Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Phenotypic Antimicrobial Susceptibility Testing
2.3. Whole Genome Sequencing
2.4. In Silico Serotype Prediction Using SeqSero
2.5. Determination of Salmonella Virulence and Resistance Determinants
2.6. Multilocus Sequence Typing—MLST
3. Results
3.1. Phenotypic Antimicrobial Resistance Profiles
3.2. Phenotypic and WGS Serotype Prediction
3.3. Antimicrobial Resistance Genes and Virulence Factor Determinants
3.4. Multilocus Sequence Typing of S. Enteritidis Isolates
4. Discussion
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Health Malaysia (MOH). Malaysian Action Plan on Antimicrobial Resistance (MyAP-AMR) 2017–2021; Published by Ministry of Health, Malaysia and Ministry of Agriculture & Agro-Based Industry Malaysia. 2017. Available online: https://www.moh.gov.my/moh/resources/Penerbitan/Garis%20Panduan/Garis%20panduan%20Umum%20(Awam)/National_Action_Plan_-_FINAL_29_june.pdf (accessed on 26 October 2021).
- Institute of Medical Research (IMR). Malaysia National Antibiotic Resistance Surveillance Report. 2017. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.imr.gov.my%2Fimages%2Fuploads%2FNSAR%2FNSAR_2017%2FNSAR_report_2017-edited-31.1.2019.pdf&clen=1427117&chunk=true (accessed on 26 October 2021).
- Whistler, T.; Sapchookul, P.; McCormick, D.W.; Sangwichian, O.; Jorakate, P.; Makprasert, S.; Jatapai, A.; Naorat, S.; Surin, U.; Koosakunwat, S.; et al. Epidemiology and antimicrobial resistance of invasive non-typhoidal salmonellosis in rural Thailand from 2006–2014. PLoS Negl. Trop. Dis. 2018, 12, e0006718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, E.; Lo Fo Wong, D.M.A.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchaikit, T.; Aidara-Kane, A.; Ellis, A.; Angulo, F.J.; Wegener, H.C. Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg. Infect. Dis. 2006, 12, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulhaleem, N.; Garba, B.; Younis, H.; Mahmuda, A.; Hamat, R.A.; Majid, R.B.A.; Lung, L.T.T.; Unyah, N.Z.; Sattar, A.; Saidu, B. Current trend on the economic and public health significance of salmonellosis in Iraq. Adv. Anim. Vet. Sci. 2019, 7, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Marks, F.; von Kalckreuth, V.; Aaby, P.; Adu-Sarkodie, Y.; El Tayeb, M.A.; Ali, M.; Aseffa, A.; Baker, S.; Biggs, H.M.; Bjerregaard-Andersen, M.; et al. Incidence of invasive Salmonella disease in sub-Saharan Africa: A multicentre population-based surveillance study. Lancet Glob. Health 2017, 5, e310–e323. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, J.J.; MacLennan, C.A. Invasive Nontyphoidal Salmonella Disease in Africa. EcoSal Plus 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.; Hassan, L.; Ahmad, N.; Husin, S.A.; Ali, R.M.; Sharif, Z.; Sohaimi, N.M.; Garba, B. Discerning the Antimicrobial Resistance, Virulence, and Phylogenetic Relatedness of Salmonella Isolates Across the Human, Poultry, and Food Materials Sources in Malaysia. Front. Microbiol. 2021, 12, 2513. [Google Scholar] [CrossRef]
- Zakaria, Z.; Hassan, L.; Sharif, Z.; Ahmad, N.; Ali, R.M.; Husin, S.A.; Hazis, N.H.; Binti, A.; Sohaimi, N.F.M.; Bakar, S.A.; et al. Analysis of Salmonella enterica serovar Enteritidis isolates from chickens and chicken meat products in Malaysia using PFGE, and MLST. BMC Vet. Res. 2020, 16, 393. [Google Scholar] [CrossRef]
- Keddy, K.H.; Musekiwa, A.; Sooka, A.; Karstaedt, A.; Nana, T.; Seetharam, S.; Nchabaleng, M.; Lekalakala, R.; Angulo, F.J.; Klugman, K.P. Clinical and microbiological features of invasive nontyphoidal Salmonella associated with HIV-infected patients, Gauteng Province, South Africa. Medicine 2017, 96. [Google Scholar] [CrossRef]
- Mohan, A.; Munusamy, C.; Tan, Y.-C.; Muthuvelu, S.; Hashim, R.; Chien, S.-L.; Wong, M.-K.; Khairuddin, N.A.; Podin, Y.; Lau, P.S.-T.; et al. Invasive Salmonella infections among children in Bintulu, Sarawak, Malaysian Borneo: A 6-year retrospective review. BMC Infect. Dis. 2019, 19, 330. [Google Scholar] [CrossRef] [Green Version]
- Phu Huong Lan, N.; Le Thi Phuong, T.; Nguyen Huu, H.; Thuy, L.; Mather, A.E.; Park, S.E.; Marks, F.; Thwaites, G.E.; Van Vinh Chau, N.; Thompson, C.N.; et al. Invasive Non-typhoidal Salmonella Infections in Asia: Clinical Observations, Disease Outcome and Dominant Serovars from an Infectious Disease Hospital in Vietnam. PLoS Negl. Trop. Dis. 2016, 10, e0004857. [Google Scholar] [CrossRef] [Green Version]
- Arcenas, R.C. Molecular Methods for Healthcare-Acquired Infections. In Diagnostic Molecular Pathology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–177. [Google Scholar]
- Wiesner, M.; Zaidi, M.B.; Calva, E.; Fernández-Mora, M.; Calva, J.J.; Silva, C. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains. BMC Microbiol. 2009, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Medical Research. National Antibiotic Resistance Surveillance Report 2017; Institute for Medical Research: Kuala Lumpur, Malaysia, 2017. [Google Scholar]
- Kim, M.S.; Lim, T.H.; Jang, J.H.; Lee, D.H.; Kim, B.Y.; Kwon, J.H.; Choi, S.W.; Noh, J.Y.; Hong, Y.H.; Lee, S.B.; et al. Prevalence and antimicrobial resistance of Salmonella species isolated from chicken meats produced by different integrated broiler operations in Korea. Poult. Sci. 2012, 91, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Shamsuddin, S.; Akkawi, M.E.; Zaidi, S.T.R.; Ming, L.C.; Manan, M.M. Antimicrobial drug use in primary healthcare clinics: A retrospective evaluation. Int. J. Infect. Dis. 2016, 52, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, B.V.; Papich, M.G.; Schwarz, S.; Bowden, R.; Dubraska, B.S.; Diaz-Campos, V.; Fielder, M.; Langston, C.; Li, X.-Z.; Martinez, M.N.; et al. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals A CLSI supplement for global application. In Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; NCCLS: Wayne, PA, USA, 2018; ISBN 9781684400102. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Andesfha, E.; Indrawati, A.; Mayasari, N.L.P.I.; Rahayuningtyas, I.; Jusa, I. Detection of Salmonella pathogenicity island and Salmonella plasmid virulence genes in Salmonella Enteritidis originated from layer and broiler farms in Java Island. J. Adv. Vet. Anim. Res. 2019, 6, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.P.; Ho, W.S.; Gan, H.M.; Chai, L.C.; Thong, K.L. Global MLST of Salmonella Typhi revisited in post-genomic era: Genetic conservation, population structure, and comparative genomics of rare sequence types. Front. Microbiol. 2016, 7, 270. [Google Scholar] [CrossRef]
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PhyloViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinform. 2012, 13, 87. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.; Barretto, C.; Portmann, A.-C.; Fournier, C.; Karczmarek, A.; Voets, G.; Li, S.; Deng, X.; Klijn, A. Salmonella Serotyping; Comparison of the Traditional Method to a Microarray-Based Method and an in silico Platform Using Whole Genome Sequencing Data. Front. Microbiol. 2019, 10, 2554. [Google Scholar] [CrossRef] [PubMed]
- Ferrato, C.; Chui, L.; King, R.; Louie, M. Utilization of a molecular serotyping method for Salmonella enterica in a routine laboratory in Alberta Canada. J. Microbiol. Methods 2017, 135, 14–19. [Google Scholar] [CrossRef]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Molecular mechanisms related to colistin resistance in enterobacteriaceae. Infect. Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packierisamy, P.R.; Haron, R.; Mustafa, M.; Mahir, A.; Ayob, A.; Balan, V. Outbreak Caused by Food-Borne Salmonella enterica Serovar Enteriditis in a Residential School in Perak State, Malaysia in April 2016. Intl Food Research J. 2018, 25, 2379–2384. [Google Scholar]
- Johari, M.I.; Besari, A.M.; Wan Ghazali, W.S.; Yusof, Z. Disseminated Salmonella infection. BMJ Case Rep. 2019, 12, e226337. [Google Scholar] [CrossRef]
- Ibrahim, S.; Hoong, L.W.; Siong, Y.L.; Mustapha, Z.; Zalati, C.W.S.C.W.; Aklilu, E.; Mohamad, M.; Kamaruzzaman, N.F. Prevalence of Antimicrobial Resistance (AMR) Salmonella spp. and Escherichia coli Isolated from Broilers in the East Coast of Peninsular Malaysia. Antibiotics 2021, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Thung, T.Y.; Radu, S.; Mahyudin, N.A.; Rukayadi, Y.; Zakaria, Z.; Mazlan, N.; Tan, B.H.; Lee, E.; Yeoh, S.L.; Chin, Y.Z.; et al. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia. Front. Microbiol. 2018, 8, 2697. [Google Scholar] [CrossRef] [Green Version]
- Moussa, A.A.; Abdi, A.A.; Awale, M.A.; Garba, B. Occurrence and phenotypic characterization of multidrug-resistant bacterial pathogens isolated from patients in a public hospital in Mogadishu, Somalia. Infect. Drug Resist. 2021, 14, 825–832. [Google Scholar] [CrossRef]
- Salihu, M.D.; Garba, B.; Isah, Y. Evaluation of microbial contents of table eggs at retail outlets in Sokoto metropolis, Nigeria. Sokoto J. Vet. Sci. 2015, 13, 22–28. [Google Scholar] [CrossRef]
- Salihu, M.D.; Magaji, A.A.; Garba, B.; Saidu, B.; Aliyu, M.; Suleiman, N.; Wurno, S.B. Bacteriological quality of raw meat displayed for sale at Sokoto, Sokoto state, Original article Bacteriological quality of raw meat displayed for sale at Sokoto, Sokoto state. Sci. J. Microbiol. 2013, 27, 134–139. [Google Scholar]
- Braden, C.R. Salmonella enterica Serotype Enteritidis and Eggs: A National Epidemic in the United States. Clin. Infect. Dis. 2006, 43, 512–517. [Google Scholar] [CrossRef]
- Tenover, F.C.; McGowan, J.E. Antimicrobial Resistance. Int. Encycl. Public Health 2008, 2008, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Ngoi, S.T.; Lindstedt, B.A.; Watanabe, H.; Thong, K.L. Molecular characterization of Salmonella enterica serovar Typhimurium isolated from human, food, and animal sources in Malaysia. Jpn. J. Infect. Dis. 2013, 66, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sudhanthirakodi, S.; Chowdhury, G.; Joshi, S.; Anandan, S.; Ray, U.; Mukhopadhyay, A.; Dutta, S. Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium clinical and environmental isolates from India. PLoS ONE 2018, 13, e0207954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ke, B.; Huang, Y.; He, D.; Li, X.; Liang, Z.; Ke, C. The molecular epidemiological characteristics and genetic diversity of Salmonella Typhimurium in Guangdong, China, 2007–2011. PLoS ONE 2014, 9, e113145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagambèga, A.; Lienemann, T.; Aulu, L.; Traoré, A.S.; Barro, N.; Siitonen, A.; Haukka, K. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiol. 2013, 13, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Hsu, F.F.; Turk, J.; Groisman, E.A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 2004, 186, 4124–4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, M.R.; Zakaria, Z.; Hassan, L.; Ahmad, N.I.; Faiz, N.M.; Garba, B. Rapid detection of colistin-resistant Enterobacterales using the resazurin reduction-based assay. J. Glob. Antimicrob. Resist. 2021, 26, 154–156. [Google Scholar] [CrossRef]
- Day, M.R.; Doumith, M.; Do Nascimento, V.; Nair, S.; Ashton, P.M.; Jenkins, C.; Dallman, T.J.; Stevens, F.J.; Freedman, J.; Hopkins, K.L.; et al. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella enterica serovars Typhi and Paratyphi. J. Antimicrob. Chemother. 2017, 73, 365–372. [Google Scholar] [CrossRef]
- Antunes, P.; Machado, J.; Sousa, J.C.; Peixe, L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 2005, 49, 836–839. [Google Scholar] [CrossRef] [Green Version]
- Bäumler, A.J. The record of horizontal gene transfer in Salmonella. Trends Microbiol. 1997, 5, 318–322. [Google Scholar] [CrossRef]
- Groisman, E.A.; Ochman, H. Pathogenicity islands: Bacterial evolution in quantum leaps. Cell 1996, 87, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Asten, A.J.A.M.; Dijk, J.E. Distribution of classic virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol. 2005, 44, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.E.; Hensel, M.; Gleeson, C.; Holden, D.W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1996, 93, 2593–2597. [Google Scholar] [CrossRef] [Green Version]
- Garai, P.; Marathe, S.; Chakravortty, D. Effectors of Salmonella Pathogenicity Island 2: An Island crucial to the life of Salmonella. Virulence 2011, 2, 177–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc-Potard, A.B.; Groisman, E.A. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 1997, 16, 5376–5385. [Google Scholar] [CrossRef]
- Hayward, R.D.; Koronakis, V. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol. 2002, 12, 15–20. [Google Scholar] [CrossRef]
- Bäumler, A.J.; Tsolis, R.M.; Bowe, F.A.; Kusters, J.G.; Hoffmann, S.; Heffron, F. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 1996, 64, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.; Puente, J.L.; Calva, E. Salmonella virulence plasmid: Pathogenesis and ecology. Pathog. Dis. 2017, 75, ftx070. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Bacot, C.M.; Garlington, W.A.; Doyle, T.J.; Roberts, S.; Gulig, P.A. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar typhimurium in subcutaneously inoculated mice. J. Bacteriol. 2001, 183, 4652–4658. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.M.; Nair, S.; Peters, T.M.; Bale, J.A.; Powell, D.G.; Painset, A.; Tewolde, R.; Schaefer, U.; Jenkins, C.; Dallman, T.J.; et al. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ 2016, 4, e1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, R.M.A.; Hiley, L.; Rathnayake, I.U.; Jennison, A.V. Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia. PLoS ONE 2018, 13, e0191042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadee, P.; Patchanee, P.; Boonkhot, P.; Kittiwan, N.; Chotinun, S. Dissemination of Salmonella enterica Sequence Types Among Asean Economic Community Countries. Southeast Asian J. Trop. Med. Public Health 2015, 46, 707–719. [Google Scholar]
- Aung, K.T.; Chen, H.J.; Chau, M.L.; Yap, G.; Lim, X.F.; Humaidi, M.; Chua, C.; Yeo, G.; Yap, H.M.; Oh, J.Q.; et al. Salmonella in Retail Food and Wild Birds in Singapore—Prevalence, Antimicrobial Resistance, and Sequence Types. Int. J. Environ. Res. Public Health 2019, 16, 4235. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, L.R.; Van Der Graaf-Van Bloois, L.; Donado-Godoy, P.; León, M.; Clavijo, V.; Arévalo, A.; Bernal, J.F.; Mevius, D.J.; Wagenaar, J.A.; Zomer, A.; et al. Genomic characterization of extended-spectrum cephalosporin-resistant Salmonella enterica in the Colombian poultry chain. Front. Microbiol. 2018, 9, 2431. [Google Scholar] [CrossRef]
- Wang, X.C.; Lei, C.W.; Kang, Z.Z.; Zhang, Y.; Wang, H.N. IS26-Mediated Genetic Rearrangements in Salmonella Genomic Island 1 of Proteus mirabilis. Front. Microbiol. 2019, 10, 2245. [Google Scholar] [CrossRef] [PubMed]
- Toboldt, A.; Tietze, E.; Helmuth, R.; Junker, E.; Fruth, A.; Malorny, B. Population structure of Salmonella enterica serovar 4,[5],12:b-strains and likely sources of human infection. Appl. Environ. Microbiol. 2013, 79, 5121–5129. [Google Scholar] [CrossRef] [Green Version]
Antimicrobials | Percentage of Salmonella Isolates | Total (n = 45) | ||
---|---|---|---|---|
Ready-to-Eat Chicken Meat (n = 7) | Fresh Chicken Meat (n = 11) | Cloacal Swab (n = 27) | ||
Amp (10 µg) | - | - | 6 (22%) | 6 (13.3%) |
C (30 µg) | - | 1 (9.1%) | - | 1 (2.2%) |
CN (10 µg) | - | - | 1 (3.7%) | 1 (2.2%) |
S (10 µg) | - | - | 1 (3.7%) | 1 (2.2%) |
SXT (25 µg) | - | 1 (9.1%) | - | 1 (2.2%) |
TE (30 µg) | 5 (71.4%) | 4 (36.4%) | 11 (40.7%) | 20 (44.4%) |
EFT (30 µg) | - | - | - | - |
CTX (30 µg) | - | - | - | - |
CIP (5 µg) | - | - | - | - |
S/No. | WGS Accession No. | Sample Name | SeqSero Antigenic Formula/Serotype | Phenotypic Method |
---|---|---|---|---|
1 | JAECPG000000000 | S34 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
2 | JAECPF000000000 | S35 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
3 | JAECPC000000000 | S38 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
4 | JAECPB000000000 | S39 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
5 | JAECPA000000000 | S40 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
6 | JAECOZ000000000 | S41 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
7 | JAECOY000000000 | S42 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
8 | JAECOX000000000 | S43 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
9 | JAECOW000000000 | S44 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
10 | JAECOV000000000 | S45 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
11 | JAECOU000000000 | S46 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
12 | JAECOT000000000 | S47 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
13 | JAECOS000000000 | S48 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
14 | JAECOR000000000 | S49 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
15 | JAECOQ000000000 | S50 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
16 | JAECOP000000000 | S51 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
17 | JAECOO000000000 | S52 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
18 | JAECON000000000 | S53 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
19 | JAECOM000000000 | S54 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
20 | JAECOL000000000 | S56 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
21 | JAECOK000000000 | S57 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
22 | JAECOJ000000000 | S59 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
23 | JAECOI000000000 | S60 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
24 | JAECOH000000000 | S61 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
25 | JAECOG000000000 | S63 | 8:z4,z24:-/Predicted serotype: Albany/Duesseldorf | Enteritidis |
26 | JAECOF000000000 | S64 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
27 | JAECOE000000000 | S65 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
28 | JAECOD000000000 | S66 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
29 | JAECOC000000000 | S67 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
30 | JAECOB000000000 | S68 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
31 | JAECOA000000000 | S69 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
32 | JAECNZ000000000 | S70 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
33 | JAECNY000000000 | S71 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
34 | JAECNX000000000 | S72 | 7:b:l,w/Predicted serotype: Ohio | Enteritidis |
35 | JAECNW000000000 | S73 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
36 | JAECNV000000000 | S74 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
37 | JAECNU000000000 | S75 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
38 | JAECNT000000000 | S76 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
39 | JAECNS000000000 | S77 | 3,10:r:z6/Predicted serotype: Weltevreden | Enteritidis |
40 | JAECNR000000000 | S78 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
41 | JAECNQ000000000 | S79 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
42 | JAECNP000000000 | S80 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
43 | JAECNO000000000 | S81 | 8:i:z6/Predicted serotype: Kentucky | Enteritidis |
44 | JAECOV000000000 | S45 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
45 | JAECNN000000000 | S82 | 9:g,m:-/Predicted serotype: Enteritidis | Enteritidis |
Gene | Aac (6′)-Iy | Pmr c | Pmr e | Pmr f | BlaTEM-4 | BlaTEM-33 | Dfra15 | TetC | Sul 1 | Sul 2 | flor | Qnr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ready-to-eat chicken meat (n = 7) | 7 | 7 | 7 | 7 | - | - | - | 5 | - | - | - | - |
Fresh chicken meat (n = 11) | 10 | 7 | 7 | 7 | 1 | 1 | 2 | 8 | 1 | 1 | 1 | 1 |
Cloacal swab samples (n = 27) | 24 | 25 | 25 | 25 | 6 | 6 | - | 6 | - | - | - | - |
Sequence Types | ST11 | ST292 | ST329 | ST365 | ST423 | ST1925 | ST2132 |
---|---|---|---|---|---|---|---|
Ready-to-eat chicken meat | 2 | NT | NT | 1 | NT | 5 | NT |
Fresh chicken meat | 2 | 1 | NT | NT | 1 | 12 | NT |
Cloacal swabs | 9 | NT | 1 | NT | NT | 14 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, Z.; Hassan, L.; Sharif, Z.; Ahmad, N.; Mohd Ali, R.; Amir Husin, S.; Mohamed Sohaimi, N.; Abu Bakar, S.; Garba, B. Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products. Animals 2022, 12, 97. https://doi.org/10.3390/ani12010097
Zakaria Z, Hassan L, Sharif Z, Ahmad N, Mohd Ali R, Amir Husin S, Mohamed Sohaimi N, Abu Bakar S, Garba B. Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products. Animals. 2022; 12(1):97. https://doi.org/10.3390/ani12010097
Chicago/Turabian StyleZakaria, Zunita, Latiffah Hassan, Zawiyah Sharif, Norazah Ahmad, Rohaya Mohd Ali, Suraya Amir Husin, Norfitriah Mohamed Sohaimi, Shafini Abu Bakar, and Bashiru Garba. 2022. "Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products" Animals 12, no. 1: 97. https://doi.org/10.3390/ani12010097
APA StyleZakaria, Z., Hassan, L., Sharif, Z., Ahmad, N., Mohd Ali, R., Amir Husin, S., Mohamed Sohaimi, N., Abu Bakar, S., & Garba, B. (2022). Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products. Animals, 12(1), 97. https://doi.org/10.3390/ani12010097