Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Postslaughter Characteristic Evaluation
2.3. Physical Properties Evaluation of Muscles
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yalcin, S.; Şahin, K.; Tuzcu, M.; Bilgen, G.; Özkan, S.; Izzetoğlu, G.T.; Işik, R. Muscle structure and gene expression in pectoralis major muscle in response to deep pectoral myopathy induction in fast-and slow-growing commercial broilers. Br. Poult. Sci. 2019, 60, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef] [PubMed]
- Grela, E.R.; Semeniuk, W. Consequences of the withdrawal of antibiotic growth promoters from animal feeding. Med. Weter. 2006, 62, 502–507. [Google Scholar]
- Mikulski, D.; Zduńczyk, Z.; Jankowski, J.; Juśkiewicz, J. Effects of organic acids or natural plant extracts added to diets for turkeys on growth performance, gastrointestinal tract metabolism and carcass characteristics. J. Anim. Feed Sci. 2008, 17, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Milbradt, E.L.; Okamoto, A.S.; Rodrigues, J.C.Z.; Garcia, E.A.; Sanfelice, C.; Centenaro, L.P.; Andreatti Filho, R.L. Use of organic acids and competitive exclusion product as an alternative to antibiotic as a growth promoter in the raising of commercial turkeys. Poult. Sci. 2014, 93, 1855–1861. [Google Scholar] [CrossRef]
- Lipiński, K.; Mazur, M.; Makowski, Z.; Makowska, A.; Antoszkiewicz, Z.; Kaliniewicz, J. The effectiveness of the preparation medium-chain fatty acids (MCFA) and a herbal product on the growth performance of turkeys. Pol. J. Nat. Sci. 2016, 31, 47–57. [Google Scholar]
- Stęczny, K.; Kokoszyński, D. Effect of probiotic preparations (EM) on productive characteristics, carcass composition, and microbial contamination in a commercial broiler chicken farm. Anim. Biotechnol. 2021, 32, 758–765. [Google Scholar] [CrossRef]
- Brzóska, F.; Śliwiński, B.; Stecka, K. Effect of Lactococcuslactis vs. Lactobacillus Spp. bacteria on chicken body weight, mortality, feed conversion and carcass quality. Ann. Anim. Sci. 2012, 12, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hafeez, H.M.; Saleh, E.S.E.; Tawfeek, S.S.; Youssef, I.M.I.; Abdel-Daim, A.S.A. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australas J. Anim. Sci. 2017, 30, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Janocha, A.; Milczarek, A.; Pietrusiak, D. Impact of Milk Thistle (Silybum marianum [L.] Gaertn.) Seeds in Broiler Chicken Diets on Rearing Results, Carcass Composition, and Meat Quality. Animals 2021, 11, 1550. [Google Scholar] [CrossRef]
- Mohebodini, H.; Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Tellez-Isaias, G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. 2021, 100, 100922. [Google Scholar] [CrossRef]
- Makała, H. Herbs and phytogenic feed additives in poultry nutrition. Med. Weter. 2022, 78, 11–18. [Google Scholar] [CrossRef]
- Brzóska, F.; Stecka, K. Effect of probiotic, prebiotic and acidifier on the body weight of broiler chickens, feed conversion, and carcass and meat composition. Ann. Anim. Sci. 2007, 7, 279–288. [Google Scholar]
- Pirgozliev, V.; Rose, S.P.; Ivanova, S. Feed additives in poultry nutrition. Bulg. J. Agric. Sci. 2019, 25 (Suppl. S1), 8–11. [Google Scholar]
- Alayande, K.A.; Aiyegoro, O.A.; Ateba, C.N. Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. Sustainability 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Brzóska, F.; Pieszka, M.; Stecka, K.; Migdał, W.; Michalik-Rutkowska, O. Effect of Pediococcus spp. in feed instead of antibiotic on broiler chicken body weight, mortality, slaughter traits and meat quality. Ann. Anim. Sci. 2010, 10, 167–177. [Google Scholar]
- Janocha, A.; Milczarek, A.; Osek, M.; Turyk, Z. Effectivity of probiotic bacteria and prebiotic in broiler chicken feeding. Acta Sci. Pol. Zootech. 2010, 9, 21–30. [Google Scholar]
- Milczarek, A.; Osek, M.; Olkowski, B.; Klocek, B. Effect of probiotic, prebiotic and synbiotic on weight and pH of gastrointestinal tract in broiler chickens fed diets based on different cereals. Rocz. Nauk. Zoot. 2012, 39, 119–128. [Google Scholar]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghreeb, K.; Abdel-Raheem, S.; Bohm, J. Effect of dietary inclusion of probiotic and symbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Oxf. J. Sci. Meth. Polt. Sci. 2015, 88, 49–56. [Google Scholar]
- Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live. In Health and Nutrition Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria; FAO Food and Nutrition Paper 85; FAO: Rome, Italy, 2006.
- European Food Safety Authority (EFSA). The maintenance of the list of QPS microorganisms intentionally added to food or feed. Scientific opinion of the Panel on Biological Hazards. EFSA J. 2008, 923, 1–48. [Google Scholar]
- Jach, M.; Łoś, R.; Maj, M.; Malm, A. Probiotics—Technological and manufacturing aspects. Post. Mikrob. 2013, 52, 161–170. [Google Scholar]
- FAO. Probiotics in Animal Nutrition—Production, Impact and Regulation; Food and Agricultural Organization of the United Nations Animal Production and Health, Paper; nr. 179, Rzym; FAO: Rome, Italy, 2016. [Google Scholar]
- Kulikova, N.A.; Perminova, I.V. Interactions between Humic Substances and Microorganisms and Their Implications for Nature-like Bioremediation Technologies. Molecules 2021, 26, 2706. [Google Scholar] [CrossRef] [PubMed]
- Bodkowski, R.; Czyż, K.; Wyrostek, A.; Cholewińska, P.; Sokoła-Wysoczańska, E.; Niedziółka, R. The Effect of CLA-Rich Isomerized Poppy Seed Oil on the Fat Level and Fatty Acid Profile of Cow and Sheep Milk. Animals 2020, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Salejda, A.M.; Krasnowska, G. Effect of dietary rapeseed oil and humus-containing mineral preparation on cholesterol and cholesterol oxidation products content in pork. Eur. Food Res. Technol. 2016, 242, 1441–1446. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, Z.; Trziszka, T.; Herbut, E.; Krawczyk, J.; Tronina, P. Effect of humic preparations on productivity and quality traits of eggs from Greenleg Partridge hens. Ann. Anim. Sci. 2009, 9, 165–174. [Google Scholar]
- Eren, M.; Gezen, S.; Deniz, G.; Orhan, F. Effect of liquid humate supplemented to drinking water on performance and eggshell quality of hens in different laying periods. Rev. Médicine Vétérinaire 2008, 159, 91–95. [Google Scholar]
- Gaffney, J.S.; Marley, N.A.; Clarks, S.B. Humic and fulvic acids and organic colloidal materials in the environment. In Humic and Fulvic Acids: Isolation, Structure, and Environmental Role; Gaffney, J.S., Marley, N.A., Clarks, S.B., Eds.; American Chemical Society: Washington, DC, USA, 1996; pp. 2–16. [Google Scholar]
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef]
- Piccolo, A. Humus and soil conservation. In Humic Substances in Terrestrial Ecosystems, 1st ed.; Piccolo, A., Ed.; Elsevier Science: Amsterdam, The Netherland, 1996; pp. 225–264. [Google Scholar]
- Rocker, D.; Brinkhoff, T.; Grüner, N.; Dogs, M.; Simon, M. Composition of humic acid-degrading estuarine and marine bacterial communities. FEMS Microbiol. Ecol. 2012, 80, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Grinhut, T.; Hadar, Y.; Chen, Y. Degradation and transformation of humic substances by saprotrophic fungi: Processes and mechanisms. Fungal Biol. Rev. 2007, 21, 179–189. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Stepanova, E.V.; Koroleva, O.V. Mitigating activity of humic substances: Direct influence on biota. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; NATO Science Series IV: Earth and Environmental, Sciences; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 52, pp. 285–310. [Google Scholar]
- Ouyang, K.; Walker, S.L.; Yu, X.-Y.; Gao, C.-H.; Huang, Q.; Cai, P. Metabolism, survival, and gene expression of Pseudomonas putida to hematite nanoparticles mediated by surface-bound humic acid. Environ. Sci. Nano 2018, 5, 682–695. [Google Scholar] [CrossRef]
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J.M. Humic acid substances in animal agriculture. PJN 2005, 4, 126–134. [Google Scholar] [CrossRef]
- Majewska, T.; Mikulski, D.; Święcicka-Grabowska, G.; Wójcik, R. Water extracts of fresh garlic in the nutrition of young slaughter turkeys. Med. Weter. 2007, 63, 1357–1360. [Google Scholar]
- Dieumon, F.E.; Tegni, A.; Kuiate, J.R.; Tamakou, J.D.; Doma, U.D.; Abolullahi, U.S.; Chiroma, A.E. Effects of supplemented diets with garlic organic extract and streptomycin sulphate on intestinal microflora and nutrients digestibility in broilers. Online J. Anim. Feed Res. 2011, 1, 107–113. [Google Scholar]
- Brzóska, F. Garlic and garlic preparations fed to broilers as a substitute for in-feed antibiotics. Wiad. Zootech. 2018, 56, 2, 135–145. [Google Scholar]
- Liao, S.; Liao, L.; Huang, P.; Wang, Y.; Zhu, S.; Wang, X.; Lv, T.; Li, Y.; Fan, Z.; Liu, T.; et al. Effects of Different Levels of Garlic Straw Powder on Growth Performance, Meat Quality, Antioxidant and Intestinal Mucosal Morphology of Yellow Feathered Broilers. Front. Physiol. 2022, 13, 902995. [Google Scholar] [CrossRef]
- Aydogan, I.; Yildirim, E.; Kurum, A.; Bolat, D.; Cinar, M.; Basalan, M.; Yigit, A. The Effect of Dietary Garlic (Allium Sativum), Black Cumin (Nigella Sativa) and Their Combination on Performance, Intestine Morphometry, Serum Biochemistry and Antioxidant Status of Broiler Chickens. Braz. J. Poult. Sci. 2020, 22, 001–010. [Google Scholar] [CrossRef]
- Puvača, N.; Ljubojević, D.; Kostadinović, L.J.; Lukač, D.; Lević, J.; Popović, S.; Đuragić, O. Spices and herbs in broilers nutrition: Effects of garlic (Allium sativum L.) on broiler chicken production. World Poult. Sci. J. 2015, 71, 533–538. [Google Scholar] [CrossRef]
- Yasin, G.; Jasim, S.A.; Mahmudiono, T.; Al-Shawi, S.A.; Shichiyakh, R.A.; Shoukat, S.; Kadhim, A.J.; Iswanto, A.H.; Saleh, M.M.; Fenjan, M. Investigating the effect of garlic (Allium sativum) essential oil on foodborne pathogenic microorganisms. Food Sci. Technol. 2022, 42, e03822. [Google Scholar] [CrossRef]
- Massad, M.A.L.; Ramamneh, D.A.L.; Sharafat, A.A.L.; Hussain, N. Effect of Using Garlic on the Economical and Physiological Characteristics of Broiler Chickens. Int. J. Environ. Sci. Nat. Res. 2018, 10, 2. [Google Scholar] [CrossRef]
- Gbenda, O.E.; Adebisi, O.E.; Fajemisin, A.N.; Adetunji, A.V. Response of broiler chickens in terms of performance and meat quality to garlic (Allium sativum) supplementation. Afr. J. Agric. Res. 2009, 4, 511–517. [Google Scholar]
- Kim, Y.J.; Jin, S.K.; Yang, H.S. Effect of dietary garlic bulb and husk on the physicochemical properties of chicken meat. Poult. Sci. 2008, 88, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Grela, E.R.; Pietrzak, K.; Sobolewska, S.; Witkowski, P. Effect of inulin and garlic supplementation in pig diets. Ann. Anim. Sci. 2013, 13, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Czech, A.; Sembratowicz, I.; Zięba, G. Effect of the use of Yarrowia lipolytica and Saccharomyces cerevisiae yeast with a probiotic in the diet of turkeys on their gut microbiota and immunity. Vet. Med. 2020, 65, 174–182. [Google Scholar] [CrossRef]
- Ali, M.; Chand, N.; Khan, R.U.; Naz, S.; Gul, S. Anticoccidial effect of garlic (Allium sativum) and ginger (Zingiber officinale) against experimentally induced coccidiosis in broiler chickens. J. Appl. Anim. Res. 2019, 47, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Smulikowska, S.; Rutkowski, A. (Eds.) Standards and Recommendations of Poultry Nutrition. Recommended allowances and nutritive value of feedstuffs. In Poultry Feeding Standards, 5th ed.; The Kielanowski Institute of Animal Physiology and Nutrition PAS and Polish Branch of WPSA: Jabłonna, Poland, 2018. [Google Scholar]
- Ziołecki, J.; Doruchowski, W. The Method of Estimation of Poultry Slaughter Analysis; COBRD: Poznań, Poland, 1989; p. 22. [Google Scholar]
- CIE. Draft Standard 014-4.3/E: Colorimetry—Part. 4: CIE 1976 L*a*b* Colour Space; CIE Central Bureau: Vienna, Austria, 2007; p. 8. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- ISO 11037; Sensory Analysis—Guidelines for Sensory Assessment of the Colour of Products. International Organization for Standardization: Geneva, Switzerland, 2011; pp. 1–18.
- StatSoft, Inc. Statistica (Data Analysis Software System), Version 13.3; StatSoft Inc.: Tulsa, OK, USA, 2022. [Google Scholar]
- Świątkiewicz, S.; Arczewska, A.; Koreleski, J. Wpływ wybranych dodatków paszowych na przebieg kokcydiozy u drobiu. Med. Weter. 2009, 65, 758–761. [Google Scholar]
- Torres-Rodriquez, A.; Donoghue, A.M.; Donoghue, D.J.; Barton, J.T.; Tellez, G.; Hargis, B.M. Performance and condemnation rate analysis of commercial turkey flocks treated with a Lactobacillus spp.—Based probiotic. Poult. Sci. 2007, 86, 444–446. [Google Scholar] [CrossRef]
- Lipiński, K.; Kaliniewicz, J.; Tywończuk, J.; Stasiewicz, M. The effect of probiotic and herbal additives on the productivity and meat quality of turkeys. Rocz. Nauk. Pol. Tow. Zootech. 2011, 7, 29–35. [Google Scholar]
- Biedrzycka, E.; Bielecka, M.; Majkowska, A.; Jankowski, J. The effect of Bacillus cereus var. toyoi and avilamycin on the faecal microflora of turkeys. J. Anim. Feed Sci. 2003, 12, 821–832. [Google Scholar] [CrossRef]
- Krauze, M.; Merska, M.; Gryzińska, M.; Strachecka, A. Effect of garlic (Allium sativum) on selected indices of blood metabolic profile and rearing efficiency turkey hens. Ann. Univ. Mariae Curie-Skłodowska. Sect. EE Zootech. 2012, 30, 48–59. [Google Scholar] [CrossRef]
- Al-Shuwaili, M.A.; Ibrhim, I.E.; Naqi Al-Bayati, M.T. Effect of dietary herbal plants supplement in turkey diet on performance and some blood biochemical parameters. Glob. J. Biosci. Biotechnol. 2015, 4, 153–157. [Google Scholar]
- Mangisah, I.; Yunianto, V.D.; Sumarsih, S.; Sugiharto, S. Supplementation of garlic powder and Lactobacillus casei to improve nutrient digestibility, physiological conditions, and performance of broiler during starter phase. J. Indonesian Trop. Anim. Agric. 2021, 46, 336–346. [Google Scholar] [CrossRef]
- El-Azzouny, M.M.; El-Demerdash, A.S.; Seadawy, H.G.; Abou- Khadra, S.H. Antimicrobial effect of garlic (Allium sativum) and thyme (Zataria multiflora Boiss) extracts on some food borne pathogens and their effect on virulence gene expression. Cell. Mol. Biol. 2018, 64, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-D.; Kim, C.-S.; Lee, J.-H. Compositional characteristics and antibacterial activity of essential oils in citrus hybrid peels. Food Sci. Technol. 2022, 42, e95921. [Google Scholar] [CrossRef]
- Langhout, P. New additives for broiler chickens. World Poult. 2000, 16, 22–27. [Google Scholar]
- Mellor, S. Antibiotics are not the only growth promoters. World Poult. 2000, 16, 14–15. [Google Scholar]
- Mellor, S. Nutraceuticals-alternatives to antibiotics. World Poult. 2000, 16, 30–33. [Google Scholar]
- Stęczny, K.; Kokoszyński, D. Effect of probiotic preparations (EM) and sex on morphometric characteristics of the digestive system and leg bones, and caecal microflora in broiler chickens. J. Appl. Anim. Res. 2020, 48, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Niba, A.T.; Beal, J.D.; Kudi, A.C.; Brooks, P.H. Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates. Trop. Anim. Health Prod. 2009, 41, 1393–1407. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, V.; Masika, P.J.; Mushonga, B. Intestinal morphology, digestive organ size and digesta pH of broiler chickens fed diets supplemented with or without Moringa oleifera leaf meal. S. Afr. J. Anim. Sci. 2015, 45, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Hiscock, H.M.; Leishman, E.M.; Vanderhout, R.J.; Adams, S.M.; Mohr, J.; Wood, B.J.; Baes, C.F.; Barbut, S. Describing the relationships among meat quality traits in domestic turkey (Meleagris gallopavo) populations. Poult. Sci. 2022, 101, 102055. [Google Scholar] [CrossRef] [PubMed]
- Leishman, E.M.; Ellis, J.; Staaveren, N.; Barbut, S.; Vanderhout, R.J.; Osborne, V.R.; Wood, B.J.; Harlander-Matauschek, A. Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poult. Sci. 2021, 100, 101471. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.M.; Hirschler, E.M.; McKee, S.R.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, exudative turkey meat in a commercial plant. Poult. Sci. 2000, 79, 553–558. [Google Scholar] [CrossRef]
- Pérez-Vendrell, A.M.; Hernández, J.M.; Llauradó, L.; Schierle, J.; Brufau, J. Influence of source and ratio of xanthophyll pigments on broiler chicken pigmentation and performance. Poult. Sci. 2001, 80, 320–326. [Google Scholar] [CrossRef] [PubMed]
Item | Rearing Period (Week) | ||||
---|---|---|---|---|---|
1–3 | 4–6 | 7–9 | 10–11 | 12–14 | |
ME (MJ/kg) | 11.51 | 11.8 | 12.3 | 12.96 | 13.2 |
ME (kcal/kg) | 2749 | 2817 | 2937 | 3095 | 3152 |
Crude protein (%) | 27.0 | 25.0 | 22.5 | 20.1 | 19.6 |
Crude fibre (%) | 3.3 | 3.4 | 3.5 | 3.5 | 3.1 |
Crude fat (%) | 4.9 | 5.2 | 6.7 | 7.5 | 8.2 |
Lysine (%) | 1.78 | 1.60 | 1.39 | 1.20 | 1.16 |
Methionine (%) | 0.73 | 0.66 | 0.54 | 0.45 | 0.55 |
Crude ash (%) | 7.1 | 6.7 | 5.7 | 4.9 | 4.4 |
Ca (%) | 1.21 | 1.11 | 0.89 | 0.72 | 0.60 |
P available (%) | 0.67 | 0.62 | 0.55 | 0.52 | 0.34 |
Na (%) | 0.16 | 0.16 | 0.15 | 0.14 | 0.15 |
Mn (mg/kg) | 140 | 140 | 114 | 108 | 86.40 |
Zn (mg/kg) | 110 | 110 | 104.5 | 99 | 79.20 |
Fe (mg/kg) | 80 | 80 | 47.5 | 45 | 36 |
Cu (mg/kg) | 17.5 | 24.5 | 21.85 | 20.7 | 18 |
I (mg/kg) | 3.0 | 3.0 | 1.90 | 1.8 | 1.44 |
Se (mg/kg) | 0.35 | 0.35 | 0.29 | 0.27 | 0.22 |
Vitamin A (IU) | 12,000 | 10,000 | 9500 | 9000 | 7200 |
Vitamin D3 (IU) | 2500 | 2500 | 4512.5 | 4275 | 3420 |
Item | Groups | SEM | p-Value | |
---|---|---|---|---|
C | E | |||
Body weight (kg) | ||||
1 week | 0.17 | 0.17 | 0.003 | 0.544 |
3 weeks | 0.75 | 0.78 | 0.006 | <0.05 |
6 weeks | 2.45 | 2.55 | 0.017 | <0.05 |
9 weeks | 4.90 | 5.09 | 0.031 | <0.05 |
11 weeks | 6.78 | 7.05 | 0.045 | <0.05 |
14 weeks | 8.45 | 9.31 | 0.142 | <0.05 |
Body weight gain (kg) | ||||
0–3 weeks | 0.58 | 0.61 | 0.005 | <0.05 |
4–6 weeks | 1.70 | 1.77 | 0.014 | <0.05 |
7–9 weeks | 2.45 | 2.54 | 0.015 | <0.05 |
10–11 weeks | 1.88 | 1.96 | 0.017 | <0.05 |
12–14 weeks | 1.67 | 2.26 | 0.099 | <0.05 |
0–14 weeks | 8.28 | 9.14 | 0.143 | <0.05 |
Feed intake (kg) | ||||
0–3 weeks | 0.82 | 0.79 | 0.005 | <0.05 |
4–6 weeks | 4.29 | 3.47 | 0.137 | <0.05 |
7–9 weeks | 6.40 | 5.57 | 0.141 | <0.05 |
10–11 weeks | 6.18 | 6.37 | 0.051 | 0.052 |
12–14 weeks | 4.78 | 5.07 | 0.051 | <0.05 |
0–14 weeks | 22.47 | 21.27 | 0.202 | <0.05 |
FCR (kg/kg) | ||||
0–3 weeks | 1.41 | 1.31 | 0.018 | <0.05 |
4–6 weeks | 2.53 | 1.96 | 0.095 | <0.05 |
7–9 weeks | 2.61 | 2.19 | 0.069 | <0.05 |
10–11 weeks | 3.29 | 3.24 | 0.008 | <0.05 |
12–14 weeks | 2.86 | 2.24 | 0.140 | <0.05 |
0–14 weeks | 2.71 | 2.33 | 0.064 | <0.05 |
EPI (points) | 300 | 390 | 14.982 | <0.05 |
Survivability (%) | 92.3 | 95.4 | 0.250 | <0.05 |
Item | Groups | SEM | p-Value | |
---|---|---|---|---|
C | E | |||
Body weight before slaughter (g) | 8.46 | 9.11 | 0.123 | <0.05 |
Cold carcass weight (g) | 6.73 | 7.51 | 0.070 | <0.05 |
Dressing percentage (%) | 79.56 | 82.47 | 0.543 | <0.05 |
Share in cold carcass (%) | ||||
Muscles total | 52.64 | 53.31 | 0.317 | 0.315 |
including: | ||||
Breast | 29.58 | 30.14 | 0.346 | 0.456 |
Thigh | 13.01 | 13.02 | 0.270 | 0.988 |
Drumstick | 10.04 | 10.16 | 0.198 | 0.795 |
Abdominal fat | 0.39 | 0.29 | 0.043 | <0.05 |
Skin with subcutaneous fat | 8.71 | 7.61 | 0.265 | 0.236 |
Share in body weight (%) | ||||
Giblets total | 2.43 | 2.58 | 0.253 | 0.406 |
including: | ||||
Heart | 0.32 | 0.33 | 0.009 | 0.777 |
Liver | 1.01 | 1.24 | 0.052 | <0.05 |
Gizzard | 1.10 | 1.01 | 0.063 | 0.501 |
Item | Groups | SEM | p-Value | |
---|---|---|---|---|
C | E | |||
Crop | 4.93 | 4.21 | 0.129 | <0.05 |
Glandular stomach | 3.31 | 3.36 | 0.312 | 0.938 |
Duodenum | 5.55 | 5.81 | 0.066 | <0.05 |
Jejunum | 5.49 | 5.95 | 0.174 | 0.212 |
Caecum | 5.17 | 6.02 | 0.212 | <0.05 |
Colon | 4.49 | 5.88 | 0.244 | <0.05 |
Item | Groups | SEM | p-Value | |
---|---|---|---|---|
C | E | |||
Mass digestive tract | 66.38 | 47.90 | 3.502 | <0.05 |
Length of selected segments | ||||
Duodenum | 4.75 | 3.82 | 0.233 | <0.05 |
Jejunum | 26.66 | 24.22 | 0.741 | 0.100 |
Caecum | 4.55 | 3.84 | 0.132 | <0.05 |
Colon | 1.62 | 1.70 | 0.052 | 0.518 |
Item | Groups | SEM | p-Value | |
---|---|---|---|---|
C | E | |||
Breast muscles | ||||
pH1 | 6.21 | 6.02 | 0.099 | 0.353 |
pH24 | 5.38 | 5.30 | 0.016 | <0.05 |
Colour | ||||
L* | 45.10 | 47.72 | 0.562 | <0.05 |
a* | 5.66 | 5.35 | 0.294 | 0.628 |
b* | −3.22 | −2.95 | 0.356 | 0.735 |
Cab* = [(a*)2 + (b*)2]0.5 | 6.65 | 6.16 | 0.318 | 0.467 |
hab = log (b*/a*) | −0.50 | −0.51 | 0.054 | 0.969 |
Thigh muscles | ||||
pH1 | 5.98 | 5.95 | 0.014 | 0.316 |
pH24 | 5.48 | 5.43 | 0.017 | 0.256 |
Colour | ||||
L* | 45.12 | 43.13 | 0.0861 | 0.270 |
a* | 9.60 | 9.94 | 0.419 | 0.711 |
b* | −2.59 | −2.57 | 0.444 | 0.978 |
Cab* = [(a*)2 + (b*)2]0.5 | 10.08 | 10.38 | 0.379 | 0.713 |
hab = log (b*/a*) | −0.28 | −0.26 | 0.045 | 0.833 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janocha, A.; Milczarek, A.; Kosmalski, M.; Gajownik-Mućka, P.; Radzikowski, D. Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens. Animals 2022, 12, 3464. https://doi.org/10.3390/ani12243464
Janocha A, Milczarek A, Kosmalski M, Gajownik-Mućka P, Radzikowski D. Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens. Animals. 2022; 12(24):3464. https://doi.org/10.3390/ani12243464
Chicago/Turabian StyleJanocha, Alina, Anna Milczarek, Maciej Kosmalski, Paulina Gajownik-Mućka, and Daniel Radzikowski. 2022. "Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens" Animals 12, no. 24: 3464. https://doi.org/10.3390/ani12243464
APA StyleJanocha, A., Milczarek, A., Kosmalski, M., Gajownik-Mućka, P., & Radzikowski, D. (2022). Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens. Animals, 12(24), 3464. https://doi.org/10.3390/ani12243464