Predicting back pain sufferers’ intentions to exercise. J. Psychol. 1998, 132, 581–592. [Google Scholar] [CrossRef]
- Conner, M.; Wilding, S.; van Harreveld, F.; Dalege, J. Cognitive-Affective Inconsistency and Ambivalence: Impact on the Overall Attitude–Behavior Relationship. Pers. Soc. Psychol. Bull. 2021, 47, 673–687. [Google Scholar] [CrossRef]
- Farley, S.D.; Stasson, M.F. Relative Influences of Affect and Cognition on Behavior: Are Feelings or Beliefs More Related to Blood Donation Intentions? Exp. Psychol. 2003, 50, 55–62. [Google Scholar] [CrossRef]
- Maio, G.R.; Esses, V.M.; Bell, D.W. Examining conflict between components of attitudes: Ambivalence and inconsistency are distinct constructs. Can. J. Behav. Sci. 2000, 32, 71–83. [Google Scholar] [CrossRef]
- Schleicher, D.J.; Watt, J.D.; Greguras, G.J. Reexamining the Job Satisfaction-Performance Relationship: The Complexity of Attitudes. J. Appl. Psychol. 2004, 89, 165–177. [Google Scholar] [CrossRef]
- Jarcho, J.M.; Berkman, E.T.; Lieberman, M.D. The neural basis of rationalization: Cognitive dissonance reduction during decision-making. Soc. Cogn. Affect. Neurosci. 2011, 6, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Ham, C.-D. Exploring how consumers cope with online behavioral advertising. Int. J. Advert. 2017, 36, 632–658. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, M.; Lai, H.; Zhang, W.; Zhao, Z.; Anwar, C.M. Neural Basis of Two Kinds of Social Influence: Obedience and Conformity. Front. Hum. Neurosci. 2016, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Staddon, J.; Acquisti, A.; Lefevre, K. Self-Reported Social Network Behavior: Accuracy Predictors and Implications for the Privacy Paradox. In Proceedings of the IEEE International Conference on Social Computing, Alexandria, VA, USA, 8–14 September 2013. [Google Scholar]
- Wilson, T.D.; Lindsey, S.; Schooler, T.Y. A model of dual attitudes. Psychol. Rev. 2000, 107, 101–126. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, T.E.S.; Banaji, M.R. Patterns of Implicit and Explicit Attitudes: IV. Change and Stability from 2007 to 2020. Psychol. Sci. 2022, 33, 1347–1371. [Google Scholar] [CrossRef] [PubMed]
- Serenko, A. Antecedents and consequences of explicit and implicit attitudes toward digital piracy. Inf. Manag. 2022, 59, 103559. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y.-X.; Heng, J.-Y.; Cheng, Y.; Xu, Y.; Wang, Z.-X.; Wong, P.P.W. A Deeper Understanding of Attitude and Norm Applicable to Green Hotel Selection. J. Qual. Assur. Hosp. Tour. 2023, 1–33. [Google Scholar] [CrossRef]
- Rocklage, M.D.; Luttrell, A. Attitudes Based on Feelings: Fixed or Fleeting? Psychol. Sci. 2021, 32, 364–380. [Google Scholar] [CrossRef] [PubMed]
- Conner, M.; Wilding, S.; Norman, P. Testing predictors of attitude strength as determinants of attitude stability and attitude–behaviour relationships: A multi-behaviour study. Eur. J. Soc. Psychol. 2022, 52, 656–668. [Google Scholar] [CrossRef]
- Luttrell, A.; Sawicki, V. Attitude strength: Distinguishing predictors versus defining features. Soc. Pers. Psychol. Compass 2020, 14, e12555. [Google Scholar] [CrossRef]
- Qian, C.; Yu, K.; Gao, J. Understanding Environmental Attitude and Willingness to Pay with an Objective Measure of Attitude Strength. Environ. Behav. 2021, 53, 119–150. [Google Scholar] [CrossRef]
- Brannon, S.M.; Gawronski, B. Does contextualized attitude change depend on individual differences in responses to belief-incongruent information? J. Exp. Soc. Psychol. 2018, 78, 148–161. [Google Scholar] [CrossRef]
- Gawronski, B.; Brannon, S.M.; Blask, K.; Walther, E. Exploring the Contextual Renewal of Conditioned Attitudes After Counterconditioning. Soc. Cogn. 2020, 38, 287–323. [Google Scholar] [CrossRef]
- Gawronski, B.; Rydell, R.J.; De Houwer, J.; Brannon, S.M.; Ye, Y.; Vervliet, B.; Hu, X. Contextualized attitude change. Adv. Exp. Soc. Psychol. 2018, 57, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.J.; Thompson, S.C.; Hale, J.; Lowry, P.B.; Greer, C. Information disclosure on mobile devices: Re-examining privacy calculus with actual user behavior. Int. J. Hum.-Comput. Stud. 2013, 71, 1163–1173. [Google Scholar] [CrossRef]
- Chung, S.; Han, I. Factors influencing information distortion in online deliberations: The effects of informational characteristics and regulatory focus. Comput. Hum. Behav. 2013, 29, 2188–2196. [Google Scholar] [CrossRef]
- Mosteller, J.; Poddar, A. To Share and Protect: Using Regulatory Focus Theory to Examine the Privacy Paradox of Consumers’ Social Media Engagement and Online Privacy Protection Behaviors. J. Interact. Mark. 2017, 39, 27–38. [Google Scholar] [CrossRef]
- Zhu, P.; Zhu, X.; Wei, W.U. Empirical research of network consumers’ purchasing behavior based on reg-ulatory focus theory. DEStech Trans. Comput. Sci. Eng. 2018, 291, 686–690. [Google Scholar] [CrossRef]
- Brodscholl, J.C.; Kober, H.; Higgins, E.T. Strategies of self-regulation in goal attainment versus goal maintenance. Eur. J. Soc. Psychol. 2007, 37, 628–648. [Google Scholar] [CrossRef]
- Keller, J.; Bless, H. Flow and Regulatory Compatibility: An Experimental Approach to the Flow Model of Intrinsic Motivation. Pers. Soc. Psychol. Bull. 2008, 34, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Lalot, F.; Quiamzade, A.; Falomir-Pichastor, J.M. Is regulatory focus related to minimal and maximal standards? Depends on how you ask! Eur. J. Soc. Psychol. 2018, 48, 174–186. [Google Scholar] [CrossRef]
- Kim, J.; Chen, K.; Davis, W.E.; Hicks, J.A.; Schlegel, R.J. Approaching the true self: Promotion focus predicts the experience of authenticity. J. Res. Pers. 2018, 78, 165–176. [Google Scholar] [CrossRef]
- Pham, M.T.; Avnet, T. Ideals and Oughts and the Reliance on Affect versus Substance in Persuasion. J. Consum. Res. 2004, 30, 503–518. [Google Scholar] [CrossRef]
- Sassenrath, C.; Sassenberg, K.; Ray, D.G.; Scheiter, K.; Jarodzka, H. A Motivational Determinant of Facial Emotion Recognition: Regulatory Focus Affects Recognition of Emotions in Faces. PLoS ONE 2014, 9, e112383. [Google Scholar] [CrossRef] [Green Version]
- Burtscher, M.J.; Meyer, B. Promoting good decisions: How regulatory focus affects group information processing and decision-making. Group Process. Intergroup Relat. 2014, 17, 663–681. [Google Scholar] [CrossRef]
- Roy, R.; Phau, I. Examining Regulatory Focus in the Information Processing of Imagery and Analytical Advertisements. J. Advert. 2014, 43, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Wan, E.W.; Hong, J.; Sternthal, B. The Effect of Regulatory Orientation and Decision Strategy on Brand Judgments. J. Consum. Res. 2009, 35, 1026–1038. [Google Scholar] [CrossRef] [Green Version]
- Trope, Y.; Liberman, N.; Wakslak, C. Construal Levels and Psychological Distance: Effects on Representation, Prediction, Evaluation, and Behavior. J. Consum. Psychol. 2007, 17, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Xie, J.; Meyners, J.; Barrot, C.; Becker, J.U.; Goldenberg, J.; Aggarwal, P.; Umashankar, N.; Srinivasan, R. Effects of social and temporal distance on consumers’ responses to peer recommendations. J. Mark. Res. 2011, 48, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, S.; Guo, X.; Fu, H. Can Social Norms Promote Recycled Water Use on Campus? The Evidence from Event-Related Potentials. Front. Psychol. 2022, 13, 818292. [Google Scholar] [CrossRef]
- Parasuraman, R.; Mouloua, M. Interaction of signal discriminability and task type in vigilance decrement. Percept. Psychophys. 1987, 41, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Helton, W.S.; Russell, P.N. Rest is best: The role of rest and task interruptions on vigilance. Cognition 2015, 134, 165–173. [Google Scholar] [CrossRef]
- Ahmed, L.; De Fockert, J.W. Focusing on attention: The effects of working memory capacity and load on selective attention. PLoS ONE 2012, 7, e43101. [Google Scholar] [CrossRef] [Green Version]
- Szymon, W.; Mikołaj, M.; Tomasz, O.; Aneta, B. Neural signatures of rational and heuristic choice strategies: A single trial ERP analysis. Front. Human Neurosci. 2017, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, Q.; Chen, A.; Li, H.; Wang, Q.; Zhuang, Z.; Jia, S. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study. Neuropsychologia 2007, 45, 2764–2771. [Google Scholar] [CrossRef]
- Polezzi, D.; Lotto, L.; Daum, I.; Sartori, G.; Rumiati, R. Predicting outcomes of decisions in the brain. Behav. Brain Res. 2008, 187, 116–122. [Google Scholar] [CrossRef]
- Yao, Q.; Ma, H.-W.; Yue, G.-A. Success expectations and performance: Regulatory focus as a moderator. Acta Psychol. Sinica 2010, 42, 704–714. [Google Scholar] [CrossRef]
- Hashim, H.; Yunus, M.; Embi, M. Pre-university English as second language (ESL) learners’ attitude towards mobile learning. Creat. Educ. 2016, 36, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 2005, 1, 98–101. [Google Scholar] [CrossRef]
- Deng, W.; Lei, W.; Guo, X.; Li, X.; Ge, W.; Hu, W. Effects of regulatory focus on online learning engagement of high school students: The mediating role of self-efficacy and academic emotions. J. Comput. Assist. Learn. 2022, 38, 707–718. [Google Scholar] [CrossRef]
- Peng, M.; Xu, Z.; Huang, H. To Each Their Own: The Impact of Regulatory Focus on Consumers’ Response to Online Information Load. Front. Neurosci. 2022, 16, 757316. [Google Scholar] [CrossRef]
- Wanberg, C.R.; Glomb, T.M.; Song, Z.; Sorenson, S. Job-search persistence during unemployment: A 10-wave longitudinal study. J. Appl. Psychol. 2005, 90, 411–430. [Google Scholar] [CrossRef]
Levene’ Test for Equality of Variances | t-Test for Equality of Means | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Differece | 95% Confidence Interval of the Difference | |||
Lower | Upper | |||||||||
promotion focus vs. prevention focus | Equal variances assumed | 1.85 | 0.181 | 0.82 | 38 | 0.42 | 0.21 | 0.25 | −0.31 | 0.72 |
Equal variances not assumed | 0.82 | 36.89 | 0.42 | 0.21 | 0.25 | −0.31 | 0.72 | |||
distal social distance vs. proximal social distance (promotion focus) | Equal variances assumed | 1.50 | 0.236 | 0.78 | 18 | 0.448 | 0.31 | 0.39 | −0.52 | 1.13 |
Equal variances not assumed | 0.78 | 16.04 | 0.449 | 0.31 | 0.39 | −0.53 | 1.14 | |||
distal social distance vs. proximal social distance (prevention focus) | Equal variances assumed | 0.28 | 0.6 | −0.04 | 18 | 0.97 | −0.01 | 0.34 | −0.72 | 0.69 |
Equal variances not assumed | −0.04 | 16.77 | 0.97 | −0.01 | 0.34 | −0.72 | 0.70 |
Paired Difference | t | df | Sig. (2-Tailed) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
promotion focu | total | 1.17 | 0.85 | 0.19 | 0.77 | 1.57 | 6.15 | 19 | 0.000 |
distal social distance | 0.78 | 0.58 | 0.18 | 0.36 | 1.20 | 4.21 | 9 | 0.002 | |
proximal social distance | 1.57 | 0.92 | 0.29 | 0.91 | 2.23 | 5.39 | 9 | 0.000 | |
promotion focu | total | 0.53 | 0.47 | 0.11 | 0.31 | 0.75 | 5.03 | 19 | 0.000 |
distal social distance | 0.63 | 0.52 | 0.17 | 0.25 | 1.00 | 3.80 | 9 | 0.004 | |
proximal social distance | 0.43 | 0.42 | 0.13 | 0.13 | 0.73 | 3.26 | 9 | 0.010 |
Levene’ Test for Equality of Variances | t-Test for Equality of Means | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Differece | 95% Confidence Interval of the Difference | |||
Lower | Upper | |||||||||
promotion focus vs. prevention focus | Equal variances assumed | 7.10 | 0.01 | −2.95 | 38 | 0.005 | −0.64 | 0.22 | −1.08 | −0.20 |
Equal variances not assumed | −2.95 | 29.63 | 0.006 | −0.64 | 0.22 | −1.09 | −0.20 | |||
distal social distance vs. proximal social distance (promotion focus) | Equal variances assumed | 2.24 | 0.151 | −2.29 | 18.00 | 0.034 | −0.79 | 0.34 | −1.51 | −0.06 |
Equal variances not assumed | −2.29 | 15.25 | 0.037 | −0.79 | 0.34 | −1.52 | −0.06 | |||
distal social distance vs. proximal social distance (prevention focus) | Equal variances assumed | 0.14 | 0.712 | 1.11 | 18.00 | 0.283 | 0.23 | 0.21 | −0.21 | 0.67 |
Equal variances not assumed | 1.11 | 17.50 | 0.283 | 0.23 | 0.21 | −0.21 | 0.67 |
Value | F | Hypothesis df | Error df | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Pillai’s Trace | 0.26 | 6.37 | 2 | 37 | 0.004 |
Wilks’ Lambda | 0.74 | 6.37 | 2 | 37 | 0.004 | |
Hotelling’s Trace | 0.34 | 6.37 | 2 | 37 | 0.004 | |
Roy’s Largest Root | 0.34 | 6.37 | 2 | 37 | 0.004 | |
electrode site * regulatory focus | Pillai’s Trace | 0.01 | 0.21 | 2 | 37 | 0.811 |
Wilks’ Lambda | 0.99 | 0.21 | 2 | 37 | 0.811 | |
Hotelling’s Trace | 0.01 | 0.21 | 2 | 37 | 0.811 | |
Roy’s Largest Root | 0.01 | . | 2 | 37 | 0.811 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 2423.82 | 1 | 2423.82 | 140.07 | 0.000 |
regulatory focus | 47.11 | 1 | 47.11 | 2.72 | 0.107 |
Error | 657.57 | 38 | 17.31 |
Value | F | Hypothesis df | Error df | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Pillai’s Trace | 0.34 | 4.40 | 2 | 17 | 0.029 |
Wilks’ Lambda | 0.66 | 4.40 | 2 | 17 | 0.029 | |
Hotelling’s Trace | 0.52 | 4.40 | 2 | 17 | 0.029 | |
Roy’s Largest Root | 0.52 | 4.40 | 2 | 17 | 0.029 | |
electrode site * social distance | Pillai’s Trace | 0.22 | 2.33 | 2 | 17 | 0.128 |
Wilks’ Lambda | 0.79 | 2.33 | 2 | 17 | 0.128 | |
Hotelling’s Trace | 0.27 | 2.33 | 2 | 17 | 0.128 | |
Roy’s Largest Root | 0.27 | 2.33 | 2 | 17 | 0.128 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 897.55 | 1 | 897.55 | 74.56 | 0.000 |
social distance | 6.72 | 1 | 6.72 | 0.56 | 0.465 |
Error | 216.70 | 18 | 12.04 |
Type III Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Sphericity Assumed | 3.03 | 2 | 1.51 | 2.07 | 0.140 |
Greenhouse-Geisser | 3.03 | 1.63 | 1.86 | 2.07 | 0.151 | |
Huynh-Feldt | 3.03 | 1.87 | 1.62 | 2.07 | 0.144 | |
Lower-bound | 3.03 | 1.00 | 3.03 | 2.07 | 0.167 | |
electrode site * social distance | Sphericity Assumed | 5.90 | 2 | 2.95 | 4.04 | 0.026 |
Greenhouse-Geisser | 5.90 | 1.63 | 3.62 | 4.04 | 0.035 | |
Huynh-Feldt | 5.90 | 1.87 | 3.15 | 4.04 | 0.029 | |
Lower-bound | 5.90 | 1.00 | 5.90 | 4.04 | 0.060 | |
Error (electrode site) | Sphericity Assumed | 26.27 | 36 | 0.73 | ||
Greenhouse-Geisser | 26.27 | 29.37 | 0.90 | |||
Huynh-Feldt | 26.27 | 33.68 | 0.78 | |||
Lower-bound | 26.27 | 18.00 | 1.46 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 1573.38 | 1 | 1573.38 | 125.70 | 0.000 |
social distance | 208.85 | 1 | 208.85 | 16.69 | 0.001 |
Error | 225.31 | 18 | 12.52 |
Value | F | Hypothesis df | Error df | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Pillai’s Trace | 0.18 | 4.10 | 2 | 37 | 0.025 |
Wilks’ Lambda | 0.82 | 4.10 | 2 | 37 | 0.025 | |
Hotelling’s Trace | 0.22 | 4.10 | 2 | 37 | 0.025 | |
Roy’s Largest Root | 0.22 | 4.10 | 2 | 37 | 0.025 | |
electrode site * regulatory focus | Pillai’s Trace | 0.13 | 2.66 | 2 | 37 | 0.083 |
Wilks’ Lambda | 0.87 | 2.66 | 2 | 37 | 0.083 | |
Hotelling’s Trace | 0.14 | 2.66 | 2 | 37 | 0.083 | |
Roy’s Largest Root | 0.14 | 2.66 | 2 | 37 | 0.083 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 982.00 | 1 | 982.00 | 77.93 | 0.000 |
regulatory focus | 0.00 | 1 | 0.00 | 0.00 | 0.986 |
Error | 478.84 | 38 | 12.60 |
Value | F | Hypothesis df | Error df | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Pillai’s Trace | 0.04 | 0.33 | 2 | 17 | 0.727 |
Wilks’ Lambda | 0.96 | 0.33 | 2 | 17 | 0.727 | |
Hotelling’s Trace | 0.04 | 0.33 | 2 | 17 | 0.727 | |
Roy’s Largest Root | 0.04 | 0.33 | 2 | 17 | 0.727 | |
electrode site * social distance | Pillai’s Trace | 0.33 | 4.22 | 2 | 17 | 0.032 |
Wilks’ Lambda | 0.67 | 4.22 | 2 | 17 | 0.032 | |
Hotelling’s Trace | 0.50 | 4.22 | 2 | 17 | 0.032 | |
Roy’s Largest Root | 0.50 | 4.22 | 2 | 17 | 0.032 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 492.91 | 1 | 492.91 | 45.84 | 0.000 |
social distance | 3.47 | 1 | 3.47 | 0.32 | 0.577 |
Error | 193.53 | 18 | 10.75 |
Type III Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
electrode site | Sphericity Assumed | 10.15 | 2 | 5.08 | 12.05 | 0.000 |
Greenhouse-Geisser | 10.15 | 1.74 | 5.85 | 12.05 | 0.000 | |
Huynh-Feldt | 10.15 | 2.00 | 5.08 | 12.05 | 0.000 | |
Lower-bound | 10.15 | 1.00 | 10.15 | 12.05 | 0.003 | |
electrode site * social distance | Sphericity Assumed | 3.14 | 2 | 1.57 | 3.72 | 0.034 |
Greenhouse-Geisser | 3.14 | 1.74 | 1.81 | 3.72 | 0.041 | |
Huynh-Feldt | 3.14 | 2.00 | 1.57 | 3.72 | 0.034 | |
Lower-bound | 3.14 | 1.00 | 3.14 | 3.72 | 0.070 | |
Error (electrode site) | Sphericity Assumed | 15.17 | 36 | 0.42 | ||
Greenhouse-Geisser | 15.17 | 31.25 | 0.49 | |||
Huynh-Feldt | 15.17 | 36.00 | 0.42 | |||
Lower-bound | 15.17 | 18.00 | 0.84 |
Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Intercept | 489.10 | 1 | 489.10 | 38.97 | 0.000 |
social distance | 55.90 | 1 | 55.90 | 4.45 | 0.049 |
Error | 225.94 | 18 | 12.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Sun, R.; Zuo, J.; Chen, X. A New Explanation for the Attitude-Behavior Inconsistency Based on the Contextualized Attitude. Behav. Sci. 2023, 13, 223. https://doi.org/10.3390/bs13030223
Yuan Y, Sun R, Zuo J, Chen X. A New Explanation for the Attitude-Behavior Inconsistency Based on the Contextualized Attitude. Behavioral Sciences. 2023; 13(3):223. https://doi.org/10.3390/bs13030223
Chicago/Turabian StyleYuan, Yuan, Rui Sun, Jiajia Zuo, and Xue Chen. 2023. "A New Explanation for the Attitude-Behavior Inconsistency Based on the Contextualized Attitude" Behavioral Sciences 13, no. 3: 223. https://doi.org/10.3390/bs13030223
APA StyleYuan, Y., Sun, R., Zuo, J., & Chen, X. (2023). A New Explanation for the Attitude-Behavior Inconsistency Based on the Contextualized Attitude. Behavioral Sciences, 13(3), 223. https://doi.org/10.3390/bs13030223