Associations of Sociodemographic Factors, Lifestyle Habits, and Insomnia Severity with Obesity Indices in Spanish Workers: Sex-Specific Differences
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Eligibility Criteria
- Age between 18 and 69 years at the time of assessment, to represent the active working population.
- Employment as an active worker in any economic sector with a registered occupational record
- Availability of complete and validated data for all variables of interest, including anthropometric, biochemical, lifestyle, sociodemographic, and sleep-related measures
- Incomplete or missing data essential for the calculation of obesity indices or insomnia severity
- Age < 18 or >69 years
- Pregnancy at the time of examination
- Diagnosed metabolic or endocrine disorders (e.g., uncontrolled diabetes, thyroid dysfunction, malignancy, advanced chronic kidney disease)
- Duplicate records or inconsistencies in key demographic identifiers
2.3. Data Collection and Variable Definitions
2.3.1. Assessment of Lifestyle Factors
- Dietary quality was evaluated through the 14-item Mediterranean Diet Adherence Screener (MEDAS-14) [46]. A score ≥ 9 indicated adequate adherence to the Mediterranean dietary pattern, which emphasizes the consumption of fruits, vegetables, whole grains, legumes, olive oil, and moderate intake of fish and red wine [47].
- Physical activity was assessed using the International Physical Activity Questionnaire—Short Form (IPAQ-SF), a validated instrument used to estimate activity levels in population studies. Participants were classified as physically active or inactive according to standardized scoring protocols [48,49].
- Smoking status was classified as current smoker or non-smoker based on self-report.
2.3.2. Evaluation of Insomnia Severity
- No insomnia (0–7)
- Subthreshold insomnia (8–14)
- Moderate insomnia (15–21)
- Severe insomnia (22–28)
2.3.3. Obesity and Adiposity Indices
- Body Mass Index (BMI): calculated as weight in kilograms divided by height in meters squared (kg/m2); obesity defined as BMI ≥ 30 kg/m2.
- Waist-to-Height Ratio (WtHR): waist circumference (cm) divided by height (cm); central obesity defined as WtHR ≥ 0.50.
- Clínica Universidad de Navarra–Body Adiposity Estimator (CUN-BAE): a regression-based formula incorporating age, sex, and BMI to estimate body fat percentage; obesity defined as CUN-BAE ≥ 35% [52].
- Metabolic Score for Visceral Fat (METS-VF): a composite index that integrates sex, age, WtHR, fasting glucose, and triglycerides; a score ≥ 6.3 was used to define high visceral adiposity [53].
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings and Interpretation
4.2. Comparison with Previous Studies
4.3. Strengths and Limitations
4.4. Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 July 2025).
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sastre-Alzamora, T.; Tomás-Gil, P.; Paublini, H.; Pallarés, L.; Ramírez-Manent, J.I.; López-González, A.A. Relationship between different scales of overweight and obesity and heart age values in 139634 spanish workers. Acad. J. Health Sci. 2023, 38, 137–144. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belladelli, F.; Montorsi, F.; Martini, A. Metabolic syndrome, obesity and cancer risk. Curr. Opin. Urol. 2022, 32, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Holanda, N.; Crispim, N.; Carlos, I.; Moura, T.; Nóbrega, E.; Bandeira, F. Musculoskeletal effects of obesity and bariatric surgery—A narrative review. Arch. Endocrinol. Metab. 2022, 66, 621–632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Ma, N.; Lin, Q.; Chen, K.; Zheng, F.; Wu, J.; Dong, X.; Niu, W. Body Roundness Index and All-Cause Mortality Among US Adults. JAMA Netw. Open 2024, 7, e2415051, Erratum in JAMA Netw. Open 2024, 7, e2426540. https://doi.org/10.1001/jamanetworkopen.2024.26540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aranceta-Bartrina, J.; Pérez-Rodrigo, C.; Alberdi-Aresti, G.; Ramos-Carrera, N.; Lázaro-Masedo, S. Prevalence of General Obesity and Abdominal Obesity in the Spanish Adult Population (Aged 25-64 Years) 2014-2015: The ENPE Study. Rev. Esp. Cardiol. Engl. Ed. 2016, 69, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Marina Arroyo, M.; Ramírez Gallegos, I.; López-González, A.A.; Vicente-Herrero, M.T.; Vallejos, D.; Tárraga López, P.J.; Manent, J.I.R. Equation Córdoba body fat values according to sociodemographic variables and healthy habits in 386924 Spanish workers. Acad. J. Health Sci. 2024, 39, 31–39. [Google Scholar] [CrossRef]
- Koc, G.; Doran, T.; Uygur, M.M.; Kirac, D. Obesity is associated with IL-6 gene polymorphisms rs1800795 and rs1800796 but not SOCS3 rs4969170. Mol. Biol. Rep. 2023, 50, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Hasan Azeez, S. Influence of IL-10, IL-6 and TNF-α gene polymorphism on obesity. Cell. Mol. Biol. 2023, 69, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.Y.; Barua, S.; Jeong, Y.J.; Lee, J.E. Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 6419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yazıcı, D.; Demir, S.Ç.; Sezer, H. Insulin Resistance, Obesity, and Lipotoxicity. Adv. Exp. Med. Biol. 2024, 1460, 391–430. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. Endothelial Dysfunction in Obesity and Therapeutic Targets. Adv. Exp. Med. Biol. 2024, 1460, 489–538. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; Carmo, J.M.D. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc. Res. 2021, 117, 1859–1876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vekic, J.; Stefanovic, A.; Zeljkovic, A. Obesity and Dyslipidemia: A Review of Current Evidence. Curr. Obes. Rep. 2023, 12, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí-Lliteras, P.; López-González, A.A. Relationship between nonalcoholic fatty liver disease and liver fibrosis risk scales with overweight and obesity scales in 219,477 spanish workers. Acad. J. Health Sci. 2023, 38, 92–100. [Google Scholar] [CrossRef]
- Delker, E.; AlYami, B.; Gallo, L.C.; Ruiz, J.M.; Szklo, M.; Allison, M.A. Chronic Stress Burden, Visceral Adipose Tissue, and Adiposity-Related Inflammation: The Multi-Ethnic Study of Atherosclerosis. Psychosom. Med. 2021, 83, 834–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa, A.; Konieczna, J.; Reynés, B.; Martín, M.; Fiol, M.; Palou, A.; Romaguera, D.; Oliver, P. CUN-BAE Index as a Screening Tool to Identify Increased Metabolic Risk in Apparently Healthy Normal-Weight Adults and Those with Obesity. J. Nutr. 2021, 151, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
- Torun, C.; Ankaralı, H.; Caştur, L.; Uzunlulu, M.; Erbakan, A.N.; Akbaş, M.M.; Gündüz, N.; Doğan, M.B.; Oğuz, A. Is Metabolic Score for Visceral Fat (METS-VF) a Better Index Than Other Adiposity Indices for the Prediction of Visceral Adiposity. Diabetes Metab. Syndr. Obes. 2023, 16, 2605–2615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tripathi, H.; Singh, A.; Farheen Prakash, B.; Dubey, D.K.; Sethi, P.; Jadon, R.S.; Ranjan, P.; Vikram, N.K. The Metabolic Score for Visceral Fat (METS-VF) as a predictor of diabetes mellitus: Evidence from the 2011-2018 NHANES study. PLoS ONE 2025, 20, e0317913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuang, M.; Qiu, J.; Li, D.; Hu, C.; Zhang, S.; Sheng, G.; Zou, Y. The newly proposed Metabolic Score for Visceral Fat is a reliable tool for identifying non-alcoholic fatty liver disease, requiring attention to age-specific effects in both sexes. Front. Endocrinol. 2023, 14, 1281524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, L.; Chen, T.; Wang, X.; Xiong, C.; Chen, J.; Wu, S.; Ning, J.; Zou, H. Metabolism Score for Visceral Fat (METS-VF): A New Predictive Surrogate for CKD Risk. Diabetes Metab. Syndr. Obes. 2022, 15, 2249–2258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, A.; Yang, S.; Pan, Y.; Lin, Q. Metabolism score for visceral fat (METS-VF): An innovative and powerful predictor of stroke. Arch. Med. Sci. 2024, 20, 1710–1714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Xiang, J.; Zhang, S.; Yang, J.; Tang, Y.; Wang, Y. Investigating the role of the metabolic score for visceral Fat in assessing the prevalence of chronic kidney disease from the NHANES 1999-2018. Sci. Rep. 2025, 15, 2397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, S.; Huo, X.; Zuo, X.; Zhao, L.; Liu, L.; Sun, L.; Chen, X. Association of metabolic score for visceral fat with all-cause mortality, cardiovascular mortality, and cancer mortality: A prospective cohort study. Diabetes Obes. Metab. 2024, 26, 5870–5881. [Google Scholar] [CrossRef] [PubMed]
- Kutscher, S.; Juang, C. Insomnia. Continuum 2023, 29, 1167–1187. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Benz, F.; Dressle, R.J.; Espie, C.A.; Johann, A.F.; Blanken, T.F.; Leerssen, J.; Wassing, R.; Henry, A.L.; Kyle, S.D.; et al. Insomnia disorder: State of the science and challenges for the future. J. Sleep Res. 2022, 31, e13604. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Geoffroy, P.A.; Miniati, M.; Perugi, G.; Biggio, G.; Marazziti, D.; Riemann, D. Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: A pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr. 2022, 27, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Alimoradi, Z.; Jafari, E.; Broström, A.; Ohayon, M.M.; Lin, C.Y.; Griffiths, M.D.; Blom, K.; Jernelöv, S.; Kaldo, V.; Pakpour, A.H. Effects of cognitive behavioral therapy for insomnia (CBT-I) on quality of life: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 64, 101646. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.M.; Jarrin, D.C. Epidemiology of Insomnia: Prevalence, Course, Risk Factors, and Public Health Burden. Sleep Med. Clin. 2022, 17, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Vgontzas, A.N.; Fernandez-Mendoza, J.; Lenker, K.P.; Basta, M.; Bixler, E.O.; Chrousos, G.P. Hypothalamic-pituitary-adrenal (HPA) axis response to exogenous corticotropin-releasing hormone (CRH) is attenuated in men with chronic insomnia. J. Sleep Res. 2022, 31, e13526. [Google Scholar] [CrossRef] [PubMed]
- Greenlund, I.M.; Carter, J.R. Sympathetic neural responses to sleep disorders and insufficiencies. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H337–H349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grimaldi, D.; Reid, K.J.; Papalambros, N.A.; Braun, R.I.; Malkani, R.G.; Abbott, S.M.; Ong, J.C.; Zee, P.C. Autonomic dysregulation and sleep homeostasis in insomnia. Sleep 2021, 44, zsaa274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manoharan, N.; Parasuraman, R.; Jayamurali, D.; Muthusamy, P.; Govindarajulu, S. Role of Thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. Mol. Biol. Rep. 2024, 51, 769. [Google Scholar] [CrossRef] [PubMed]
- McHill, A.W.; Hull, J.T.; Klerman, E.B. Chronic Circadian Disruption and Sleep Restriction Influence Subjective Hunger, Appetite, and Food Preference. Nutrients 2022, 14, 1800. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vidal, A.S.; de Campos Reis, N.F.; De Lorenzo, B.H.P.; Alvares-Saraiva, A.M.; Xander, P.; Novaes EBrito, R.R. Impact of sleep restriction in B-1 cells activation and differentiation. Immunobiology 2022, 227, 152280. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Aouad, R. The Effects of Insomnia and Sleep Loss on Cardiovascular Disease. Sleep Med. Clin. 2022, 17, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Kim, L.J.; Jun, J.C.; Polotsky, V.Y. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann. N. Y. Acad. Sci. 2023, 1519, 94–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Influence of sociodemographic variables and tobacco consumption on the prevalence of atherogenic dyslipidemia and lipid triad in 418.343 spanish workers. Acad. J. Health Sci. 2023, 38, 84–89. [Google Scholar] [CrossRef]
- Bekar, C.; Goktas, Z. Validation of the 14-item mediterranean diet adherence screener. Clin. Nutr. ESPEN 2023, 53, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Meh, K.; Jurak, G.; Sorić, M.; Rocha, P.; Sember, V. Validity and Reliability of IPAQ-SF and GPAQ for Assessing Sedentary Behaviour in Adults in the European Union: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of type 2 diabetes risk scales. Acad. J. Health Sci. 2024, 39, 99–106. [Google Scholar] [CrossRef]
- Manzar, M.D.; Jahrami, H.A.; Bahammam, A.S. Structural validity of the Insomnia Severity Index: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 60, 101531. [Google Scholar] [CrossRef] [PubMed]
- Nagy, S.M.; Emert, S.E.; Leete, J.J.; Taylor, D.J.; Dietch, J.R.; Slavish, D.C.; Ruggero, C.J.; Kelly, K. Psychometric Evaluation of the Insomnia Severity Index in Nurses. Behav. Sleep Med. 2024, 22, 779–789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, J.C.; Huang, Y.C.; Lu, C.H.; Chuang, Y.S.; Chien, H.H.; Lin, C.I.; Chao, M.-F.; Chuang, H.-Y.; Ho, C.-K.; Wang, C.-L.; et al. Exploring the Relationship Between Visceral Fat and Coronary Artery Calcification Risk Using Metabolic Score for Visceral Fat (METS-VF). Life 2024, 14, 1399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Figorilli, M.; Velluzzi, F.; Redolfi, S. Obesity and sleep disorders: A bidirectional relationship. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104014. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Wang, S.B.; Zhong, B.L.; Zhang, L.; Ungvari, G.S.; Ng, C.H.; Li, L.; Chiu, H.F.K.; Lok, G.K.I.; Lu, J.-P.; et al. The prevalence of insomnia in the general population in China: A meta-analysis. PLoS ONE 2017, 12, e0170772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vgontzas, A.N.; Fernandez-Mendoza, J.; Liao, D.; Bixler, E.O. Insomnia with objective short sleep duration: The most biologically severe phenotype of the disorder. Sleep Med. Rev. 2013, 17, 241–254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aielo, A.N.; Santos, R.B.; Giatti, S.; Silva, W.A.; Parise, B.K.; Cunha, L.F.; Souza, S.P.; Lotufo, P.A.; Bensenor, I.M.; Drager, L.F. Excessive daytime sleepiness, but not sleep apnea, sleep duration or insomnia, was associated with poor adherence to anti-hypertensive treatment: The ELSA-Brasil study. Sleep Med. 2023, 104, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P., Jr. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Figares Vicioso, M.P.; del Barrio Fernández, J.L.; López-González, A.A.; Ramírez-Manent, J.I.; Vicente Herrero, M.T. Prevalencia de factores de riesgo cardiometabólico. Comparativa sector Comercio vs. Industria y variables asociadas. Acad. J. Health Sci. 2024, 39, 59–66. [Google Scholar] [CrossRef]
- Crönlein, T. Insomnia and obesity. Curr. Opin. Psychiatry 2016, 29, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wing, Y.K. Sex differences in insomnia: A meta-analysis. Sleep 2006, 29, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Cho, E.H.; Hur, J.; Shin, D. Association of Sleep Duration and Obesity According to Gender and Age in Korean Adults: Results from the Korea National Health and Nutrition Examination Survey 2007-2015. J. Korean Med. Sci. 2018, 33, e345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different overweight and obesity scales in 418,343 spanish people. Acad. J. Health Sci. 2023, 38, 111–117. [Google Scholar] [CrossRef]
- Selvamani, Y.; Pradhan, J.; Fong, J.H. Tobacco Use, Food Insecurity, and Low BMI in India’s Older Population. Nutrients 2024, 16, 3649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]



| Men n = 51,251 | Women n = 33,647 | ||
|---|---|---|---|
| Variables | Mean (SD) | Mean (SD) | p-Value |
| Age (years) | 39.8 (10.3) | 39.3 (10.2) | <0.001 |
| Height (cm) | 174.0 (7.0) | 161.2 (6.6) | <0.001 |
| Weight (kg) | 81.1 (13.9) | 65.3 (13.1) | <0.001 |
| Waist (cm) | 87.7 (9.2) | 73.9 (7.9) | <0.001 |
| Hip (cm) | 100.0 (8.5) | 97.2 (8.9) | <0.001 |
| SBP (mm Hg) | 124.4 (15.0) | 114.3 (14.8) | <0.001 |
| DBP (mm Hg) | 75.4 (10.7) | 69.6 (10.3) | <0.001 |
| Cholesterol (mg/dL) | 195.8 (38.8) | 193.6 (36.5) | <0.001 |
| HDL-c (mg/dL) | 51.0 (7.0) | 53.7 (7.6) | <0.001 |
| LDL-c (mg/dL) | 120.3 (37.7) | 122.3 (37.1) | <0.001 |
| Triglycerides (mg/dL) | 124.1 (88.9) | 88.1 (46.0) | <0.001 |
| Glucose (mg/dL) | 88.0 (12.9) | 84.1 (11.4) | <0.001 |
| Variables | n (%) | n (%) | p-Value |
| 18–29 years | 9129 (17.8) | 6578 (19.6) | <0.001 |
| 30–39 years | 17,061 (33.3) | 11,039 (32.8) | |
| 40–49 years | 15,202 (29.6) | 9963 (29.6) | |
| 50–59 years | 8338 (16.3) | 5151 (15.3) | |
| 60–69 years | 1521 (3.0) | 916 (2.7) | |
| Social class I | 2803 (5.5) | 2354 (7.0) | <0.001 |
| Social class II | 9035 (17.6) | 11,230 (33.4) | |
| Social class III | 39,413 (76.9) | 20,063 (59.6) | |
| Smokers | 19,142 (37.4) | 11,029 (32.8) | <0.001 |
| Yes Mediterranean diet | 20,891 (40.8) | 17,261 (51.3) | <0.001 |
| Yes physical activity | 23,221 (45.3) | 17,554 (52.2) | <0.001 |
| No insomnia | 13,020 (25.4) | 21,816 (64.8) | <0.001 |
| Subthreshold insomnia | 25,688 (50.1) | 9260 (27.5) | |
| Moderate insomnia | 8602 (16.8) | 1904 (5.7) | |
| Severe insomnia | 3941 (7.7) | 667 (2.0) |
| BMI | WtHR | CUN BAE | METS-VF | ||
|---|---|---|---|---|---|
| Men | n | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) |
| 18–29 years | 9129 | 25.0 (4.1) | 0.49 (0.05) | 21.0 (6.4) | 5.9 (0.5) |
| 30–39 years | 17,061 | 26.5 (4.1) | 0.51 (0.05) | 24.7 (5.8) | 6.3 (0.5) |
| 40–49 years | 15,202 | 27.4 (4.1) | 0.52 (0.05) | 27.1 (5.5) | 6.6 (0.5) |
| 50–59 years | 8338 | 27.9 (4.0) | 0.53 (0.05) | 28.8 (5.0) | 6.8 (0.5) |
| 60–69 years | 1521 | 28.3 (3.9) | 0.53 (0.05) | 30.3 (4.5) | 6.9 (0.4) |
| Social class I | 2803 | 26.5 (3.9) | 0.50 (0.05) | 25.4 (5.8) | 6.3 (0.5) |
| Social class II | 9035 | 26.7 (4.4) | 0.51 (0.05) | 25.6 (5.9) | 6.4 (0.5) |
| Social class III | 39,413 | 26.8 (4.3) | 0.51 (0.05) | 25.6 (6.4) | 6.4 (0.5) |
| Smokers | 19,142 | 27.1 (4.1) | 0.51 (0.05) | 24.6 (6.4) | 6.4 (0.6) |
| Non smokers | 32,109 | 26.2 (4.3) | 0.51 (0.05) | 26.2 (6.1) | 6.3 (0.6) |
| Yes Mediterranean diet | 20,891 | 24.0 (2.2) | 0.48 (0.03) | 21.2 (4.1) | 6.1 (0.5) |
| Non Mediterranean diet | 30,360 | 28.7 (4.2) | 0.53 (0.05) | 28.6 (5.7) | 6.7 (0.5) |
| Yes physical activity | 23,221 | 24.0 (2.2) | 0.48 (0.03) | 21.3 (4.1) | 6.1 (0.5) |
| Non physical activity | 28,030 | 29.1 (4.1) | 0.53 (0.05) | 29.2 (5.4) | 6.7 (0.5) |
| No insomnia | 13,020 | 23.1 (1.9) | 0.47 (0.03) | 19.2 (3.6) | 5.9 (0.4) |
| Subthreshold insomnia | 25,688 | 26.6 (2.8) | 0.51 (0.04) | 25.6 (4.1) | 6.4 (0.4) |
| Moderate insomnia | 8602 | 30.4 (4.2) | 0.55 (0.05) | 31.5 (4.7) | 6.9 (0.3) |
| Severe insomnia | 3941 | 32.4 (4.4) | 0.58 (0.06) | 34.2 (4.8) | 7.2 (0.4) |
| Women | n | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) |
| 18–29 years | 6578 | 23.9 (4.7) | 0.44 (0.05) | 31.4 (6.9) | 5.0 (0.7) |
| 30–39 years | 11,039 | 24.6 (4.9) | 0.45 (0.05) | 33.7 (6.6) | 5.3 (0.7) |
| 40–49 years | 9963 | 25.6 (4.8) | 0.46 (0.05) | 36.6 (6.0) | 5.6 (0.7) |
| 50–59 years | 5151 | 26.7 (4.7) | 0.47 (0.05) | 39.2 (5.4) | 5.9 (0.6) |
| 60–69 years | 916 | 27.3 (4.4) | 0.48 (0.05) | 40.9 (4.8) | 6.1 (0.6) |
| Social class I | 2354 | 23.7 (4.3) | 0.44 (0.05) | 32.8 (6.2) | 5.2 (0.7) |
| Social class II | 11,230 | 24.2 (4.5) | 0.45 (0.05) | 33.7 (6.4) | 5.3 (0.8) |
| Social class III | 20,063 | 25.8 (5.1) | 0.47 (0.05) | 36.3 (7.0) | 5.6 (0.7) |
| Smokers | 11,029 | 25.5 (5.0) | 0.46 (0.05) | 35.7 (6.9) | 5.5 (0.8) |
| Non smokers | 22,618 | 24.4 (4.6) | 0.45 (0.05) | 34.0 (6.7) | 5.4 (0.7) |
| Yes Mediterranean diet | 17,261 | 22.5 (2.4) | 0.44 (0.04) | 31.2 (4.3) | 5.1 (0.6) |
| Non Mediterranean diet | 16,386 | 28.0 (5.3) | 0.48 (0.05) | 39.3 (6.6) | 5.8 (0.7) |
| Yes physical activity | 17,554 | 22.3 (2.3) | 0.44 (0.04) | 31.0 (4.2) | 5.1 (0.6) |
| Non physical activity | 16,093 | 28.2 (5.1) | 0.48 (0.05) | 39.7 (6.2) | 5.9 (0.6) |
| No insomnia | 21,816 | 22.9 (2.8) | 0.44 (0.04) | 31.6 (4.6) | 5.1 (0.6) |
| Subthreshold insomnia | 9260 | 28.2 (4.5) | 0.48 (0.04) | 40.4 (4.8) | 6.0 (0.5) |
| Moderate insomnia | 1904 | 32.8 (5.4) | 0.52 (0.05) | 45.7 (4.8) | 6.4 (0.4) |
| Severe insomnia | 667 | 35.0 (5.1) | 0.55 (0.06) | 48.0 (4.5) | 6.7 (0.4) |
| BMI Obesity | WtHR High | CUN BAE Obesity | METS-VF High | ||
|---|---|---|---|---|---|
| Men | n | % | % | % | % |
| 18–29 years | 9129 | 10.6 | 31.1 | 22.5 | 2.5 |
| 30–39 years | 17,061 | 16.9 | 43.9 | 44.1 | 3.6 |
| 40–49 years | 15,202 | 22.7 | 53.4 | 63.3 | 11.4 |
| 50–59 years | 8338 | 27.0 | 60.3 | 78.4 | 20.2 |
| 60–69 years | 1521 | 29.0 | 65.9 | 89.5 | 28.1 |
| Social class I | 2803 | 17.3 | 43.6 | 51.6 | 6.8 |
| Social class II | 9035 | 17.9 | 48.9 | 52.1 | 8.0 |
| Social class III | 39,413 | 20.1 | 54.4 | 53.2 | 9.1 |
| Smokers | 19,142 | 21.3 | 50.0 | 56.8 | 8.9 |
| Non smokers | 32,109 | 16.6 | 44.1 | 46.2 | 8.6 |
| Yes Mediterranean diet | 20,891 | 6.2 | 24.5 | 19.1 | 3.9 |
| Non Mediterranean diet | 30,360 | 24.7 | 63.8 | 76.1 | 9.2 |
| Yes physical activity | 23,221 | 5.2 | 24.4 | 19.4 | 3.0 |
| Non physical activity | 28,030 | 27.2 | 67.1 | 80.6 | 12.8 |
| No insomnia | 13,020 | 10.8 | 12.1 | 24.6 | 2.9 |
| Subthreshold insomnia | 25,688 | 18.5 | 28.0 | 35.9 | 4.0 |
| Moderate insomnia | 8602 | 31.5 | 48.3 | 55.5 | 6.3 |
| Severe insomnia | 3941 | 39.8 | 58.3 | 66.8 | 8.5 |
| Women | n | % | % | % | % |
| 18–29 years | 6578 | 10.9 | 11.2 | 25.0 | 0.5 |
| 30–39 years | 11,039 | 12.7 | 13.5 | 35.6 | 1.2 |
| 40–49 years | 9963 | 16.8 | 17.6 | 55.0 | 2.4 |
| 50–59 years | 5151 | 21.2 | 22.6 | 77.1 | 5.3 |
| 60–69 years | 916 | 24.6 | 25.5 | 89.2 | 8.2 |
| Social class I | 2354 | 8.4 | 10.0 | 31.1 | 2.5 |
| Social class II | 11,230 | 10.1 | 11.5 | 36.4 | 3.1 |
| Social class III | 20,063 | 18.8 | 19.2 | 54.9 | 3.8 |
| Smokers | 11,029 | 16.9 | 16.9 | 50.2 | 3.9 |
| Non smokers | 22,618 | 11.7 | 14.1 | 40.6 | 3.5 |
| Yes Mediterranean diet | 17,261 | 7.2 | 7.0 | 21.6 | 1.2 |
| Non Mediterranean diet | 16,386 | 20.3 | 29.6 | 74.0 | 4.2 |
| Yes physical activity | 17,554 | 6.3 | 5.2 | 18.1 | 1.0 |
| Non physical activity | 16,093 | 24.8 | 30.2 | 78.7 | 5.2 |
| No insomnia | 21,816 | 10.1 | 5.8 | 24.2 | 1.2 |
| Subthreshold insomnia | 9260 | 19.2 | 16.6 | 30.7 | 2.2 |
| Moderate insomnia | 1904 | 33.5 | 25.3 | 44.5 | 3.6 |
| Severe insomnia | 667 | 37.2 | 32.4 | 59.7 | 4.2 |
| BMI Obesity | WtHR High | CUN BAE Obesity | METS-VF High | |
|---|---|---|---|---|
| OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
| Women | 1 | 1 | 1 | 1 |
| Men | 1.16 (1.13–1.20) | 2.56 (2.46–2.67) | 1.18 (1.14–1.22) | 10.02 (8.46–11.59) |
| 18–29 years | 1 | 1 | 1 | 1 |
| 30–39 years | 1.22 (1.17–1.27) | 1.23 (1.19–1.28) | 1.53 (1.40–1.67) | 1.29 (1.24–1.34) |
| 40–49 years | 1.48 (1.36–1.60) | 1.52 (1.44–1.61) | 2.29 (1.98–2.59) | 1.99 (1.70–2.29) |
| 50–59 years | 1.89 (1.79–2.09) | 1.84 (1.70–1.99) | 3.10 (2.61–3.60) | 2.85 (2.39–3.32) |
| 60–69 years | 2.33 (2.03–2.66) | 2.22 (2.00–2.45) | 4.09 (3.11–5.08) | 4.06 (3.45–4.66) |
| Social class I | 1 | 1 | 1 | 1 |
| Social class II | 1.19 (1.15–1.24) | 1.18 (1.14–1.22) | 1.14 (1.10–1.19) | 1.31 (1.23–1.40) |
| Social class III | 1.40 (130–1.51) | 1.32 (1.23–1.42) | 1.25 (1.19–1.31) | 1.77 (1.56–1.97) |
| Non smokers | 1 | 1 | 1 | 1 |
| Smokers | 1.29 (1.22–1.36) | 1.20 (1.16–1.25) | 1.21 (1.16–1.27) | 1.18 (1.15–1.22) |
| Yes Mediterranean diet | 1 | 1 | 1 | 1 |
| Non Mediterranean diet | 3.29 (2.88–3.70) | 2.40 (2.15–2.66) | 3.65 (2.96–4.35) | 3.12 (2.50–3.75) |
| Yes physical activity | 1 | 1 | 1 | 1 |
| Non physical activity | 5.70 (4.91–6.50) | 3.65 (3.20–4.01) | 6.64 (5.40–7.89) | 5.88 (4.97–6.79) |
| No insomnia | 1 | 1 | 1 | 1 |
| Subthreshold insomnia | 1.41 (1.31–1.52) | 1.58 (1.48–1.69) | 1.41 (1.31–1.52) | 1.56 (1.43–1.69) |
| Moderate insomnia | 2.29 (2.00–2.59) | 1.99 (1.80–2.09) | 1.98 (1.72–2.25) | 1.89 (1.67–2.10) |
| Severe insomnia | 3.40 (2.94–3.87) | 2.59 (2.30–2.90) | 2.78 (2.32–3.25) | 2.48 (2.11–2.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribes Valles, J.L.; Tárraga López, P.J.; López González, Á.A.; Coll Campayo, I.; Busquets-Cortés, C.; Ramírez-Manent, J.I. Associations of Sociodemographic Factors, Lifestyle Habits, and Insomnia Severity with Obesity Indices in Spanish Workers: Sex-Specific Differences. Med. Sci. 2025, 13, 271. https://doi.org/10.3390/medsci13040271
Ribes Valles JL, Tárraga López PJ, López González ÁA, Coll Campayo I, Busquets-Cortés C, Ramírez-Manent JI. Associations of Sociodemographic Factors, Lifestyle Habits, and Insomnia Severity with Obesity Indices in Spanish Workers: Sex-Specific Differences. Medical Sciences. 2025; 13(4):271. https://doi.org/10.3390/medsci13040271
Chicago/Turabian StyleRibes Valles, José Luis, Pedro Juan Tárraga López, Ángel Arturo López González, Irene Coll Campayo, Carla Busquets-Cortés, and José Ignacio Ramírez-Manent. 2025. "Associations of Sociodemographic Factors, Lifestyle Habits, and Insomnia Severity with Obesity Indices in Spanish Workers: Sex-Specific Differences" Medical Sciences 13, no. 4: 271. https://doi.org/10.3390/medsci13040271
APA StyleRibes Valles, J. L., Tárraga López, P. J., López González, Á. A., Coll Campayo, I., Busquets-Cortés, C., & Ramírez-Manent, J. I. (2025). Associations of Sociodemographic Factors, Lifestyle Habits, and Insomnia Severity with Obesity Indices in Spanish Workers: Sex-Specific Differences. Medical Sciences, 13(4), 271. https://doi.org/10.3390/medsci13040271

