Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Haemolymph Sampling
2.3. Total Haemocytes Count and Flow Cytometer Cell Sorter
2.4. Enzymatic Assay
2.5. Total Protein, Osmolality and pH Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Celi, M.; Filiciotto, F.; Parrinello, D.; Buscaino, G.; Damiano, M.A.; Cuttitta, A.; D’Angelo, S.; Mazzola, S.; Vazzana, M. Physiological and agonistic behavioural response of Procambarus clarkii to an acoustic stimulus. J. Exp. Bio. 2013, 216, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazzana, M.; Mauro, M.; Ceraulo, M.; Dioguardi, M.; Papale, E.; Mazzola, S.; Arizza, V.; Beltrame, F.; Inguglia, L.; Buscaino, G. Underwater high frequency noise: Biological responses in sea urchin Arbacia lixula (Linnaeus, 1758). Comp. Biochem. Physiol. 2020, 242, 110650. [Google Scholar] [CrossRef] [PubMed]
- Vazzana, M.; Ceraulo, M.; Mauro, M.; Papale, E.; Dioguardi, M.; Mazzola, S.; Arizza, V.; Chiaramonte, M.; Buscaino, G. Effects of acoustic stimulation on biochemical parameters in the digestive gland of Mediterranean mussel Mytilus galloprovincialis (Lamark, 1819). J. Acoust. Soc. Am. 2020, 147, 2414–2422. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Pérez-Arjona, I.; Belda Perez, E.J.; Ceraulo, M.; Bou-Cabo, M.; Benson, T.; Espinosa, V.; Beltrame, F.; Mazzola, S.; Vazzana, M.; et al. The effect of low frequency noise on the behaviour of juvenile Sparus aurata. J. Acoust. Soc. Am. 2020, 147, 3795–3807. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Queiroz, V.; Arizza, V.; Campobello, D.; Custódio, M.R.; Chiaramonte, M.; Vazzana, M. Humoral responses during wound healing in Holothuria tubulosa (Gmelin, 1788). Comp. Biochem. Phys. B 2021, 253, 110550. [Google Scholar] [CrossRef]
- Cordero, H.; Mauro, M.; Cuesta, A.; Cammarata, M.; Esteban, M.Á. In vitro cytokine profile revealed differences from dorsal and ventral skin susceptibility to pathogen-probiotic interaction in gilthead seabream. Fish Shellfish Immunol. 2016, 56, 188–191. [Google Scholar] [CrossRef]
- Lazzara, V.; Arizza, V.; Luparello, C.; Mauro, M.; Vazzana, M. Bright spots in the darkness of cancer: A review of starfishes-derived compounds and their anti-tumor action. Mar. Drugs 2019, 17, 617. [Google Scholar] [CrossRef] [Green Version]
- Mauro, M.; Lazzara, V.; Punginelli, D.; Arizza, V.; Vazzana, M. Antitumoral compounds from vertebrate sister group: A review of Mediterranean ascidians. Dev. Comp Immunol. 2020, 108, 103669. [Google Scholar] [CrossRef]
- Luparello, C.; Mauro, M.; Lazzara, V.; Vazzana, M. Collective locomotion of Human cells, wound healing and their control by extracts and isolated compounds from marine invertebrates. Molecules 2020, 25, 2471. [Google Scholar] [CrossRef] [PubMed]
- Luparello, C.; Mauro, M.; Arizza, V.; Vazzana, M. Histone deacetylase inhibitors from marine invertebrates. Biology 2020, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Inguglia, L.; Chiaramonte, M.; Di Stefano, V.; Schillaci, D.; Cammilleri, G.; Pantano, L.; Mauro, M.; Vazzana, M.; Ferrantelli, V.; Nicolosi, R.; et al. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ 2020, 8, e9299. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, M.; Arizza, V.; La Rosa, S.; Queiroz, V.; Mauro, M.; Vazzana, M.; Inguglia, L. Allograft Inflammatory factor AIF-1: Early immune response in the Mediterranean sea urchin Paracentrotus lividus. Zoology 2020, 142, 125815. [Google Scholar] [CrossRef] [PubMed]
- Haubrock, P.J.; Oficialdegui, F.J.; Zeng, Y.; Patoka, J.; Yeo, D.C.Y.; Kouba, A. The redclaw crayfish: A prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. Aquaculture 2021, 13, 1488–1530. [Google Scholar] [CrossRef]
- Carroll, P.N. Aquaculturists’ enthusiasm for yabbies highlights potential beyond the problems. Aust. Fish 1981, 40, 23–31. [Google Scholar]
- Staniford, A.J.; Kuzenocovs, J. Aquaculture of the yabbie, Cherax destructor Clark (Decapoda: Parastacidae): An economic evaluation. Aquacult. Fish. Manag. 1988, 19, 325–340. [Google Scholar] [CrossRef]
- Wong, F.Y.K.; Fowler, K.; Desmarchelier, P.M. Vibriosis due to Vibrio mimicus in australian freshwater crayfish. J. Aquat. Anim. Health 1995, 7, 284–291. [Google Scholar] [CrossRef]
- Vecchioni, L.; Chirco, P.; Bazan, G.; Marrone, F.; Arizza, V.; Arculeo, M. First record of Temnosewellia minor (Platyhelminthes, Temnocephalidae) in Sicily, with a plea for a re-examination of the identity of the publicly available molecular sequences of the genus. Biogeogr. J. Integr. Biogeogr. 2021, 36, 1–9. [Google Scholar] [CrossRef]
- Sang, H.M.; Fotedar, R.; Filer, K. Effects of dietary mannan oligosaccharide on the survival, growth, immunity and digestive enzyme activity of freshwater crayfish, Cherax destructor Clark (1936). Aquacult. Nutr. 2011, 17, 629–635. [Google Scholar] [CrossRef]
- Mac Loughlin, C.; Canosa, I.S.; Silveyra, G.R.; López Greco, L.S.; Rodríguez, E.M. Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus. Ecotoxicol. Environ. Saf. 2016, 131, 96–103. [Google Scholar] [CrossRef]
- Chen, C.; Xu, C.; Yang, X.; Qian, D.; Gu, Z.; Jia, Y.; Li, E. Growth, antioxidant capacity, intestine histology and lipid metabolism of juvenile red claw crayfish, Cherax quadricarinatus, fed different lipid sources. Aquacult. Nutr. 2020, 27, 261–273. [Google Scholar] [CrossRef]
- Van Mai, H.; Fotedar, R. Haemolymph constituents and osmolality as functions of moult stage, body weight, and feeding status in marron, Cherax cainii (Austin and Ryan, 2002) and yabbies, Cherax destructor (Clark, 1936). Saudi J. Biol. Sci. 2018, 25, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.; Miranda, A.; Allinson, G.; Nugegoda, D. Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. Ecotoxicol. Environ. Saf. 2017, 143, 283–288. [Google Scholar] [CrossRef]
- Stara, A.; Bellinvia, R.; Velisek, J.; Strouhova, A.; Kouba, A.; Faggio, C. Acute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticide. Sci. Total Environ. 2019, 665, 718–723. [Google Scholar] [CrossRef]
- Akmal, S.G.; Santoso, A.; Yuliana, B.; Patoka, J. Redclaw crayfish (Cherax quadricarinatus): Spatial distribution and dispersal pattern in Java, Indonesia. Knowl. Manag. Aquat. Ecosyst. 2021, 422, 16. [Google Scholar] [CrossRef]
- Stoner, A.W. Assessing Stress and Predicting Mortality in Economically Significant Crustaceans. Fish Sci. 2012, 20, 111–135. [Google Scholar] [CrossRef]
- Shock, B.C.; Foran, C.M.; Stueckle, T.A. Effects of salinitystress on survival, metabolism, limb regeneration, and ecdysisin Uca pugnax. J. Crustac. Biol. 2009, 29, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Kameda, M.; Shoji, Y.; Hayashi, S.; Yamaguchi, T.; Sato, M. Effect of severe environmental thermal stress on redoxstate in salmon. Redox Biol. 2014, 2, 772–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnevali, O.; Santangeli, S.; Forner-Piquer, I.; Basili, D.; Maradonna, F. Endocrine-disrupting chemicals in aquatic environment: What are the risks for fish gametes? Fish Physiol. Biochem. 2018, 44, 1561–1576. [Google Scholar] [CrossRef]
- Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 2017, 188, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Goff, A.D.; Saranjampour, P.; Ryan, L.M.; Hladik, M.L.; Covi, J.A.; Armbrust, K.L.; Brander, S.M. The effects of fipronil and the pho-todegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at differ-ent salinities. Aquat. Toxicol. 2017, 186, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Kim, W.S.; Kwak, I.S. Characterization and transcriptional response of ecdysone receptor gene in the mud crab Macrophthalmus japonicus: Effects of osmotic stress and endocrine disrupting chemicals. Ocean Sci. J. 2019, 54, 611–620. [Google Scholar] [CrossRef]
- Lorenzon, S.; Martinis, M.; Ferrero, E.A. Ecological relevance of haemolymph total protein concentration in seven unrelated crustacean species from different habitats measured predictively by a density-salinity refractometer. J. Mar. Sci. 2011, 2011, 1–7. [Google Scholar]
- Van Horn, J.; Tolley, S.G. Acute response of the estuarine crab Eurypanopeus depressus to salinity and desiccation stress. J. Crustac. Biol. 2009, 29, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.; Sakarya, M.; Koh, O.; O’Donnell, M. Alterations in haemolymph ion concentrations and pH in adult Daphnia magna in response to elevations in major ion concentrations in freshwater. Environ. Toxicol. Chem. 2020, 40, 366–379. [Google Scholar] [CrossRef]
- Ross, N.W.; Firth, K.J.; Wang, A.; Burka, J.F.; Johnson, S.C. Changes in hydrolytic enzyme activities of naïve Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aquat. Org. 2000, 41, 43–51. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principles of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Saoud, I.P.; Ghanawi, J. A review of the culture and disease of redclawn crayfish Cherax quadricarinatus (Von Martens 1868). J. World Aquac. Soc. 2013, 44, 1–29. [Google Scholar] [CrossRef]
- Lee, S.J.; Söderhäll, K. Early events in crustacean innate immunity. Fish Shellfish. Immunol. 2002, 12, 421–437. [Google Scholar] [PubMed] [Green Version]
- Le Moullac, G.; Soyez, C.; Saulnier, D.; Ansquer, D.; Avarre, J.C.; Levy, P. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol. 1998, 8, 621–629. [Google Scholar] [CrossRef]
- Johansson, M.W.; Keyser, P.; Sritunyalucksana, K.; Söderhäll, K. Crustacean haemocytes and haematopoiesis. Aquaculture 2000, 191, 45–52. [Google Scholar] [CrossRef]
- Sánchez, A.; Pascual, C.; Sánchez, A.; Vargas-Albores, F.; Le Moullac, G.; Rosas, C. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: The effect of acclimation. Aquaculture 2001, 198, 13–28. [Google Scholar] [CrossRef]
- Malagoli, D.; Casarini, L.; Sacchi, S.; Ottaviani, E. Stress and immune response in the mussel Mytilus galloprovincialis. Fish Shellfish Immunol. 2007, 23, 171–177. [Google Scholar] [CrossRef]
- Filiciotto, F.; Vazzana, M.; Celi, M.; Maccarrone, V.; Ceraulo, M.; Buffa, G.; Di Stefano, V.; Mazzola, S.; Buscaino, G. Behavioural and biochemical stress responses of Palinurus elephas after exposure to boat noise pollution in tank. Mar. Pollut. Bull. 2014, 84, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Vazzana, M.; Celi, M.; Maricchiolo, G.; Genovese, L.; Corrias, V.; Quinci, E.M.; Vincenzi, G.D.; Maccarrone, V.; Cammilleri, G.; Mazzola, S.; et al. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals. Comp. Biochem. Physiol. Part A 2016, 201, 61–70. [Google Scholar] [CrossRef]
- Bone, J.W.P.; Renshaw, G.M.C.; Furse, J.M.; Wild, C.H. Using biochemical markers to assess the effects of imposed temperature stress on freshwater decapod crustaceans: Cherax quadricarinatus as a test case. J. Comp. Physiol. B 2015, 185, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salgado, J.L.; Pereyra, M.A.; Agundis, C.; Calzada-Ruiz, M.; Kantun-Briceño, E.; Zenteno, E. In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. Fish Shellfish Immunol. 2019, 94, 10–16. [Google Scholar]
- Parrinello, D.; Sanfratello, M.A.; Celi, M.; Vazzana, M. Hemocyte types and some plasmatic properties of two edible crabs Cancer borealis and Cancer pagurus. Invertebr. Surviv. J. 2015, 12, 195–202. [Google Scholar]
- Li, F.; Chang, X.; Xu, L.; Yang, F. Different role of crayfish hemocytes in the uptake of foreign particles. Fish Shellfish Immunol. 2018, 77, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.H.; Sun, R. Use of monoclonal antibodies to classify hemocyte subpopulations of tiger shrimp (Penaeus monodon). J. Crustac. Biol. 2002, 22, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Battistella, S.; Bonivento, P.; Amirante, G.A. Hemocytes and immunological reactions in crustaceans. Comp. Immunol. 1996, 63, 337–343. [Google Scholar] [CrossRef]
- Wu, F.; Xie, Z.; Yan, M.; Li, Q.; Song, J.; Hu, M.; Wang, Y. Classification and characterization of hemocytes from two Asian horseshoe crab species Tachypleus tridentatus and Carcinoscorpius rotundicauda. Sci. Rep. 2019, 9, 7095. [Google Scholar] [CrossRef] [Green Version]
- Galloway, T.S.; Millward, N.; Browne, M.A.; Depledge, M.H. Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat. Toxicol. 2002, 61, 169–180. [Google Scholar] [CrossRef]
- Forget, J.; Beliaeff, B.; Bocquené, G. Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquat. Toxicol. 2003, 62, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Rickwood, C.J.; Galloway, T.S. Acetylcholinesterase inhibition as a biomarker of adverse effect. A study of Mytilus edulis exposed to the priority pollutant chlorfenvinphos. Aquat. Toxicol. 2004, 67, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Barata, C.; Solayan, A.; Porte, C. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat. Toxicol. 2004, 66, 125–139. [Google Scholar] [CrossRef]
- Hannam, M.L.; Hagger, J.A.; Jones, M.B.; Galloway, T.S. Characterisation of esterases as potential biomarkers of pesticide exposure in the lugworm Arenicola marina (Annelida: Polychaeta). Environ. Pollut. 2008, 152, 342–350. [Google Scholar] [CrossRef]
- Ren, X.; Pan, L.; Wang, L. Toxic effects upon exposure to benzo[a]pyrene in juvenile white shrimp Litopenaeus vannamei. Environ. Toxicol. Pharmacol. 2015, 39, 194–207. [Google Scholar] [CrossRef]
- Parisi, M.G.; Mauro, M.; Sarà, G.; Cammarata, M. Temperature increases, hypoxia, and changes in food availability affect immunological biomarkers in the marine mussel Mytilus galloprovincialis. J. Comp. Physiol. B 2017, 187, 1117–1126. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Guo, Z.Y.; Wang, B.J. Effect of lipopolysaccharide and Vibrio anguillarum on the activities of phosphatase, superoxide dismutase and the content of hemocyanin in the serum of Fenneropenaeus chinensis. Mar. Sci. 2004, 28, 22–25. [Google Scholar]
- Ottaviani, E. Composition of the serum haemolymph of Planorbis corneus (Gastropoda, Pulmonata). Comp. Biochem. Physiol. B 1984, 78B, 227–239. [Google Scholar] [CrossRef]
- Xue, Q.; Renault, T. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacific oyster, Crassostrea gigas, haemolymph. J. Invertebr. Pathol. 2000, 76, 155–163. [Google Scholar] [CrossRef]
- Mou, H.J.; Jiang, X.L.; Liu, S.Q.; Guan, H.S. Effects of immunopolysaccharide on the activities of acid phosphatase, alkaline phosphatase and superoxide dismutase in Chlamys farreri. J. Ocean Univ. China 1999, 29, 463–468. [Google Scholar]
- Sarlin, P.J.; Rosamma, P. Efficacy of marine yeasts and baker’s yeast as immunostimulants in Fenneropenaeus indicus: A comparative study. Aquaculture 2011, 321, 173–178. [Google Scholar] [CrossRef]
- Pipe, R.K. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis. Histochem. J. 1990, 22, 596–603. [Google Scholar] [CrossRef]
- He, H.Q.; Sun, F. The study characteristics of acid phosphatase and alkaline phosphatase in Penaeus chinensis. Chin. J. Oceanol. Limnol. 1992, 23, 555–560. [Google Scholar]
- Mazorra, M.T.; Rubio, J.A.; Blasco, J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: Kinetic characteristics and effects of heavy metals. Comp. Biochem. Physiol. B 2002, 131, 241–249. [Google Scholar] [CrossRef]
- Rajalakshmi, S.; Mohandas, A. Impact of mercury on the activity pattern of a marker enzyme in a freshwater bivalve. Environ. 2008, 28, 249–252. [Google Scholar] [CrossRef]
- Zhou, L.; Limbu, S.M.; Shen, M.; Zhai, W.; Qiao, F.; He, A.; Du, Z.Y.; Zhang, M. Environmental concentrations of antibiotics impair zebrafish gut health. Environ. Pollut. 2018, 235, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Sritunyalucksana, K.; Söderhäll, K. The proPO and clotting system in crustaceans. Aquaculture 2000, 191, 53–69. [Google Scholar] [CrossRef]
- Rosa, R.D.; Barraco, M.A. Antimicrobial peptides in crustaceans. Invertebr. Surviv. J. 2010, 7, 262–284. [Google Scholar]
- Cerenius, L.; Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 2011, 3, 3–8. [Google Scholar] [CrossRef]
- Hadi, A.A.; Shokr, A.E.; Alwan, S.F. Effect of aluminium on the biochemical parameters of freshwater fish, Tilapia zilli. J. Appl. Sci. 2009, 3, 33–41. [Google Scholar]
- Muazzez, O.; Atli, G.; Canli, M. Effects of metal (Ag, Ad, Cr, Cu, Zn) exposures on some enzymatic and non-enzymatic indicators in the liver of Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2009, 82, 317–321. [Google Scholar]
- Kori-Siakpere, O.; Ikomi, B.R.; Ogbe, M.G. Biochemical response of the African catfish: Clarias gariepinus (Burchell, 1822) to sublethal concentrations of potassium permanganate. Ann. Biol. Res. 2011, 2, 1–10. [Google Scholar]
- Parvathi, K.; Sivakumar, P.; Ramesh, M.; Sarasu. Sublethal effects of chromium on some biochemical profiles of the freshwater teleost, Cyprinus carpio. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 295–300. [Google Scholar]
- Stara, A.; Kouba, A.; Velisek, J. Biochemical and histological effects of sub-chronic exposure to atrazine in crayfish Cherax destructor. Chem.-Biol. Interact. 2018, 291, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, A.; Wood, C.M. Sodium uptake in different life stages of crustaceans: The water flea Daphnia magna Strauss. J. Exp. Biol. 2008, 211, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, B.; Greenwalk, L.; Kerstetter, T. Effect of amiloride on sodium transport body surfaces of freshwater animals. Am. J. Physiol. 1973, 224, 832–837. [Google Scholar] [CrossRef]
- Hogstrand, C.; Wood, C.M. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem. 1998, 17, 547–561. [Google Scholar] [CrossRef]
- Mount, D.R.; Erickson, R.J.; Highland, T.L.; Hockett, J.R.; Hoff, D.J.; Jenson, C.T.; Norberg-King, T.J.; Peterson, K.N.; Polaske, Z.M.; Wisniewski, S. The acute toxicity of major ion salts to Ceriodaphnia dubia: Influence of background water chemistry. Environ. Toxicol. Chem. 2016, 35, 3039–3057. [Google Scholar] [CrossRef]
- Erickson, R.J.; Mount, D.R.; Highland, T.L.; Hockett, J.R.; Hoff, D.J.; Jenson, C.T.; Norberg-King, T.J.; Peterson, K.N. The acute toxicity of major ion salts to Ceriodaphnia dubia. III. Mathematical models for mixture toxicity. Environ. Toxicol. Chem. 2017, 37, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Lucu, Č. Ionic regulatory mechanisms in crustacean gill epithelia. Comp. Biochem. Physiol. Part A 1990, 97, 297–306. [Google Scholar] [CrossRef]
- Onken, H.; Graszynski, K.; Zeiske, W. Na+-independent, electrogenic Cl− uptake across the posterior gills of the Chinese crab (Eriocheir sinensis): Voltage-clamp and microelectrode studies. J. Comp. Physiol. B 1991, 161, 293–301. [Google Scholar] [CrossRef]
- Genovese, G.; Ortiz, N.; Urcola, M.R.; Luquet, C.M. Possible role of carbonic anhydrase, V-H+-ATPase, and Cl−/HCO3- exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Comp. Biochem. Physiol. Part A 2005, 142, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Callaghan, J. The emersion response of the Australian Yabby Cherax destructor to environmental hypoxia and the respiratory and metabolic responses to consequent air-breathing. J. Comp. Physiol. B 1998, 168, 389–398. [Google Scholar] [CrossRef]
- Yeh, S.P.; Sung, T.G.; Chang, C.C.; Cheng, W.; Kuo, C.M. Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture 2005, 243, 383–392. [Google Scholar] [CrossRef]
- Boitel, F.; Truchot, J.P. Effects of sublethal and lethal copper levels on haemolymph acid–base balance and ion concentrations in the shore crab Carcinus maenas kept in undiluted seawater. Mar. Biol. 1989, 103, 495–501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauro, M.; Arizza, V.; Arculeo, M.; Attanzio, A.; Pinto, P.; Chirco, P.; Badalamenti, G.; Tesoriere, L.; Vazzana, M. Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals 2022, 12, 543. https://doi.org/10.3390/ani12050543
Mauro M, Arizza V, Arculeo M, Attanzio A, Pinto P, Chirco P, Badalamenti G, Tesoriere L, Vazzana M. Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals. 2022; 12(5):543. https://doi.org/10.3390/ani12050543
Chicago/Turabian StyleMauro, Manuela, Vincenzo Arizza, Marco Arculeo, Alessandro Attanzio, Paola Pinto, Pietro Chirco, Giampaolo Badalamenti, Luisa Tesoriere, and Mirella Vazzana. 2022. "Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868)" Animals 12, no. 5: 543. https://doi.org/10.3390/ani12050543
APA StyleMauro, M., Arizza, V., Arculeo, M., Attanzio, A., Pinto, P., Chirco, P., Badalamenti, G., Tesoriere, L., & Vazzana, M. (2022). Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals, 12(5), 543. https://doi.org/10.3390/ani12050543