Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites
Abstract
Simple Summary
Abstract
1. Introduction
2. Interaction of Gastrointestinal Parasite with Animal Hosts Using Small Molecules
3. Techniques Used for Studying GIPs
Helminth Species and Family | Life Cycle Stage | Host | Sample Analysed | Study Approach | Metabolite Types | MSI Identification Level | Analytical Instruments/PLATFORMS Used | Databases/Software Used | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ancylostoma caninum (Ancylostomatidae) | Adult | Dog | SE, ESP | Targeted | Polar metabolites and lipids | Level 1 | GC-MS and LC-MS | Database: MAML Software: Agilent MassHunter (v.7); MetaboAnalyst (v.3.0) | [55] |
Ascaris suum (Ascarididae) | L3, L4, adult | Swine | SE | Untargeted | Lipids | Level 2 | UHPLC-MS/MS | Database: LipidSearch (v.4.2.23) | [56] |
Ascaris lumbricoides (Ascarididae) | Adult | Human and swine | ESP | Targeted | Lipids | Level 1 | GLC | Lipids were identified by matching retention times with standards | [57] |
Eggs, L1, L3 | SE | Fingerprint | Biomarkers (pheromones/steroidal prohormones) | Level 2 | HRMS | Database: Lipid MAPS; HMDB (v 3.6); METLIN Software: MetaboAnalyst (v.3.0) | [58] | ||
Brugia malayi (Onchocercidae) | Adult | Dogs and wild felids | Cuticle | Targeted | Lipids | Level 1 | TLC and GC | Lipids were identified by matching retention times with standards | [59] |
Dictyocaulus viviparus (Dictyocaulidae) | Eggs, L1-L3, preadult, adult | Cattle | SE | Targeted | Lipids | Level 1 | GC | Lipids were identified by matching retention times with standards Software: Chem Station B.01.03. | [60] |
Dipylidium caninum (Dipylidiidae) | Adult | Dog | ESP | Targeted | Polar metabolites and lipids | Level 1 | GC-MS | Database: MHL; KEGG; NIST library; MAML Software: MetaboAnalyst (v.4.0) | [61] |
Echinococcus multilocularis (Taeniidae) | Larval metacestode | Fox | CS | Untargeted | Polar metabolites | Level 1 | 1H NMR | Database: HMDB Software: Chenomx NMR Suit (v.8.2); STOCSY | [62] |
Haemonchus contortus (Trichostrongylidae) | Eggs, L3, xL3, L4, adult | Goats and sheep | SE | Untargeted | Lipids | Level 2 | UHPLC-ESI(+)-MS/MS-Orbitrap | Database: LipidSearch (v.4.1.30 SPI) Software: R package (v.1.6.18) | [53] |
Hymenolepis diminuta (Hymenolepididae) | Infective stage | Rodents (rats) | SE | Targeted | Lipids | Level 1 | TLC, CC, and GLC | NA | [38] |
Necator americanus (Ancylostomatidae) | L3 | Human | SE, ESP | Untargeted | Polar metabolites | Level 1 | Q-Exactive Orbitrap and MS/HPLC | Database: KEGG; MetaCyc; CTS; Lipid MAPS; PubChem; HMDB Software: IDEOM; MetaboAnalyst (v.3.0) | [63] |
Lipids | Level 2 | ||||||||
Nippostrongylus brasiliensis (Heligmonellidae) | Adult | Rodents (rats) | ESP | Targeted | Polar metabolites and lipids | Level 1 | 1H NMR | Database: GenBank; NCBI GEO Software: STAR; Chenomx NMR Suite (v.5.1) | [39] |
L3 | SE, ESP | Untargeted | Polar metabolites | Level 1 | Q-Exactive Orbitrap and MS/HPLC | Database: KEGG, MetaCyc; Lipid MAPS; PubChem CID; HMDB; CTS Software: IDEOM; MetaboAnalyst (v.3.0) | [21,33] | ||
Lipids | Level 2 | ||||||||
Adult | ESP | Targeted | Polar metabolites and lipids | Level 1 | GC-MS | Database: MAML; MHL; KEGG Software: Agilent MassHunter (v.7) | |||
Adult | ESP | Untargeted | Polar metabolites | Level 1 | UHPLC-MS | Database: HMDB; PubChem CID Software: XCMS; MetaboAnalyst (v.5.0); R package (Ropls) | [64] | ||
Intestinal content | |||||||||
Oesophagostomum dentatum; O. quadrispinulatum (Strongylidae) | L3, L4, adult | Common livestock (goats, sheep, and swine) | SE | Untargeted | Lipids | Level 1 | GC | Lipid identification: matching retention times with standards Software: MIDI software package (MIS v.3.30) | [65] |
Schistosoma mansoni (Schistosomatidae) | Adult | Human | SE | Targeted | Lipids | Level 1 | MALDI MSI (+) | Database: METLIN; Lipid MAPS Software: Uscrambler (v.9.7); Mass Frontier (v.6.0) | [42] |
Eggs, miracidia, cercariae | SE | Untargeted | Lipids | Level 2 | ESI(+)-HRMS | Database: Lipid MAPS; METLIN Software: Unscrambler (v.9.7) | [31] | ||
Adult | SE | Untargeted | Lipids | Level 2 | MALDI-MSI(+) | Database: Lipid MAPS; METLIN Software: Unscrambler (v.9.7) | [43] | ||
Adult | TS | Targeted | Lipids | Level 2 | HPLC-MS (Sciex 4000QTRAP) | Lipids were identified by universal HPLC-MS method Software: Markerview (v.1.0) | [66] | ||
Eggs, cercariae, adult | SE, ESP | Targeted | Lipids | Level 2 | LC-MS/MS (QTrap) (ESI−) | Software: LipidBlast; FiehnO lipid database in MS-DIAL (v2.74) Software: R package (CRAN R, v.3.3.2) | [51] | ||
Targeted | Lipids | GC-MS | |||||||
Targeted | Lipids | LC-MS/MS (QToF) (ESI+) | |||||||
Adult | SE | Untargeted | Lipids | Level 2 | AP-SMALDI MSI | Database: SwissLipids; LipidMatch (v.2.0.2) Software: Lipid Data Analyzer (v.2.6.2) | [44] | ||
Strongyloides ratti (Strongylidae) | L1, L3, free-living | Rodent (rats) | SE | Targeted | Lipids | Level 1 | GC-MS | Lipids were identified by matching retention times with standards | [67] |
Trichuris muris (Trichuridae) | Embryonated eggs | Rodents (mice) | SE | Untargeted | Polar metabolites | Level 1 | Q-Exactive Orbitrap and MS/HPLC | Database: KEGG; MetaCyc; Lipid MAPS; PubChem CID; HMDB; CTS Software: IDEOM; MetaboAnalyst (v.3.0) | [33] |
Lipids | Level 2 | ||||||||
Adult | ESP | Targeted | Polar metabolites and lipids | Level 1 | GC-MS | Database: MAML; MHL; KEGG Software: Agilent MassHunter (v.7); MetaboAnalyst (v.3.0) | [21] | ||
Trichinella papuae (Tricinellidae) | L1 (muscle-stage) | Swine | SE | Untargeted | Lipids | Level 2 | ESI(+/−) UPLC-MS/MS | Database: Lipid MAPS; LipidBlast Software: Progenesis QI (v.2.1); QuickGO | [52] |
Toxocara canis (Toxocaridae) | Adult | Dog | ESP | Targeted | Polar metabolites and lipids | Level 1 | GC-MS and LC-MS | Database: Agilent MassHunter (v.7); MAML Software: MetaboAnalyst (v.3.0) | [54] |
Adult | SE | Untargeted | Polar metabolites and lipids | Level 1 | 1H NMR | NA | [68] |
4. Metabolomics and Lipidomics Approaches and Metabolite Identification Levels
4.1. Approaches
4.2. Metabolite Databases and Metabolite Identification Levels
4.2.1. Metabolite Databases
4.2.2. Metabolite Identification Levels
5. Artificial Intelligence (AI)-Assisted Software and Statistical Tools for Metabolomics/Lipidomics Data Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakeri, A.; Hansen, E.P.; Andersen, S.D.; Williams, A.R.; Nejsum, P. Immunomodulation by helminths: Intracellular pathways and extracellular vesicles. Front. Immunol. 2018, 9, 2349. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert. Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods 2021, 18, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.M.; Eichenberger, R.M.; Ruscher, R.; Giacomin, P.R.; Loukas, A. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog. 2020, 16, e1008508. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Ruscher, R.; Loukas, A.; Wangchuk, P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. Front. Parasitol. 2022, 1, 984152. [Google Scholar] [CrossRef]
- Yeshi, K.; Ruscher, R.; Hunter, L.; Daly, N.L.; Loukas, A.; Wangchuk, P. Revisiting inflammatory bowel disease: Pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. J. Clin. Med. 2020, 9, 1273. [Google Scholar] [CrossRef]
- Preidis, G.A.; Hotez, P.J. The newest ″omics″–metagenomics and metabolomics–enter the battle against the neglected tropical diseases. PLoS Neglected Trop. Dis. 2015, 9, e0003382. [Google Scholar] [CrossRef]
- Newgard, C.B. Metabolomics and metabolic diseases: Where do we stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef]
- Petrick, L.M.; Shomron, N. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep. Phys. Sci. 2022, 3, 100978. [Google Scholar] [CrossRef]
- Galal, A.; Talal, M.; Moustafa, A. Applications of machine learning in metabolomics: Disease modeling and classification. Front. Genet. 2022, 13, 1017340. [Google Scholar] [CrossRef]
- Dhall, D.; Kaur, R.; Juneja, M. Machine learning: A review of the algorithms and its applications. In Proceedings of the 2nd International Conference on Recent Innovations in Computing (ICRIC 2019), Jammu, India, 8–9 March 2019; Springer: Cham, Switzerland, 2020; pp. 47–63. [Google Scholar]
- Zhang, J.D.; Xue, C.; Kolachalama, V.B.; Donald, W.A. Interpretable machine learning on metabolomics data reveals biomarkers for Parkinson’s disease. ACS Cent. Sci. 2023, 9, 1035–1045. [Google Scholar] [CrossRef]
- Loke, P.; Harris, N.L. Networking between helminths, microbes, and mammals. Cell Host Microbe 2023, 31, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Investig. 2008, 118, 1311–1321. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; de Roos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Di, Y.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tielens, A.G.M.; van Grinsven, K.W.A.; Henze, K.; van Hellemond, J.J.; Martin, W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int. J. Parasitol. 2010, 40, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Rapin, A.; Lebon, L.; Dubey, L.K.; Mosconi, I.; Sarter, K.; Piersigilli, A.; Menin, L.; Walker, A.W.; Rougemont, J.; et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 2015, 43, 998–1010. [Google Scholar] [CrossRef]
- Ward, P.F. Aspects of helminth metabolism. Parasitology 1982, 84, 177–194. [Google Scholar] [CrossRef]
- Wangchuk, P.; Kouremenos, K.; Eichenberger, R.M.; Pearson, M.; Susianto, A.; Wishart, D.S.; McConville, M.J.; Loukas, A. Metabolomic profiling of the excretory-secretory products of hookworm and whipworm. Metabolomics 2019, 15, 101. [Google Scholar] [CrossRef]
- Liu, L.X.; Buhlmann, J.E.; Weller, P.F. Release of prostaglandin E2bymicrofilariae of Wuchereria bancrofti and Brugia malayi. Am. J. Trop. Med. Hyg. 1992, 46, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Brattig, N.W.; Schwohl, A.; Rickert, R.; Büttner, D.W. The filarial parasite Onchocerca volvulus generates the lipid mediator prostaglandin E2. Microbes Infect. 2006, 8, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, K.; Kumar, P.; He, Y.-X. A Role for Parasite-induced PGE2 in IL-10-mediated host immunoregulation by skin stage schistosomula of Schistosoma mansoni1. J. Immunol. 2000, 165, 4567–4574. [Google Scholar] [CrossRef] [PubMed]
- Ofir-Birin, Y.; Regev-Rudzki, N. Extracellular vesicles in parasite survival. Science 2019, 363, 817–818. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Cheng, G. Role of microRNAs in schistosomes and schistosomiasis. Front. Cell Infect. Microbiol. 2014, 4, 165. [Google Scholar] [CrossRef]
- Rochat, B. Proposed confidence scale and ID score in the identification of known-unknown compounds using high resolution MS data. J. Am. Soc. Mass Spectrom. 2017, 28, 709–723. [Google Scholar] [CrossRef]
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal. 2014, 87, 12–25. [Google Scholar] [CrossRef]
- Cajka, T.; Vaclavikova, M.; Dzuman, Z.; Vaclavik, L.; Ovesna, J.; Hajslova, J. Rapid LC-MS-based metabolomics method to study the Fusarium infection of barley. J. Sep. Sci. 2014, 37, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; Gonzalez-Ruiz, V.; Rudaz, S. Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal. Chim. Acta 2020, 1105, 28–44. [Google Scholar] [CrossRef]
- Ferreira, M.S.; de Oliveira, D.N.; de Oliveira, R.N.; Allegretti, S.M.; Catharino, R.R. Screening the life cycle of Schistosoma mansoni using high-resolution mass spectrometry. Anal. Chim. Acta 2014, 845, 62–69. [Google Scholar] [CrossRef]
- Plumb, R.; Castro-Perez, J.; Granger, J.; Beattie, I.; Joncour, K.; Wright, A. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Creek, D.J.; Anderson, D.; Ritmejerytė, E.; Becker, L.; Loukas, A.; Wangchuk, P. Metabolomes and lipidomes of the infective stages of the gastrointestinal nematodes, Nippostrongylus brasiliensis and Trichuris muris. Metabolites 2020, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Shulaev, V. Metabolomics technology and bioinformatics. Brief. Bioinform. 2006, 7, 128–139. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 6, 51–78. [Google Scholar] [CrossRef]
- Dunn, W.B. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys. Biol. 2008, 5, 011001. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef]
- Ginger, C.D.; Fairbairn, D. Lipid metabolism in helminth parasites. I. The lipids of Hymenolepis diminuta (cestoda). J. Parasitol. 1966, 52, 1086–1096. [Google Scholar] [CrossRef]
- Nadjsombati, M.S.; McGinty, J.W.; Lyons-Cohen, M.R.; Jaffe, J.B.; DiPeso, L.; Schneider, C.; Miller, C.N.; Pollack, J.L.; Nagana Gowda, G.A.; Fontana, M.F.; et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 2018, 49, 33–41.e37. [Google Scholar] [CrossRef]
- Whitman, J.D.; Sakanari, J.A.; Mitreva, M. Areas of metabolomic exploration for helminth infections. ACS Infect. Dis. 2021, 7, 206–214. [Google Scholar] [CrossRef]
- Kokova, D.; Mayboroda, O.A. Twenty Years on: Metabolomics in helminth research. Trends Parasitol. 2019, 35, 282–288. [Google Scholar] [CrossRef]
- Ferreira, M.S.; de Oliveira, D.N.; de Oliveira, R.N.; Allegretti, S.M.; Vercesi, A.E.; Catharino, R.R. Mass spectrometry imaging: A new vision in differentiating Schistosoma mansoni strains. J. Mass Spectrom. 2014, 49, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; de Oliveira, R.N.; de Oliveira, D.N.; Esteves, C.Z.; Allegretti, S.M.; Catharino, R.R. Revealing praziquantel molecular targets using mass spectrometry imaging: An expeditious approach applied to Schistosoma mansoni. Int. J. Parasitol. 2015, 45, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Kadesch, P.; Quack, T.; Gerbig, S.; Grevelding, C.G.; Spengler, B. Tissue- and sex-specific lipidomic analysis of Schistosoma mansoni using high-resolution atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging. PLoS Negl. Trop. Dis. 2020, 14, e0008145. [Google Scholar] [CrossRef] [PubMed]
- Nielen, M.W. MALDI time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 1999, 18, 309–344. [Google Scholar] [CrossRef]
- Li, L.; Winefordner, J.D.E. MALDI Mass Spectrometry for Synthetic Polymer Analysis; Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Khalil, S.M.; Pretzel, J.; Becker, K.; Spengler, B. High-resolution AP-SMALDI mass spectrometry imaging of Drosophila melanogaster. Int. J. Mass Spectrom. 2017, 416, 1–19. [Google Scholar] [CrossRef]
- Liigand, P.; Kaupmees, K.; Haav, K.; Liigand, J.; Leito, I.; Girod, M.; Antoine, R.; Kruve, A. Think Negative: Finding the best electrospray ionization/MS mode for your analyte. Anal. Chem. 2017, 89, 5665–5668. [Google Scholar] [CrossRef]
- Cech, N.B.; Enke, C.G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387. [Google Scholar] [CrossRef]
- Cole, R.B. Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Giera, M.; Kaisar, M.M.M.; Derks, R.J.E.; Steenvoorden, E.; Kruize, Y.C.M.; Hokke, C.H.; Yazdanbakhsh, M.; Everts, B. The Schistosoma mansoni lipidome: Leads for immunomodulation. Anal. Chim. Acta 2018, 1037, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Mangmee, S.; Adisakwattana, P.; Tipthara, P.; Simanon, N.; Sonthayanon, P.; Reamtong, O. Lipid profile of Trichinella papuae muscle-stage larvae. Sci. Rep. 2020, 10, 10125. [Google Scholar] [CrossRef]
- Wang, T.; Nie, S.; Ma, G.; Korhonen, P.K.; Koehler, A.V.; Ang, C.S.; Reid, G.E.; Williamson, N.A.; Gasser, R.B. The developmental lipidome of Haemonchus contortus. Int. J. Parasitol. 2018, 48, 887–895. [Google Scholar] [CrossRef]
- Wangchuk, P.; Lavers, O.; Wishart, D.S.; Loukas, A. Excretory/secretory metabolome of the zoonotic roundworm parasite Toxocara canis. Biomolecules 2020, 10, 1157. [Google Scholar] [CrossRef] [PubMed]
- Wangchuk, P.; Shepherd, C.; Constantinoiu, C.; Ryan, R.Y.M.; Kouremenos, K.A.; Becker, L.; Jones, L.; Buitrago, G.; Giacomin, P.; Wilson, D.; et al. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes. Infect. Immun. 2019, 87, e00851-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Nie, S.; Ma, G.; Vlaminck, J.; Geldhof, P.; Williamson, N.A.; Reid, G.E.; Gasser, R.B. Quantitative lipidomic analysis of Ascaris suum. PLoS Negl. Trop. Dis. 2020, 14, e0008848. [Google Scholar] [CrossRef] [PubMed]
- Greichus, A.; Greichus, Y.A. Chemical composition and volatile fatty acid production of male Ascaris lumbricoides before and after starvation. Exp. Parasitol. 1966, 19, 85–90. [Google Scholar] [CrossRef]
- Melo, C.F.; Esteves, C.Z.; de Oliveira, R.N.; Guerreiro, T.M.; de Oliveira, D.N.; Lima, E.O.; Mine, J.C.; Allegretti, S.M.; Catharino, R.R. Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry. Parasitol. Res. 2016, 115, 4107–4114. [Google Scholar] [CrossRef]
- Smith, V.P.; Selkirk, M.E.; Gounaris, K. Identification and composition of lipid classes in surface and somatic preparationss of adult Brugia malayi. Mol. Biochem. Parasitol. 1996, 78, 105–116. [Google Scholar] [CrossRef]
- Becker, A.-C.; Willenberg, I.; Springer, A.; Schebb, N.H.; Steinberg, P.; Strube, C. Fatty acid composition of free-living and parasitic stages of the bovine lungworm Dictyocaulus viviparus. Mol. Biochem. Parasitol. 2017, 216, 39–44. [Google Scholar] [CrossRef]
- Wangchuk, P.; Constantinoiu, C.; Eichenberger, R.M.; Field, M.; Loukas, A. Characterization of tapeworm metabolites and their reported biological activities. Molecules 2019, 24, 1480. [Google Scholar] [CrossRef]
- Ritler, D.; Rufener, R.; Li, J.V.; Kämpfer, U.; Müller, J.; Bühr, C.; Schürch, S.; Lundström-Stadelmann, B. In vitro metabolomic footprint of the Echinococcu multilocularis metacestode. Sci. Rep. 2019, 9, 19438. [Google Scholar] [CrossRef]
- Wangchuk, P.; Anderson, D.; Yeshi, K.; Loukas, A. Identification of small molecules of the infective stage of human hookworm using LCMS-based metabolomics and lipidomics protocols. ACS Infect. Dis. 2021, 7, 3264–3276. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Ding, X.; Yang, Y.; Chen, Y.; Zhang, Q.; Fan, Y.; Dai, Y.; Wang, J. Mining anti-inflammation molecules from Nippostrongylus brasiliensis-derived products through the metabolomics approach. Front. Cell Infect. Microbiol. 2021, 11, 781132. [Google Scholar] [CrossRef] [PubMed]
- Joachim, A.; Ryll, M.; Daugschies, A. Fatty acid patterns of different stages of Oesophagostomum dentatum and Oesophagostomum quadrispinulatum as revealed by gas chromatography. Int. J. Parasitol. 2000, 30, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Retra, K.; deWalick, S.; Schmitz, M.; Yazdanbakhsh, M.; Tielens, A.G.; Brouwers, J.F.; van Hellemond, J.J. The tegumental surface membranes of Schistosoma mansoni are enriched in parasite-specific phospholipid species. Int. J. Parasitol. 2015, 45, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Minematsu, T.; Yamazaki, S.; Uji, Y.; Okabe, H.; Korenaga, M.; Tada, I. Analysis of polyunsaturated fatty acid composition of Strongyloides ratti in relation to development. J. Helminthol. 1990, 64, 303–309. [Google Scholar] [CrossRef]
- Learmonth, M.P.; Euerby, M.R.; Jacobs, D.E.; Gibbons, W.A. Metabolite mapping of Toxocara canis using one- and two-dimensional proton magnetic resonance spectroscopy. Mol. Biochem. Parasitol. 1987, 25, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Silva, L.P.; Northen, T.R. Exometabolomics and MSI: Deconstructing how cells interact to transform their small molecule environment. Curr. Opin. Biotechnol. 2015, 34, 209–216. [Google Scholar] [CrossRef]
- Mapelli, V.; Olsson, L.; Nielsen, J. Metabolic footprinting in microbiology: Methods and applications in functional genomics and biotechnology. Trends Biotechnol. 2008, 26, 490–497. [Google Scholar] [CrossRef]
- Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS ONE 2018, 13, e0207082. [Google Scholar] [CrossRef]
- Srivastava, A.; Creek, D.J. Using the IDEOM workflow for LCMS-based metabolomics studies of drug mechanisms. Methods Mol. Biol. 2020, 2104, 419–445. [Google Scholar] [CrossRef]
- Creek, D.J.; Jankevics, A.; Burgess, K.E.; Breitling, R.; Barrett, M.P. IDEOM: An Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 2012, 28, 1048–1049. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Lommen, A. MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 2009, 81, 3079–3086. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data. Anal. Chem. 2017, 89, 8689–8695. [Google Scholar] [CrossRef]
- Mahieu, N.G.; Patti, G.J. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal Chem 2017, 89, 10397–10406. [Google Scholar] [CrossRef] [PubMed]
- Pirttilä, K.; Balgoma, D.; Rainer, J.; Pettersson, C.; Hedeland, M.; Brunius, C. Comprehensive peak characterization (CPC) in untargeted LC-MS analysis. Metabolites 2022, 12, 137. [Google Scholar] [CrossRef]
- Chetnik, K.; Petrick, L.; Pandey, G. MetaClean: A machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data. Metabolomics 2020, 16, 117. [Google Scholar] [CrossRef]
- Gloaguen, Y.; Kirwan, J.A.; Beule, D. Deep learning-assisted peak curation for large-scale LC-MS metabolomics. Anal. Chem. 2022, 94, 4930–4937. [Google Scholar] [CrossRef]
- Jirayupat, C.; Nagashima, K.; Hosomi, T.; Takahashi, T.; Tanaka, W.; Samransuksamer, B.; Zhang, G.; Liu, J.; Kanai, M.; Yanagida, T. Image processing and machine learning for automated identification of chemo-/biomarkers in chromatography-mass spectrometry. Anal. Chem. 2021, 93, 14708–14715. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
- Xue, J.; Guijas, C.; Benton, H.P.; Warth, B.; Siuzdak, G. METLIN MS(2) molecular standards database: A broad chemical and biological resource. Nat. Methods 2020, 17, 953–954. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef] [PubMed]
- Karp, P.D.; Riley, M.; Paley, S.M.; Pellegrini-Toole, A. The MetaCyc database. Nucleic Acids Res. 2002, 30, 59–61. [Google Scholar] [CrossRef]
- Misra, B.B. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics 2021, 17, 49. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0--The human metabolome database in 2013. Nucleic Acids Res 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Marco-Ramell, A.; Palau-Rodriguez, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sanchez-Pla, A.; Andres-Lacueva, C. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform. 2018, 19, 1. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Altman, T.; Travers, M.; Kothari, A.; Caspi, R.; Karp, P.D. A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinform. 2013, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Yanshole, V.V.; Melnikov, A.D.; Yanshole, L.V.; Zelentsova, E.A.; Snytnikova, O.A.; Osik, N.A.; Fomenko, M.V.; Savina, E.D.; Kalinina, A.V.; Sharshov, K.A.; et al. Animal metabolite database: Metabolite concentrations in animal tissues and convenient comparison of quantitative metabolomic data. Metabolites 2023, 13, 1088. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor, C.; et al. The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175–178. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 13. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R.; Salek, R.M.; Moreno, P.; Canueto, D.; Steinbeck, C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017, 13, 106. [Google Scholar] [CrossRef]
- Clasquin, M.F.; Melamud, E.; Rabinowitz, J.D. LC-MS data processing with MAVEN: A metabolomic analysis and visualization engine. Curr. Protoc. Bioinform. 2012, 14, 1–31. [Google Scholar] [CrossRef]
- Kessler, N.; Neuweger, H.; Bonte, A.; Langenkämper, G.; Niehaus, K.; Nattkemper, T.W.; Goesmann, A. MeltDB 2.0-advances of the metabolomics software system. Bioinformatics 2013, 29, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Armitage, E.G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C. Missing value imputation strategies for metabolomics data. Electrophoresis 2015, 36, 3050–3060. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangchuk, P.; Yeshi, K. Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals 2024, 14, 2671. https://doi.org/10.3390/ani14182671
Wangchuk P, Yeshi K. Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals. 2024; 14(18):2671. https://doi.org/10.3390/ani14182671
Chicago/Turabian StyleWangchuk, Phurpa, and Karma Yeshi. 2024. "Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites" Animals 14, no. 18: 2671. https://doi.org/10.3390/ani14182671
APA StyleWangchuk, P., & Yeshi, K. (2024). Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals, 14(18), 2671. https://doi.org/10.3390/ani14182671