Nutrition and Metabolism of Minerals in Fish
Abstract
:Simple Summary
Abstract
1. Introduction
2. Microminerals
2.1. Copper
2.1.1. Requirement
2.1.2. Deficiency
2.1.3. Toxicity
2.1.4. Bioavailability
2.2. Iron
2.2.1. Requirement
2.2.2. Deficiency and Toxicity
2.2.3. Bioavailability
2.3. Manganese
2.3.1. Requirement
2.3.2. Deficiency
2.3.3. Bioavailability
2.4. Selenium
2.4.1. Requirement
2.4.2. Deficiency
2.4.3. Toxicity
2.4.4. Bioavailability
2.5. Zinc
2.5.1. Requirement
2.5.2. Deficiency
2.5.3. Toxicity
2.5.4. Bioavailability
2.6. Iodine
2.7. Chromium
2.8. Cobalt
2.9. Boron
2.10. Cadmium
2.11. Arsenic
2.12. Other Trace Elements
3. Macrominerals
3.1. Calcium and Phosphorus
3.1.1. Requirement
3.1.2. Deficiency
3.1.3. Bioavailability
3.2. Magnesium
3.2.1. Requirement
3.2.2. Deficiency
3.2.3. Bioavailability
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Suttle, N. Mineral Nutrition of Livestock, 4th ed.; Commonwealth Agricultural Bureaux International: Oxfordshire, UK, 2010; p. 579. [Google Scholar]
- National Research Council. Nutrient Requirements of Fish; The National Academies Press: Washington, DC, USA, 1993. [Google Scholar]
- National Research Council. Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Wood, C.M.; Farrell, A.M.; Brauner, C.J. Homeostasis and Toxicology of Essential Metals; Elsevier/Academic Press: Cambridge, MA, USA, 2012; Volume 31A, p. 495. [Google Scholar]
- Wood, C.M.; Farrell, A.M.; Brauner, C.J. Homeostasis and Toxicology of Non-Essential Metals; Elsevier/Academic Press: Cambridge, MA, USA, 2012; Volume 31B, p. 531. [Google Scholar]
- Lall, S.P. The minerals. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 2002; pp. 259–308. [Google Scholar]
- Evans, D.H.; Claiborne, J.B. Osmotic and ionic regulation in fishes. In Osmotic and Ionic regulation: Cells and Animals; Evans, D.H., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 295–366. [Google Scholar]
- Tacon, A.G.J.; Metian, M.; McNevin, A.A. Future Feeds: Suggested guidelines for sustainable development. Rev. Fish Sci. 2021. [Google Scholar] [CrossRef]
- O’Dell, B.L. Mineral-ion interaction as assessed by bioavailability and ion-channel function. In Handbook of Nutritionally Essential Elements; O’Dell, B.L., Sunde, R.A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 641–659. [Google Scholar]
- Erdman, J.W., Jr. Oilseeds phytates: Nutritional implications. J. Am. Oil Chem. Soc. 1979, 66, 736–741. [Google Scholar] [CrossRef]
- Hilton, J.W. The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 1989, 79, 223–244. [Google Scholar] [CrossRef]
- Ammerman, C.B. Methods for estimation of mineral bioavailability. In Bioavailability of Nutrients for Animals: Amino Acids, Minerals and Vitamins; Ammerman, C.B., Baker, D.J., Lewis, A.J., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 1995; pp. 83–94. [Google Scholar]
- Spears, J.W.; Hansen, S.L. Bioavailability criteria for trace minerals in monogastric and ruminants. In Trace Elements in Animal Production Systems; Schlegel, P., Durosoy, S., Jongbloed, A.W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 161–170. [Google Scholar]
- Bury, N.R.; Walker, P.A.; Glover, C.N. Nutritive metal uptake in teleost fish. J. Exp. Biol. 2003, 206, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.M. An introduction to metals in fish physiology and toxicology: Basic principles. In Fish physiology: Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.M., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; pp. 1–53. [Google Scholar]
- Brix, K.V.; Tellis, M.S.; Crémazy, A.; Wood, C.M. Characterization of the effects of binary metal mixtures on short-term uptake of Cd, Pb, and Zn by rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2017, 193, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Grosell, M. Copper. In Fish Physiology: Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.M., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; Volume 31A, pp. 53–133. [Google Scholar]
- Hogstrand, C. Zinc. In Fish Physiology: Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.M., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; Volume 31A, pp. 135–200. [Google Scholar]
- Handy, R.D. Dietary exposure to trace metals in fish. In Toxicology of Aquatic Pollution; Taylor, E.W., Ed.; Cambridge University Press: Cambridge, MA, USA, 1996; pp. 29–60. [Google Scholar]
- Lall, S.P.; Milley, J.E. Impact of aquaculture on aquatic environment: Trace minerals discharge. In Trace Elements in Animal Production Systems; Schlegel, P., Durosoy, S., Jongbloed, A.W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 77–87. [Google Scholar]
- Dean, R.J.; Shimmield, T.M.; Black, K.D. Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey. Environ. Pollut. 2007, 145, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.M.; Stierns, A.R.; Mahnken, C.V.W.; Blackburn, D.B. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 2003, 219, 355–377. [Google Scholar] [CrossRef]
- Petersen, W.; Wallman, K.; Pinglin, L.; Schroeder, F.; Knauth, H.D. Exchange of trace elements at the sediment-water interface during early diagenesis processes. Mar. Freshw. Res. 1995, 46, 19–26. [Google Scholar] [CrossRef]
- Ponce, R.; Forja, J.M.; Gomez-Parra, A. Influence of anthropogenic activity on the vertical distribution of Zn, Cd, Pb and Cu in interstitial water and coastal marine sediments (Cadiz Bay, SW Spain). Cienc. Mar. 2000, 26, 479–502. [Google Scholar] [CrossRef] [Green Version]
- McGeer, J.C.; Niyogi, S.; Scott Smith, D. Cadmium. In Homeostasis and Toxicology of Non-Essential Metals; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; pp. 125–184. [Google Scholar]
- Sundby, B.; Martinez, P.; Gobeil, C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental marine sediments. Geochim. Cosmochim. Acta. 2004, 68, 2485–2493. [Google Scholar] [CrossRef]
- Mertz, W. Review of the scientific basis for establishing the essentiality of trace elements. Biol. Trace Elem. Res. 1998, 66, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2010, 2, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Andreini, C.; Bertini, I.; Rosato, A. Metalloproteomes: A bioinformatic approach. Acc. Chem. Res. 2009, 42, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Lall, S.P. Disorders of nutrition and metabolism. In Fish Diseases and Disorders; Leatherland, J.F., Woo, P.T.K., Eds.; CABI: Wallingford, UK, 2010; Volume 2, pp. 202–237. [Google Scholar]
- Lehmann, I.; Sack, U.; Lehmann, J. Metal ions affecting the immune system. Met. Ions Life Sci. 2011, 8, 157–185. [Google Scholar]
- Richards, J.D.; Zhao, J.; Harrell, C.A.; Atwell, A.; Dibner, J.J. Trace mineral nutrition in poultry and swine. Asian-Australas. J. Anim. Sci. 2010, 23, 1527–1534. [Google Scholar] [CrossRef]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Abirami, R.G.; Rajan, D.K. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immun. 2019, 86, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.C. Biochemistry and molecular biology of copper in mammals. In Handbook of Copper Pharmacology and Toxicology; Massaro, E.J., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2002; pp. 3–32. [Google Scholar]
- Prohaska, J.R. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv. Nutr. 2011, 2, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.D. Basic and clinical aspects of copper. Crit. Rev. Clin. Lab. Sci. 2003, 40, 547–586. [Google Scholar] [CrossRef]
- Kamunde, C.; Grosell, M.; Higgs, D.; Wood, C.M. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): Interactions between dietary and waterborne copper uptake. J. Exp. Biol. 2002, 205, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.N.; Wood, C.M.; McDonald, D.G. An evaluation of sodium loss and gill metal binding properties in rainbow trout and yellow perch to explain species differences in copper tolerance. J. Exp. Biol. 2003, 22, 2159–2166. [Google Scholar] [CrossRef]
- Miller, P.A.; Lanno, R.P.; McMaster, M.E.; Dixon, D.G. Relative contribution of dietary and waterborne copper to tissue copper burdens and waterborne copper uptake in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 1993, 50, 1683–1689. [Google Scholar] [CrossRef]
- McDonald, D.G.; Wood, C.M. Branchial mechanism of acclimation to metals in freshwater fish. Fish. Ecophysiol. Fish. Ser. 1993, 9, 297–321. [Google Scholar]
- Grosell, M.; Wood, C.M. Copper uptake across rainbow trout gills: Mechanisms of apical entry. J. Exp. Biol. 2002, 205, 1179–1188. [Google Scholar] [CrossRef]
- Clearwater, S.J.; Baskin, S.J.; Wood, C.M.; McDonald, D.G. Gastrointestinal uptake and distribution of copper in rainbow trout. J. Exp. Biol. 2000, 203, 2433–2466. [Google Scholar] [CrossRef]
- Handy, R.D.; Musonda, M.M.; Phillips, C.; Falla, S.J. Mechanisms of gastrointestinal copper absorption in the African walking catfish: Copper dose-effects and a novel anion dependent pathway in the intestine. J. Exp. Biol. 2000, 203, 2365–2377. [Google Scholar] [CrossRef] [PubMed]
- Eyckmans, M.; Celis, N.; Horemans, N.; Blust, R.; De Boeck, G. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat. Toxicol. 2011, 103, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Cousins, R.J. Absorption, transport, and hepatic metabolism of copper and zinc: Special reference to metallothionein and ceruloplasmin. Physiol. Rev. 1985, 65, 238–309. [Google Scholar] [CrossRef] [PubMed]
- Grosell, M.; Boëtius, I.; Hansen, H.J.; Rosenkilde, P. Influence of preexposure to sublethal levels of copper on 64Cu uptake and distribution among tissues of the European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1996, 114, 229–235. [Google Scholar] [CrossRef]
- National Research Council. Mineral. Tolerance of Animals; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Song, J.; Li, L.-Y.; Chen, B.-B.; Shan, L.-L.; Yuan, S.-Y.; Yu, H.-R. Dietary copper requirements of postlarval coho salmon (Oncorhynchus kisutch). Aquac. Nutr. 2021, 1–9. [Google Scholar] [CrossRef]
- Knox, D.; Cowey, C.B.; Adron, J.W. Effects of dietary copper and copper: Zinc ratio on rainbow trout (Salmo gairdneri). Aquaculture 1982, 27, 111–119. [Google Scholar] [CrossRef]
- Lorentzen, M.; Maage, A.; Julshamn, K. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquac. Nutr. 1998, 4, 67–72. [Google Scholar] [CrossRef]
- Andersen, F.; Maage, A.; Julshamn, K. An estimation of iron requirement of Atlantic salmon Salmo salar L., parr. Aquac. Nutr. 1996, 2, 41–47. [Google Scholar] [CrossRef]
- Naser, N. Role of Iron in Atlantic Salmon (Salmo salar) Nutrition: Requirement, Bioavailability, Disease Resistance and Immune Response. Ph.D. Thesis, Dalhousie University, Halifax, UK, 2000. [Google Scholar]
- Ogino, C.; Yang, G.Y. Requirements of carp and rainbow trout for dietary manganese and copper. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 455–458. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Wilson, R.P. Dietary copper requirement of fingerling channel catfish. Aquaculture 1986, 54, 277–285. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Wilson, R.P. Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish. Aquaculture 1986, 52, 191–198. [Google Scholar] [CrossRef]
- Tan, X.Y.; Luo, Z.; Liu, X.; Xie, C.X. Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquac. Nutr. 2011, 17, 170–176. [Google Scholar] [CrossRef]
- Luo, Z.; Zou, G.Y.; Gao, Y.; Ye, H.M.; Xi, W.Q.; Liu, X. Effect of dietary iron (Fe) levels on growth performance, hepatic lipid metabolism and antioxidant responses in juvenile yellow catfish Pelteobagrus fulvidraco. Aquac. Nutr. 2017, 23, 1475–1482. [Google Scholar] [CrossRef]
- Ling, J.; Feng, L.; Liu, Y.; Jiang, J.; Jiang, W.D.; Hu, K.; Li, S.H.; Zhou, X.Q. Effect of dietary iron level on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio Var Jian). Aquac. Nutr. 2010, 16, 616–624. [Google Scholar] [CrossRef]
- Pan, L.; Xie, S.; Lei, W.; Han, D.; Yang, Y. The effect of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). J. Appl. Ichthyol. 2009, 25, 428–431. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Li, S.H.; Kuang, S.Y.; Tang, L.; Zhu, X.Q. Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol. Trace Elem. Res. 2013, 155, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.; Ning, Y. Estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Sci. 2003, 77, 287–292. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Su, L.W. Ferric citrate is half as effective as ferrous sulfate in meeting the iron requirement of juvenile tilapia, Oreochromis niloticus × O. aureus. J. Nutr. 2003, 133, 483–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nose, T.; Arai, S. Recent advances on studies on mineral nutrition of fish in Japan. In Advances in Aquaculture; Pillay, V.R., Dill, W.A., Eds.; Fishing News: Farnam, UK, 1979; pp. 584–590. [Google Scholar]
- Zafar, N.; Khan, M.A. Determination of dietary phosphorus requirement of stinging catfish Heteropneustes fossilis based on feed conversion, growth, vertebrae phosphorus, whole body phosphorus, haematology and antioxidant status. Aquac. Nutr. 2018, 24, 1577–1586. [Google Scholar] [CrossRef]
- Wang, H.; Li, E.; Zhu, H.; Du, Z.; Qin, J.; Chen, L. Dietary copper requirement of juvenile Russian sturgeon Acipenser gueldenstaedtii. Aquaculture 2016, 454, 118–124. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary iron II. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 223–225. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, Y.; Bai, D.; Chen, C.; Guo, Y.; Xing, K. Estimation of dietary copper (Cu) requirement of Cynoglossus semilaevis Günther. In Advances in Applied Biotechnology (Proceedings of the 2nd International Conference on Applied Biotechnology); Zhang, T.C., Nakajima, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 332. [Google Scholar]
- Lin, Y.-H.; Shie, Y.-Y.; Shiau, S.-Y. Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 2008, 274, 161–165. [Google Scholar] [CrossRef]
- Ye, C.X.; Liu, Y.J.; Mai, K.S.; Tian, L.X.; Yang, H.J.; Niu, J.; Huang, J.W. Effect of dietary iron supplement on growth, haematology and microelements of juvenile grouper, Epinephelus coioides. Aquac. Nutr. 2007, 13, 471–477. [Google Scholar] [CrossRef]
- Lin, Y.H.; Shih, C.C.; Kent, M.; Shiau, S.-Y. Dietary copper requirement re-evaluation for juvenile grouper, Epinephelus malabaricus, with an organic copper source. Aquaculture 2010, 310, 173–177. [Google Scholar] [CrossRef]
- Cao, J.; Miao, X.; Xu, W.; Li, J.; Zhang, W.; Mai, K. Dietary copper requirements of juvenile large yellow croaker Larimichthys croceus. Aquaculture 2014, 432, 346–350. [Google Scholar] [CrossRef]
- Qiao, Y.G.; Mai, K.S.; Ai, Q.H.; Zhang, W.D.; Xu, W. Evaluation of iron methionine and iron sulphate as dietary iron sources for juvenile cobia (Rachycentron canadum). Aquac. Nutr. 2013, 19, 721–730. [Google Scholar] [CrossRef]
- Satoh, S.; Yamamoto, H.; Takeuchi, T.; Watanabe, T. Effects on growth and mineral composition of carp of deletion of trace elements or magnesium from fish meal diet. Nippon Suisan Gakkaishi 1983, 49, 431–435. [Google Scholar] [CrossRef]
- Jezierska, B.; Ługowska, K.; Witeska, M. The effects of heavy metals on embryonic development of fish: A review. Fish Physiol. Biochem. 2009, 35, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Carew, E.; Sloman, K.A. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 2007, 84, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Lanno, R.P.; Slinger, S.J.; Hilton, J.W. Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdneri R). Aquaculture 1985, 49, 257–268. [Google Scholar] [CrossRef]
- Baker, R.T.M. Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar. Environ. Res. 1998, 45, 357–365. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Waagbø, R.; Toften, H.; Lundebye, A.K. Effects of dietary cadmium on calcium homeostasis, Ca mobilization and bone deformities in Atlantic salmon (Salmo salar L.) parr. Aquac. Nutr. 1999, 9, 175–183. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Lundebye, A.K.; Maage, A. Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture 1999, 174, 167–181. [Google Scholar] [CrossRef]
- Clearwater, S.J.; Farag, A.; Meyer, J. Bioavailability and toxicity of diet borne copper and zinc to fish. Comp. Biochem. Physiol. Part C 2002, 132, 269–313. [Google Scholar]
- Hansen, J.A.; Lipton, J.; Welsh, P.G.; Cacela, D.; MacConnell, B. Reduced growth of rainbow trout (Oncorhynchus mykiss) fed a live invertebrate diet pre-exposed to metal-contaminated sediments. Environ. Toxicol. Chem. 2004, 23, 1902–1911. [Google Scholar] [CrossRef]
- Kim, S.G.; Kang, J.C. Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Mar. Environ. Res. 2004, 58, 65–82. [Google Scholar] [CrossRef]
- Kang, J.C.; Kim, S.G.; Jang, S.W. Growth and hematological changes of rockfish, Sebastes schlegeli (Hilgendorf) exposed to dietary Cu and Cd. J. World Aquac. Soc. 2005, 36, 188–195. [Google Scholar] [CrossRef]
- Shaw, B.J.; Handy, R.D. Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat. Toxicol. 2006, 76, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, I.; Shaw, B.J.; Handy, R.D. Dietary copper exposure in the African walking catfish, Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquat. Toxicol. 2007, 83, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, F.M.; Fleuri, L.F.; Sartori, M.M.P.; Amorim, R.L.; Pezzato, L.E.; da Silva, R.L.; Carvalho, P.L.; Barros, M.M. Effect of dietary inorganic copper on growth performance and hematological profile of Nile tilapia subjected to heat-induced stress. Aquaculture 2016, 454, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Berntssen, M.H.G.; Lundebye, A.K.; Hamre, K. Tissue lipid peroxidative responses in Atlantic salmon (Salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiol. Biochem. 2000, 21, 35–48. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14, 100. [Google Scholar] [CrossRef]
- Pagenkopf, G.K. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 1983, 17, 342–347. [Google Scholar] [CrossRef]
- Niyogi, S.; Wood, C.M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 2004, 38, 6177–6192. [Google Scholar] [CrossRef]
- Beaumont, M. Exposure of brown trout, Salmo trutta, to a sub-lethal concentration of copper in soft acidic water: Effects upon muscle metabolism and membrane potential. Aquat. Toxicol. 2000, 51, 259–272. [Google Scholar] [CrossRef]
- Domínguez, D.; Rimoldi, S.; Robaina, L.E.; Torrecillas, S.; Terova, G.; Zamorano, M.J.; Karalazos, V.; Hamre, K.; Izquierdo, M. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758). Peer. J. 2017, 5, e3710. [Google Scholar] [CrossRef] [Green Version]
- Kjoss, V.A.; Wood, C.M.; McDonald, D.G. Effects of different ligands on the bioaccumulation and subsequent depuration of Cu and Zn in juvenile rainbow trout Oncorhynchus mykiss. Can. J. Fish. Aquat. Sci. 2006, 63, 412–422. [Google Scholar] [CrossRef]
- Baker, D.J.; Ammerman, C.B. Copper bioavailability. In Bioavailability of Nutrients for Animals: Amino Acids, Minerals and Vitamins; Ammerman, C.B., Baker, D.J., Lewis, A.J., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 1995; pp. 127–156. [Google Scholar]
- Read, E.S.; Barrows, F.T.; Gaylord, T.G.; Paterson, J.; Petersen, M.K.; Sealey, W.M. Investigation of the effects of dietary protein source on copper and zinc bioavailability in fishmeal and plant-based diets for rainbow trout. Aquaculture 2014, 432, 97–105. [Google Scholar] [CrossRef]
- Lall, S.P. The Minerals. In Fish Nutrition, 4th ed.; Hardy, R.W., Ed.; Elsevier/Academic Press: San Diego, CA, USA, 2021. [Google Scholar]
- Glover, C.N.; Hogstrand, C. Amino acid modulation of in vivo intestinal zinc uptake in freshwater rainbow trout. J. Exp. Biol. 2002, 205, 151–158. [Google Scholar] [CrossRef]
- Andersen, F.; Lorentzen, M.; Waagbø, R.; Maage, A. Bioavailability and interactions with other micronutrients of three dietary iron sources in Atlantic salmon, Salmo salar, smolts. Aquac. Nutr. 1997, 3, 239–246. [Google Scholar] [CrossRef]
- Cooper, C.A.; Bury, N.R. The gills as an important uptake route for the essential nutrient iron in freshwater rainbow trout Oncorhynchus mykiss. J. Fish Biol. 2007, 71, 115–128. [Google Scholar] [CrossRef]
- Whitehead, M.W.; Thompson, R.P.H.; Powell, J.J. Regulation of metal absorption in the gastrointestinal tract. Gut 1996, 39, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Bury, N.; Grosell, M. Iron acquisition by teleost fish. Comp. Biochem. Physiol. Part C 2003, 135, 97–105. [Google Scholar] [CrossRef]
- Bury, N.R.; Boyle, D.; Cooper, C.A. Iron. In Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Fish Physiology; Academic Press: Cambridge, MA, USA, 2012; Volume 31A, pp. 201–251. [Google Scholar]
- Glover, C.N.; Hogstrand, C. Effects of dissolved metals and other hydrominerals on in vivo intestinal zinc uptake in freshwater rainbow trout. Aquat. Toxicol. 2003, 62, 281–293. [Google Scholar] [CrossRef]
- Wilson, R.W.; Wilson, J.M.; Grosell, M. Intestinal bicarbonate secretion by marine teleost fish-why and how? Biochim. Biophys. Acta 2002, 1566, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Antony Jesu Prabhu, P.; Schrama, J.W.; Kaushik, S.J. Mineral requirements of fish: A systematic review. Rev. Aquac. 2016, 8, 172–219. [Google Scholar] [CrossRef]
- Kawatsu, H. Studies on the anemia of fish. 5. Dietary iron deficient anemia in brook trout (Salvelinus fontinalis). Bull. Freshw. Fish. Res. Lab. 1972, 22, 59–67. [Google Scholar]
- Desjardins, L.M.; Hicks, B.D.; Hilton, J.W. Iron catalysed oxidation of trout diets and its effect on growth and physiological response of rainbow trout. Fish Physiol. Biochem. 1987, 3, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Bjørnevik, M.; Maage, A. Effects of dietary iron supplementation on tissue iron concentration and haematology in Atlantic salmon (Salmo salar). Fisk. Dir. Skr. Ser. Ernaer. 1993, 6, 35–45. [Google Scholar]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary Fe. Rep. Fish. Res. Lab. Kyushu Univ. 1976, 3, 53–58. [Google Scholar]
- Ikeda, Y.; Ozaki, H.; Vematsu, K. Effect of enriched diet with iron in culture of yellow-tail. J. Tokyo Univ. Fish. 1973, 59, 91–99. [Google Scholar]
- Dalzell, D.J.B.; MacFarlane, N.A.A. The toxicity of iron to brown trout and effects on the gills: A comparison of two grades of iron sulphate. J. Fish Biol. 1999, 55, 301–315. [Google Scholar] [CrossRef]
- Henry, P.R.; Miller, E.R. Iron bioavailability. In Bioavailability of Nutrients for Animal: Amino Acids, Minerals, and Vitamins; Elsevier/Academic Press: Cambridge, MA, USA, 1995; pp. 169–199. [Google Scholar]
- Sakamoto, S.; Yone, Y. Availabilities of three iron compounds as dietary iron sources for red sea bream. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 231–235. [Google Scholar] [CrossRef]
- Huang, Q.C.; Kwaku, A.; Wang, E.L.; Dong, X.H. Iron bioavailability of different sources in juvenile grouper Epinephelus coioides. Aquac. Res. 2018, 49, 2799–2807. [Google Scholar] [CrossRef]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Leach, R.M.; Harris, E.D.; O’Dell, B.L.; Sunde, R.A.E.; Dekker, M. Manganese. In Handbook of Nutritionally Essential Minerals; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 335–355. [Google Scholar]
- Keen, C.L.; Ensunsa, J.L.; Clegg, M.S. Manganese metabolism in animals and humans including the toxicity of manganese. Met. Ions Biol. Syst. 1999, 37, 89–121. [Google Scholar]
- Antony Jesu Prabhu, P.; Silva, M.S.; Kröeckel, S.; Holme, M.; Ørnsrud, R.; Amlund, H.; Erik-Jan Lock, E.J.; Waagbø, R. Effect of levels and sources of dietary manganese on growth and mineral composition of post-smolt Atlantic salmon fed low fish meal, plant-based ingredients. Aquaculture 2019, 512, 734287. [Google Scholar] [CrossRef]
- Miller, D.W.; Vetter, R.J.; Atchison, G.J. Effect of temperature and dissolved oxygen on uptake and retention of 54Mn in fish. Health Phys. 1980, 38, 221–225. [Google Scholar] [PubMed]
- Rouleau, C.; Tjalve, H.; Gottofrey, J.; Pelletier, E. Uptake, distribution, and elimination of 54Mn(II) in brown trout (Salmo trutta). Environ. Toxicol. Chem. 1995, 14, 483–490. [Google Scholar] [CrossRef]
- Peters, A.; Lofts, S.; Merrington, G.; Brown, B.; Stubblefield, W.; Harlow, K. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae. Environ. Toxicol. Chem. 2011, 30, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Partridge, G.J.; Lymbery, A.J. The effect of salinity on the requirement for potassium by barramundi (Lates calcarifer) in saline groundwater. Aquaculture 2008, 278, 164–170. [Google Scholar] [CrossRef]
- Ye, C.X.; Tian, L.X.; Yang, H.J.; Liang, J.J.; Niu, J.; Liu, Y.J. Growth performance and tissue mineral content of juvenile grouper (Epinephelus coioides) fed diets supplemented with various levels of manganese. Aquac. Nutr. 2009, 15, 608–614. [Google Scholar] [CrossRef]
- Vieira, M.C.; Torronteras, R.; Córdoba, F.; Canalejo, A. Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotox. Environ. Saf. 2012, 78, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.Q.; Dong, X.H.; Tan, B.P.; Chi, S.Y.; Yang, Q.H.; Liu, H.Y.; Shuang, Z. Effects of dietary manganese sources and levels on growth performance, relative manganese bioavailability, antioxidant activities and tissue mineral content of juvenile cobia (Rachycentron canadum L). Aquac. Res. 2016, 47, 1402–1412. [Google Scholar] [CrossRef]
- Takeuchi, T.; Watanabe, T.; Ogino, C.; Saito, M.; Nishimura, K.; Nose, T. Effects of low protein-high calorie diets and deletion of trace elements from a fish meal diet on reproduction of rainbow trout. Bull. Jpn. Soc. Sci. Fish. 1981, 47, 645–654. [Google Scholar] [CrossRef]
- Lorentzen, M.; Maage, A.; Julshamn, K. Manganese supplementation of a practical, fish meal based diet for Atlantic salmon parr. Aquac. Nutr. 1996, 2, 121–125. [Google Scholar] [CrossRef]
- Maage, A.; Lygren, B.; El-Mowafi, A.F. Manganese requirement of Atlantic salmon (Salmo salar) fry. Fish. Sci. 2000, 66, 1–8. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Wilson, R.P. Studies on the manganese requirement of fingerling channel catfish. Aquaculture 1984, 41, 85–92. [Google Scholar] [CrossRef]
- Tan, X.Y.; Xie, P.; Luo, Z.; Lin, H.Z.; Zhao, Y.H.; Xi, W.Q. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism. Aquaculture 2012, 326–329, 68–73. [Google Scholar] [CrossRef]
- Pan, L.; Zhu, X.; Xie, S.; Lei, W.; Han, D.; Yang, Y. Effects of dietary manganese on growth and tissue manganese concentrations of juvenile gibel carp, Carassius auratus gibelio. Aquac. Nutr. 2008, 14, 459–463. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, S.M.; Shiau, S.Y. Dietary manganese requirements of juvenile tilapia, Oreochromis niloticus x O. aureus. Aquaculture 2008, 284, 207–210. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, R.; Xu, W.; Zhou, H.; Zhang, W.; Mai, K. Dietary manganese requirement of juvenile large yellow croaker Larimichthys crocea (Richardson, 1846). Aquaculture 2016, 450, 74–79. [Google Scholar] [CrossRef]
- Liu, K.; Ai, Q.H.; Mai, K.S.; Zhang, W.B.; Zhang, L.; Zheng, S.X. Dietary manganese requirement for juvenile cobia, Rachycentron canadum L. Aquac. Nutr. 2012, 19, 461–467. [Google Scholar] [CrossRef]
- Ishak, I.M.; Dollar, A.M. Studies on manganese uptake in Tilapia mossambica and Salmo gairdneri. I. Growth and survival of Tilapia mossambica in response to manganese. Hydrobiologia 1968, 31, 572–584. [Google Scholar] [CrossRef]
- Yamamoto, H.; Satoh, S.; Takeuchi, T.; Watanabe, T. Effects on rainbow trout of deletion of manganese or trace elements from fish meal diet. Nippon Suisan Gakkaishi 1983, 49, 287–293. [Google Scholar] [CrossRef]
- Knox, D.; Cowey, C.B.; Adron, J.W. Studies on the nutrition of salmonid fish. The magnesium requirement of rainbow trout (Salmo gairdneri). Br. J. Nutr. 1981, 45, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Ann. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kiron, V.; Satoh, S. Trace minerals in fish nutrition. Aquaculture 1997, 151, 185–207. [Google Scholar] [CrossRef]
- Satoh, S.; Takeuchi, T.; Watanabe, T. Availability to carp of manganese in white fish meal and of various manganese compounds. Nippon Suisan Gakkaishi 1987, 53, 825–832. [Google Scholar] [CrossRef]
- Ma, R.; Hou, H.; Mai, K.; Bharadwaj, A.S.; Ji, F.; Zhang, W. Comparative study on the effects of chelated or inorganic manganese in diets containing tricalcium phosphate and phytate on the growth performance and physiological responses of turbot Scophthalmus maximus. Aquac. Nutr. 2015, 21, 780–787. [Google Scholar] [CrossRef]
- Lall, S.P.; Milley, J.E. Trace mineral requirements of fish and crustaceans. In Trace Elements in Animal Production Systems; Schlegel, P., Durosoy, S., Jongbloed, A.W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 203–214. [Google Scholar]
- Antony Jesu Prabhu, P.; Fountoulaki, E.; Maas, R.; Heinsbroek, L.T.N.; Eding, E.H.; Kaushik, S.J.; Schrama, J.W. Dietary ingredient composition alters faecal characteristics and waste production in common carp reared in recirculation system. Aquaculture 2019, 512, 734357. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the safety and efficacy of manganese hydroxychloride as feed additive for all animal species. EFSA J. 2016, 14, 4474. [Google Scholar] [CrossRef]
- Poston, H.A.; Combs, G.F.; Leibovitz, L. Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): Gross, histological and biochemical deficiency signs. J. Nutr. 1976, 106, 892–904. [Google Scholar] [CrossRef]
- Hilton, J.W.; Hodson, P.V.; Slinger, S.J. The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr. 1980, 110, 2527–2535. [Google Scholar] [CrossRef]
- Hodson, P.V.; Hilton, J.W. The nutritional requirements and toxicity to fish of dietary and waterborne selenium. Ecol. Bull. 1983, 35, 335–340. [Google Scholar]
- Labunsky, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, M.; Ridge, P.G.; Zhang, Y.; Lobanov, A.V.; Pringle, T.H.; Guigo, R.; Hatfield, D.L.; Gladyshev, V.N. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS ONE 2012, 7, 33066. [Google Scholar] [CrossRef] [PubMed]
- Hesketh, J. Nutrigenomics and selenium: Gene expression patterns, physiological targets, and genetics. Ann. Rev. Nutr. 2008, 28, 157–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal. 2007, 9, 775–806. [Google Scholar] [CrossRef]
- Arthur, J.R.; McKenzie, R.C.; Beckett, G.J. Selenium in the immune system. J. Nutr. 2003, 133, 1457–1459. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in Human Health and Disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, N.N.; Shin, H.S.; Park, M.S.; Kil, G.S.; Choi, Y.C. Effects of waterborne selenium exposure on the antioxidant and immunological activity in the goldfish, Carassius auratus. Mol. Cell. Toxicol. 2013, 9, 365–373. [Google Scholar] [CrossRef]
- Khan, K.U.; Zuberi, A.; Fernandes, J.B.K.; Ullah, I.; Sarwar, H. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol. Biochem. 2017, 43, 1689–1705. [Google Scholar] [CrossRef]
- Dalgaard, T.S.; Briens, M.; Engberg, R.M.; Lauridsen, C. The influence of selenium and selenoproteins on immune responses of poultry and pigs. Anim. Feed Sci. Tech. 2018, 258, 73–83. [Google Scholar] [CrossRef]
- Janz, D.M. Selenium. In Fish Physiology: Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.M., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; pp. 329–374. [Google Scholar]
- Janz, D.M.; DeForest, D.K.; Brooks, M.L.; Chapman, P.M.; Gilron, G.; Hoff, D.J.; Hoppkins, W.A.; McIntyre, D.O.; Mebane, C.A.; Palace, V.P.; et al. Selenium Toxicity to Aquatic Organisms. In Ecological Assessment of Selenium in the Aquatic Environment; Chapman, P.M., Adams, W.J., Brooks, M.L., Delos, C.G., Luoma, S.N., Maher, W.A., Ohlendorf, H.M., Presser, T.S., Shaw, D.P., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–231. [Google Scholar]
- Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Ann. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Malevu, T.D.; Sochor, J.S.; Baron, M.; Melcova, M.; Zidkova, J.; et al. A summary of new findings on the biological effects of selenium in selected animal species—A critical review. Int. J. Mol. Sci. 2017, 18, 2209. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Godin, S.; Liu, H.; Prabhu, P.A.J.; Bouyssiere, B.; Bueno, M.; Tacon, P.; Médale, F.; Kaushik, S.J. Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry. Brit. J. Nutr. 2015, 113, 1876–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacitti, D.; Lawan, M.M.; Sweetman, J.; Martin, S.A.M.; Feldmann, J.; Secombes, C.J. Selenium supplementation in fish: A combined chemical and biomolecular study to understand Sel-Plex assimilation and impact on selenoproteome expression in rainbow trout (Oncorhynchus mykiss). PLoS ONE 2015, 10, 0127041. [Google Scholar] [CrossRef] [Green Version]
- Penglase, S.; Hamre, K.; Ellingsen, S. The selenium content of SEPP1 versus selenium requirements in vertebrates. Peer J. 2015, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, X.; Wu, L.; Liu, Q.; Zhang, D.; Yin, J. Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 2018, 492, 82–90. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Sundal, T.K.; Olsvik, P.A.; Amlund, H.; Rasinger, J.D.; Sele, V.; Hamre, K.; Hillsted, M.; Buttle, L.; Ørnsrud, R. Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquat. Toxicol. 2017, 192, 116–126. [Google Scholar] [CrossRef]
- Du, L.C.; Yu, H.R.; Li, L.Y.; Zhang, Q.; Tian, Q.; Liu, J.Q.; Shan, L.L. Dietary selenium requirement of coho salmon (Oncorhynchus kisutch W.) alevins. Aquac. Int. 2021, 29, 2291–2304. [Google Scholar] [CrossRef]
- Antony Jesu Prabhu, P.; Holen, E.; Espe, M.; Silva, M.S.; Holme, M.H.; Hamre, K.; Lock, E.; Waagbø, R. Dietary selenium required to achieve body homeostasis and attenuate pro-inflammatory responses in Atlantic salmon post-smolt exceeds the present EU legal limit. Aquaculture 2020, 526, 735413. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Wilson, R.P. Dietary selenium requirement of fingerling channel catfish. J. Nutr. 1984, 114, 627–633. [Google Scholar] [CrossRef]
- Wang, C.; Lovell, R.T. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus puncatatus). Aquaculture 1997, 152, 223–234. [Google Scholar] [CrossRef]
- Han, D.; Xie, S.; Liu, M.; Xiao, X.; Liu, H.; Zhu, X.; Yang, Y. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquac. Nutr. 2011, 17, 741–749. [Google Scholar] [CrossRef]
- Zhu, L.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Liu, H.; Xie, S. Dietary selenium requirement for on-growing gibel carp (Carassius auratus gibelio var. CAS III). Aquac. Res. 2016, 48, 2841–2851. [Google Scholar] [CrossRef]
- Ning, L.; Yuwen, T.; Wang, W.; Wu, S.; Chen, F.; Zhang, H.; Pan, Q. Optimum selenium requirement of juvenile Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2020, 26, 528–535. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Liu, Y.; Yang, H.; Liang, G.; Tian, L. Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquac. Res. 2011, 43, 1660–1668. [Google Scholar] [CrossRef]
- Domínguez, D.; Sehnine, Z.; Castro, P.; Robaina, L.; Fontanillas, R.; Prabhu, P.A.J.; Izquierdo, M. Optimum selenium levels in diets high in plant-based feedstuffs for gilthead sea bream (Sparus aurata) fingerlings. Aquac. Nutr. 2019, 26, 579–589. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, J.X.; Hua, Y.; Xiang, X.W.; Zhou, Y.F.; Ye, L.; Shao, Q.J. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture 2019, 503, 389–395. [Google Scholar] [CrossRef]
- Lin, Y.H.; Shiau, S.Y. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 2005, 250, 356–363. [Google Scholar] [CrossRef]
- Lin, Y.H. Effects of dietary organic and inorganic selenium on the growth, selenium concentration and meat quality of juvenile grouper Epinephelus malabaricus. Aquaculture 2014, 430, 114–119. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.J.; Ai, Q.; Mai, K.; Zhang, W. Dietary selenium requirement for juvenile cobia, Rachycentron canadum L. Aquac. Res. 2010, 41, 594–601. [Google Scholar] [CrossRef]
- Bell, J.G.; Cowey, C.B.; Adron, J.W.; Shanks, A.M. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). Br. J. Nutr. 1985, 53, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Satoh, S.; Takeuchi, T.; Narabe, Y.; Watanabe, T. Effects of deletion of several trace elements from fish meal diets on growth and mineral composition of rainbow trout fingerlings. Nippon Suisan Gakkaishi 1983, 49, 1909–1916. [Google Scholar] [CrossRef]
- Wischhusen, P.; Paraillous, M.; Geraert, P.-A.; Briens, M.; Bueno, M.; Mounicou, S.; Bouyssiere, B.; Prabhu, A.J.; Kaushik, S.; Fauconneau, B.; et al. Effect of dietary Se in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny. Aquaculture 2019, 507, 126–138. [Google Scholar] [CrossRef]
- Hamilton, S.J. Review of selenium toxicity in the aquatic food chain. Sci. Total Environ. 2004, 326, 1–31. [Google Scholar] [CrossRef]
- Pedersen, T.V.; Block, M.; Part, P. Effect of selenium on the uptake of methyl mercury across perfused gills of rainbow trout Oncorhynchus mykiss. Aquat. Toxicol. 1998, 40, 361–373. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Buhl, K.J. Acute toxicity of boron molybdenum and selenium to fry of Chinook salmon and coho salmon. Arch. Environ. Contam. Toxicol. 1990, 19, 366–373. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Betancor, M.; Caballero, M.J.; Hillestad, M.; Rasinger, J.; Hamre, K.; Sele, V.; Amlund, H.; Ørnsrud, R. Safe limits of selenomethionine and selenite supplementation to plant-based Atlantic salmon feeds. Aquaculture 2018, 495, 617–630. [Google Scholar] [CrossRef]
- Tashjian, D.H.; Teh, S.J.; Sogomonyan, A.; Hung, S.S.O. Bioaccumulation and chronic toxicity of dietary l-selenomethionine in juvenile white sturgeon (Acipenser transmontanus). Aquat. Toxicol. 2006, 79, 401–409. [Google Scholar] [CrossRef] [Green Version]
- De Riu, N.; Lee, J.W.; Huang, S.S.Y.; Moniello, G.; Hung, S.S.O. Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon. Aquat. Toxicol. 2014, 148, 65–73. [Google Scholar] [CrossRef]
- Zee, J.; Patterson, S.; Wiseman, S.; Hecker, M. Is hepatic oxidative stress a main driver of dietary selenium toxicity in white sturgeon (Acipenser transmontanus). Ecotox. Environ. Saf. 2016, 133, 334–340. [Google Scholar] [CrossRef]
- Schultz, R.; Hermanutz, R. Transfer of toxic concentrations of selenium from parent to progeny in the fathead minnow (Pimephales promelas). Bull. Environ. Contam. Toxicol. 1990, 45, 568–573. [Google Scholar] [CrossRef]
- Hicks, B.D.; Hilton, J.W.; Ferguson, H.W. Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout, Salmo gairdneri Richardson. J. Fish. Dis. 1984, 7, 379–389. [Google Scholar] [CrossRef]
- Kupsco, A.; Schlenk, D. Molecular mechanisms of selenium-Induced spinal deformities in fish. Aquat. Toxicol. 2016, 179, 143–150. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific opinion on the safety and efficacy of selenium compounds (E8) as feed additives for all animal species: Sodium selenite, based on a dossier submitted by Retorte GmbH Selenium Chemicals and Metals. EFSA J. 2016, 14, 4398. [Google Scholar] [CrossRef]
- Maier, K.J.; Knight, A.W. Ecotoxicology of selenium in freshwater systems. Rev. Environ. Contam. Toxicol. 1994, 134, 31–48. [Google Scholar]
- Knight, R.; Marlatt, V.L.; Baker, J.A.; Lo, B.P.; Debruyn, A.M.H.; Elphick, J.R.; Martyniuk, C.J. Dietary selenium disrupts hepatic triglyceride stores and transcriptional networks associated with growth and Notch signaling in juvenile rainbow trout. Aquat. Toxicol. 2016, 180, 103–114. [Google Scholar] [CrossRef]
- Pacitti, D.; Lawan, M.M.; Feldmann, J.; Sweetman, J.; Wang, T.; Martin, S.A.M.; Secombes, C.J. Impact of selenium supplementation on fish antiviral responses: A whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supra nutritional levels of Sel-Plex®. BMC Genom. 2016, 17, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Schrauzer, G.N. Selenium yeast: Composition, quality, analysis, and safety. Pure Appl. Chem. 2006, 78, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.L.; Thompson, J.N. Selenium content of feedstuffs and effects of dietary selenium levels upon tissue selenium in chick and poults. Poult. Sci. 1971, 50, 1742–1748. [Google Scholar] [CrossRef]
- Canton, S.P.; Van Derveer, W.D. Selenium toxicity to aquatic life: An argument for sediment-based water quality criteria. Environ. Toxicol. Chem. 1997, 16, 1255–1259. [Google Scholar] [CrossRef]
- Henry, P.R.; Ammerman, C.B. Selenium bioavailability. In Bioavailability of Nutrients for Animal: Amino Acids, Minerals, and Vitamins; Elsevier/Academic Press: Cambridge, MA, USA, 1995; pp. 303–336. [Google Scholar]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiry, C.; Ruttens, A.; De Temmerman, L.; Schneider, Y.J.; Pussemier, L. Current knowledge in species-related bioavailability of selenium in food. Food Chem. 2012, 130, 767–784. [Google Scholar] [CrossRef]
- Rider, S.A.; Davies, S.J.; Jha, A.N.; Clough, R.; Sweetman, J.W. Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J. Anim. Physiol. Anim. Nutr. 2010, 94, 99–110. [Google Scholar] [CrossRef]
- Sele, V.; Ørnsrud, R.; Sloth, J.J.; Berntssen, M.H.G.; Amlund, H. Selenium and selenium species in feeds and muscle tissue of Atlantic salmon. J. Trace Elem. Med. Biol. 2018, 47, 124–133. [Google Scholar] [CrossRef]
- Le, K.T.; Fotedar, R. Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture 2014, 420, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Mechlaoui, M.; Dominguez, D.; Robaina, L.; Geraert, P.A.; Kaushik, S.; Saleh, R.; Briens, M.; Montero, D.; Izquierdo, M. Effects of different dietary selenium sources on growth performance, liver and muscle composition, antioxidant status, stress response and expression of related genes in gilthead seabream (Sparus aurata). Aquaculture 2019, 507, 251–259. [Google Scholar] [CrossRef]
- Godin, S.; Fontagné-Dicharry, S.; Bueno, M.; Tacon, P.; Prabhu, P.A.J.; Kaushik, S.; Médale, F.; Bouyssiere, B. Influence of dietary selenium species on selenoamino acid levels in rainbow trout. J. Agric. Food Chem. 2015, 63, 6484–6492. [Google Scholar] [CrossRef]
- Bell, J.G.; Cowey, C.B. Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon (Salmo salar). Aquaculture 1989, 81, 61–68. [Google Scholar] [CrossRef]
- Gabrielsen, B.J.; Opstvedt, J. Availability of selenium in fish meal in comparison with soybean meal, corn gluten meal and selenomethionine relative to selenium in sodium selenite for restoring glutathione peroxidase activity in selenium-depleted chicks. J. Nutr. 1980, 110, 1096–1100. [Google Scholar] [CrossRef]
- Sissener, N.H.; Julshamn, K.; Espe, M.; Lunestad, B.T.; Hemre, G.I.; Waagbø, R.; Måge, A. Surveillance of selected nutrients, additives and undesirables in commercial Norwegian fish feeds in the years 2000–2010. Aquac. Nutr. 2013, 19, 555–572. [Google Scholar] [CrossRef]
- Betancor, M.; Dam, T.; Walton, J.; Morken, T.; Campbell, P.; Tocher, D. Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients. Br. J. Nutr. 2016, 115, 1325–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.S.; Kröckel, S.; Jesu Prabhu, P.A.; Koppe, W.; Ørnsrud, R.; Waagbø, R.; Araujo, P.; Amlund, H. Apparent availability of zinc, selenium and manganese as inorganic metal salts or organic forms in plant-based diets for Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 562–570. [Google Scholar] [CrossRef]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef]
- McCall, K.A.; Huang, C.-C.; Fierke, C.A. Function and mechanism of zinc metalloenzymes. J. Nutr. 2000, 130, 1437S–1446S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passerini, A.; Andreini, C.; Menchetti, S.; Rosato, A.; Frasconi, P. Predicting zinc binding at the proteome level. BMC Bioinf 2007, 5, 8–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- Fukada, T.; Kambe, T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 2011, 3, 662–674. [Google Scholar] [CrossRef]
- Feeney, G.P.; Zheng, D.; Kille, P.; Hogstrand, C. The phylogeny of teleost ZIP and ZnT zinc transporters and their tissue specific expression and response to zinc in zebrafish. Biochim. Biophy. Acta (BBA) Gene Struct. Express 2005, 1732, 88–95. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, Z.; Wang, F. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism. Front. Pharmacol. 2014, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Spry, D.I.; Hodson, P.V.; Wood, C.M. Relative contributions of dietary and waterborne zinc in rainbow trout, Salmo gairdneri. Can. J. Fish. Aquat. Sci. 1988, 45, 32–41. [Google Scholar] [CrossRef]
- Pentreath, R.J. The accumulation and retention of 65Zn and 54Mn by the plaice, Pleuronectes platessa L. J. Exp. Mar. Biol. Ecol. 1973, 12, 1–18. [Google Scholar] [CrossRef]
- Lall, S.P.; Bishop, F.J. Studies on mineral and protein utilization by Atlantic salmon (Salmo salar) grown in sea water. Fish. Mar. Serv. Tech. Rep. 1977, 688, 1–16. [Google Scholar]
- Hogstrand, C.; Verbost, P.M.; Bonga, S.E.; Wood, C.M. Mechanisms of zinc uptake in gills of freshwater rainbow trout: Interplay with calcium transport. Am. J. Physiol. 1996, 270, 1141–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, R.W.; Sullivan, C.V.; Koziol, A.M. Absorption, body distribution, and excretion of dietary zinc by rainbow trout (Salmo gairdneri). Fish Physiol. Biochem. 1987, 3, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, S.; Wood, C.M. Interaction between dietary calcium supplementation and chronic waterborne zinc exposure in juvenile rainbow trout, Oncorhynchus mykiss. Comp. Biochem. Physiol. Part C 2006, 143, 91–102. [Google Scholar] [CrossRef]
- Antony Jesu Prabhu, P.; Stewart, T.; Silva, M.; Amlund, H.; Ørnsrud, R.; Lock, E.J.; Waagbo, R.; Hogstrand, C. Zinc uptake in fish intestinal epithelial model RTgutGC: Impact of media ion composition and methionine chelation. J. Trace Elem. Med. Biol. 2018, 50, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Maage, A.; Julshamn, K. Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 1993, 117, 179–191. [Google Scholar] [CrossRef]
- Ogino, C.; Yang, G.-Y. Requirement of rainbow trout for dietary zinc. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Welker, T.; Barrows, F.; Overturf, K.; Gaylord, G.; Sealey, W. Optimizing zinc supplementation levels of rainbow trout (Oncorhynchus mykiss) fed practical type fishmeal- and plant-based diets. Aquac. Nutr. 2016, 22, 91–108. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Wilson, R.P. Dietary zinc requirement of fingerling channel catfish. J. Nutr. 1983, 113, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Tan, X.Y.; Zheng, J.L.; Chen, Q.L.; Liu, C.X. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture 2011, 319, 150–155. [Google Scholar] [CrossRef]
- Ogino, C.; Yang, G.Y. Requirement of carp for dietary zinc. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 967–969. [Google Scholar] [CrossRef]
- Tan, L.N.; Feng, L.; Liu, Y.; Jiang, J.; Jiang, W.D.; Hu, K.; Zhou, X.Q. Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquac. Nutr. 2011, 17, 338–345. [Google Scholar] [CrossRef]
- Liang, J.J.; Yang, H.J.; Liu, Y.J.; Tian, L.X.; Liang, G.Y. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquac. Nutr. 2012, 18, 380–387. [Google Scholar] [CrossRef]
- Musharraf, M.; Khan, M.A. Dietary zinc requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquaculture 2019, 503, 489–498. [Google Scholar] [CrossRef]
- Lin, Y.H.; Jiang, L.C.; Shiau, S.-Y. Dietary zinc requirements of juvenile tilapia, Oreochromis niloticus x O. aureus. J. Fish. Soc. Taiwan 2008, 35, 117–125. [Google Scholar]
- Li, M.R.; Huang, C.H. Effect of dietary zinc level on growth, enzyme activity and body trace elements of hybrid tilapia, Oreochromis niloticus × O. aureus, fed soya bean meal-based diets. Aquac. Nutr. 2015, 22, 1320–1327. [Google Scholar] [CrossRef]
- McLain, W.; Gatlin, D.M., III. Dietary zinc requirement of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability. J. World Aquac. Soc. 1988, 19, 103–108. [Google Scholar] [CrossRef]
- Eid, A.E.; Ghonim, S.I. Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture 1994, 119, 259–264. [Google Scholar] [CrossRef]
- Huang, F.; Jiang, M.; Wen, H.; Wu, F.; Liu, W.; Tian, J.; Yang, C. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquaculture 2015, 439, 53–59. [Google Scholar] [CrossRef]
- Moazenzadeh, K.; Islami, H.R.; Zamini, A.; Soltani, M. Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int. Aquat. Res. 2017, 9, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Gatlin, D.M., III; O’Connell, J.P.; Scarpa, J. Dietary zinc requirement of the red drum, Sciaenops ocellatus. Aquaculture 1991, 92, 259–265. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, F.; Huang, F.; Wen, H.; Liu, W.; Tian, J.; Changgeng, Y.; Wang, W. Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquaculture 2016, 464, 121–128. [Google Scholar] [CrossRef]
- Houng-Yung, C.; Yu-Chun, C.; Li-Chi, H.; Meng-Hsien, C. Dietary zinc requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 2014, 432, 360–364. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, X.; Liu, C. Dietary zinc requirement of juvenile cobia (Rachycentron canadum). Fish. Sci. 2007, 26, 138–141. [Google Scholar]
- Ketola, H.G. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J. Nutr. 1979, 105, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Richardson, N.L.; Higgs, D.A.; Beames, R.M.; McBride, J.R. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). J. Nutr. 1985, 115, 553–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waagbø, R.; Tröße, C.; Fontanillas, R.; Breck, O. Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater. Br. J. Nutr. 2010, 104, 1460–1470. [Google Scholar] [CrossRef] [Green Version]
- Bjerkås, E.; Breck, O.; Waagbø, R. The role of nutrition in cataract formation in farmed fish. CAB Rev. Perspect. Agric. Vet. Scie. Nutr. Nat. Resour. 2006, 33, 1–16. [Google Scholar] [CrossRef]
- Bjerkås, E.; Sveier, H. The influence of nutritional and environmental factors on osmoregulation and cataracts in Atlantic salmon (Salmo salar L). Aquaculture 2004, 235, 101–122. [Google Scholar] [CrossRef]
- Wekell, J.C.; Shearer, K.D.; Gauglitz, E.J., Jr. Zinc supplementation of trout diets: Tissue indicators of body zinc status. Prog. Fish.-Cult. 1986, 48, 205–212. [Google Scholar]
- Wekell, J.C.; Shearer, K.D.; Houle, C.R. High zinc supplementation of rainbow trout diets. Prog. Fish.-Cult. 1983, 45, 144–147. [Google Scholar] [CrossRef]
- Jeng, S.S.; Sun, L.T. Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J. Nutr. 1981, 111, 134–140. [Google Scholar] [CrossRef]
- Alsop, D.H.; Wood, C.M. Influence of waterborne cations on zinc uptake and toxicity in rainbow trout, Oncorhynchus mykiss. Can. J. Fish. Aquat. Sci. 1999, 56, 2112–2119. [Google Scholar] [CrossRef]
- Bielmyer, G.K.; Bullington, J.B.; DeCarlo, C.A.; Chalk, S.J.; Smith, K. The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integ. Comp. Biol. 2012, 52, 753–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loro, V.L.; Nogueira, L.; Nadella, S.R.; Wood, C.M. Zinc bioaccumulation and ionoregulatory impacts in Fundulus heteroclitus exposed to sublethal waterborne zinc at different salinities. Comp. Biochem. Physiol. Toxic. Pharm. 2014, 166 C, 96–104. [Google Scholar] [CrossRef]
- Satoh, S.; Tabata, K.; Izume, K.; Takeuchi, T.; Watanabe, T. Effect of dietary tricalcium phosphate on availability of zinc to rainbow trout. Nippon Suisan Gakkaishi 1987, 53, 1199–1205. [Google Scholar]
- Satoh, S.; Poe, W.E.; Wilson, R.P. Effect of supplemental phytate and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture 1989, 80, 155–161. [Google Scholar] [CrossRef]
- Apines-Amar, M.J.S.; Satoh, S.; Caipang, C.M.A.; Kiron, V.; Watanabe, T.; Aoki, T. Amino acid-chelate: A better source of Zn, Mn and Cu for rainbow trout, Oncorhynchus mykiss. Aquaculture 2004, 240, 345–358. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the safety and efficacy of zinc compounds (E6) as feed additives for all animal species (zinc acetate, dihydrate; zinc chloride, anhydrous; zinc oxide; zinc sulphate, heptahydrate; zinc sulphate, monohydrate; zinc chelate of amino acids, hydrate; zinc chelate of glycine, hydrate), based on a dossier submitted by FEFANA asbl. EFSA J. 2015, 13, 46. [Google Scholar] [CrossRef]
- Apines, M.J.S.; Satoh, S.; Kiron, V.; Watanabe, T.; Aoki, T. Availability of supplemental amino acid-chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout, Oncorhynchus mykiss. Aquaculture 2003, 225, 431–444. [Google Scholar] [CrossRef]
- Apines, M.J.S.; Satoh, S.; Kiron, V.; Watanabe, T.; Fujita, S. Bioavailability and tissue distribution of amino acid chelated trace elements in rainbow trout Oncorhynchus mykiss. Fish. Sci. 2003, 69, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Rider, S.A.; Davies, S.J.; Jha, A.N.; Fisher, A.A.; Knight, J.; Sweetman, J.W. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): Implications on selenium status and health responses. Aquaculture 2009, 295, 282–291. [Google Scholar] [CrossRef]
- Li, M.H.; Robinson, E.H. Comparison of chelated zinc and zinc sulfate as zinc sources for growth and bone mineralization of channel catfish (Ictalurus punctatus) fed practical diets. Aquaculture 1996, 146, 237–243. [Google Scholar] [CrossRef]
- Domínguez, D.; Robaina, L.; Zamorano, M.J.; Karalazos, V.; Izquierdo, M. Effects of zinc and manganese sources on gilthead seabream (Sparus aurata) fingerlings. Aquaculture 2019, 505, 386–392. [Google Scholar] [CrossRef]
- Hardy, R.W.; Shearer, K. Effect of dietary calcium phosphate and zinc supplementation on whole body zinc concentration of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1985, 42, 181–184. [Google Scholar] [CrossRef]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378–1383. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. 2012, 96, 335–364. [Google Scholar] [CrossRef]
- Hetzel, B.S.; Welby, M.C. Iodine. In Handbook of Nutritionally Essential Mineral Elements; O’Dell, B.L., Sunde, R.A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 557–582. [Google Scholar]
- Higgs, D.A.; Fagerlund, U.H.M.; Eales, J.G.; McBride, J.R. Application of thyroid and steroid hormones as anabolic agents in fish culture. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 73, 143–176. [Google Scholar] [CrossRef]
- Cyr, D.G.; Eales, J.G. Interrelationships between thyroidal and reproductive systems in Fish. Rev. Fish. Biol. Fish. 1996, 6, 165–200. [Google Scholar] [CrossRef]
- Cyr, D.G.; Bromage, N.R.; Dustin, J.; Eales, J.G. Seasonal patterns in serum levels of thyroid hormones and sex steroids in relation to photoperiod-induced changes in spawning time in rainbow trout, Salmo gairdneri. Gen. Comp. Endoc. 1988, 69, 217–225. [Google Scholar] [CrossRef]
- Lebel, J.M.; Leloup, J. La triiodothyronine est necessaire á l’acclimation á l’eau de mer de la truite fario (Salmo trutta) ou arc en ciel (Oncorhynchus mykiss). Comput. Rendus Acad. Sci. Paris 1992, 314, 461–468. [Google Scholar]
- Blanton, M.L.; Specker, J.L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol. 2007, 37, 97–115. [Google Scholar] [CrossRef]
- Power, D.M.; Einarsdottir, I.E.; Pittman, K.; Sweeney, G.E.; Hildahl, J.; Campinho, M.A.; Silva, N.; Saele, Ø.; Burgos, M.G.; Smaradottir, H.; et al. The molecular and endocrine basis of flatfish metamorphosis. Rev. Fish. Sci. 2008, 16, 95–111. [Google Scholar] [CrossRef]
- Eales, J.G. The relationship between ingested thyroid hormones, thyroid homeostasis and iodine metabolism in humans and teleost fish. Gen. Comp. Endoc. 2019, 280, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Moren, M.; Sloth, J.J.; Hamre, K. Uptake of iodide from water in Atlantic halibut larvae (Hippoglossus hippoglossus L). Aquaculture 2008, 285, 174–178. [Google Scholar] [CrossRef]
- Geven, E.J.W.; Nguyen, N.-K.; Boogaart, M.; Spanings, F.A.T.; Flik, G.; Klaren, P.H.M. Comparative thyroidology: Thyroid gland location and iodothyronine dynamics in Mozambique tilapia (Oreochromis mossambicus Peters) and common carp (Cyprinus carpio L.). J. Exp. Biol. 2007, 210, 4005–4015. [Google Scholar] [CrossRef] [Green Version]
- Hunt, D.W.C.; Eales, J.G. Iodine balance in rainbow trout (Salmo gairdneri) and effects of testosterone propionate. J. Fish. Res. Board Can. 1979, 36, 282–285. [Google Scholar] [CrossRef]
- Speacker, J.L.; Eales, J.G.; Tagawa, M.; Tyler, W.A., III. Parr-smolt transformation in Atlantic salmon: Thyroid hormone deiodination in liver and brain and endocrine correlates of change in rheotactic behavior. Can. J. Zool. 2000, 78, 696–705. [Google Scholar] [CrossRef]
- Habibi, H.R.; Nelson, E.R.; Allan, E.R.O. New insights into thyroid hormone function and modulation of reproduction in goldfish. Gen. Comp. Endoc 2012, 175, 19–26. [Google Scholar] [CrossRef]
- Brown, C.L.; Urbinati, E.C.; Zhang, W.; Brown, S.B.; McComb-Kobza, M. Maternal thyroid and glucocorticoid hormone interactions in larval fish development, and their applications in aquaculture. Rev. Fish. Sci. Aquac. 2014, 22, 207–220. [Google Scholar] [CrossRef]
- Einarsdottir, I.E.; Silva, N.; Power, D.M.; Smaradottir, H.; Bjornsson, B.T. Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut. Anat. Embryol. 2006, 211, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.R.A.; Ribeiro, L.; Saele, O.; Dinis, M.T.; Moren, M. Iodine and selenium supplementation increased survival and changed thyroid hormone status in Senegalese sole (Solea senegalensis) larvae reared in a recirculation system. Fish Physiol. Biochem. 2012, 38, 725–734. [Google Scholar] [CrossRef]
- Penglase, S.; Harboe, T.; Sæle, Ø.; Helland, S.; Nordgreen, A.; Hamre, K. Iodine nutrition and toxicity in Atlantic cod (Gadus morhua) larvae. Peer J. 2013, 1, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M. Fish larval nutrition and feed formulation: Knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquac. 2013, 5, 26–58. [Google Scholar] [CrossRef] [Green Version]
- Sherrill, J.; Whitaker, B.R.; Wong, G.T.F. Effects of ozonation on the speciation of dissolved iodine in artificial seawater. J. Zoo Wild. Med. 2004, 35, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Tonacchera, M.; Pinchera, A.; Dimida, A.; Ferrarini, E.; Agretti, P.; Vitti, P.; Santini, F.; Crump, K.; Gibbs, J. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid 2004, 14, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.L.; Hamlin, H.J.; Francis-Floyd, R.; Sheppard, B.J.; Guillette, L.J. Nitrate-induced goiter in captive white spotted bamboo sharks Chiloscyllium plagiosum. J. Aquat. Anim. Health 2011, 23, 92–99. [Google Scholar] [CrossRef]
- Marine, D. Further observations and experiments on goiter in brook trout. J. Exp. Med. 1914, 19, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Delange, F. The disorders induced by iodine deficiency. J. Thyroid 1994, 4, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Vanderpas, J. Nutritional epidemiology and thyroid hormone metabolism. Ann. Rev. Nutr. 2006, 26, 293–322. [Google Scholar] [CrossRef] [Green Version]
- Woodall, A.N.; LaRoche, G. Nutrition of salmonid fishes. 11. Iodide requirements of chinook salmon. J. Nutr. 1964, 82, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Lall, S.P.; Paterson, W.D.; Hines, J.A.; Adams, N.J. Control of bacterial kidney disease in Atlantic salmon Salmo salar L. by dietary modification. J. Fish. Dis. 1985, 8, 113–124. [Google Scholar] [CrossRef]
- Julshamn, K.; Dahl, L.; Eckhoff, K. Determination of iodine in seafood by inductively coupled plasma/mass spectrometry. J. Assoc. Off. Anal. Chem. 2001, 84, 1976–1983. [Google Scholar] [CrossRef] [Green Version]
- Lall, S.P. Macro and trace elements in fish and shellfish. In Fish and Fishery Products: Composition, Nutritive Properties and Stability; Ruiter, A., Ed.; CAB International: Wallingford, UK, 1995; pp. 187–213. [Google Scholar]
- Teas, J.; Pino, S.; Critchley, A.; Braverman, L.E. Variability of iodine content in common commercially available edible seaweeds. Thyroid 2004, 14, 836–841. [Google Scholar] [CrossRef]
- Bell, J.M. Nutrients and toxicants in rapeseed meal: A review. J. Anim. Sci. 1984, 58, 996–1010. [Google Scholar] [CrossRef] [PubMed]
- Mawson, R.; Heaney, R.K.; Zdunczyk, Z.; Kozlowska, H. Rapeseed meal—Glucosinolates and their antinutritional effects. Part 4. Goitrogenicity and internal organs abnormalities in animals. Nahrung 1994, 38, 178–191. [Google Scholar] [CrossRef]
- Leatherland, J.F.; Hilton, J.W.; Slinger, S.J. Effects of thyroid hormone supplementation of canola meal-based diets on growth, and interrenal and thyroid gland physiology of rainbow trout (Salmo gairdneri). Fish Physiol. Biochem. 1987, 3, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Burel, C.; Boujard, T.; Kaushik, S.; Boeuf, G.; Mol, K.; van der Geyten, S.; Darras, V.; Kühn, E.; Pradet-Balade, B.; Quérat, B. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen. Comp. Endocrinol. 2001, 124, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Vincent, J.B. The biochemistry of chromium. J. Nutr. 2000, 130, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Scientific opinion on dietary reference values for chromium. EFSA J. 2014, 12, 1–27. [Google Scholar] [CrossRef]
- Hertz, Y.; Madar, Z.; Hepher, B.; Gertler, A. Glucose metabolism in the common carp (Cyprinus carpio L.): The effects of cobalt and chromium. Aquaculture 1989, 76, 255–267. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Lin, S.F. Effects of supplementation of dietary chromium and vanadium on the utilisation of different carbohydrates in tilapia, (Oreochromis niloticus x O. aureus). Aquaculture 1993, 110, 321–330. [Google Scholar] [CrossRef]
- Ng, W.K.; Wilson, R.P. Chromic oxide inclusion in the diet does not affect glucose utilization or chromium retention by channel catfish, Ictalurus punctatus. J. Nutr. 1997, 127, 2357–2362. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, F.; Miquel, A.G.; Martinez, R.; Serra, E.; Guinea, J.; Narbaiza, F.J.; Caseras, A.; Baanante, I.V. Dietary chromium oxide does not affect the utilization of organic compounds but can alter the utilization of mineral salts in gilthead sea bream Sparus aurata. J. Nutr. 1999, 129, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wen, H.; Jiang, M.; Yuan, D.; Gao, P.; Zhao, Y.; Wu, F.; Liu, W. Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus. Fish Physiol. Biochem. 2010, 36, 565–572. [Google Scholar] [CrossRef]
- Giri, A.F.; Sahu, N.P.; Saharan, N.; Dash, G. Effect of dietary supplementation of chromium on growth and biochemical parameters of Labeo rohita (Hamilton) fingerlings. Ind. J. Fish. 2014, 61, 73–81. [Google Scholar]
- Wang, J.; Ai, Q.; Mai, K.; Xu, H.; Zuo, R. Dietary chromium polynicotinate enhanced growth performance, feed utilization, and resistance to Cryptocaryon irritans in juvenile large yellow croaker (Larmichthys crocea). Aquaculture 2014, 432, 321–326. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Shy, S.M. Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia (Oreochromis niloticus x O. aureus). Aquaculture 1998, 161, 357–364. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Beveridge, M.M. Effects of dietary trivalent chromium on rainbow trout. Nutr. Rep. Int. 1982, 25, 49–56. [Google Scholar]
- Jain, K.K.; Sinha, A.; Srivastava, P.P.; Berendra, D.K. Chromium: An efficient growth enhancer in Indian major carp, Labeo rohita. J. Aquac. Trop. 1994, 9, 49–54. [Google Scholar]
- Calamari, D.; Solbé, J.F. Report on chromium and freshwater fish. In Water Quality for Freshwater Fish; Howells, G., Ed.; Gordon and Breach Science Publisher: Yverdon, Switzerland, 1994; pp. 1–30. [Google Scholar]
- Gatta, P.P.; Thomson, K.D.; Smullen, R.; Piva, A.; Testi, S.; Adams, A. Dietary organic chromium supplementation and its effect on the immune response of rainbow trout (Oncorhynchus mykiss). Fish. Shellfish Immun. 2001, 11, 371–382. [Google Scholar] [CrossRef]
- Reid, S.D. Molybdenum and chromium. Fish Physiol. 2012, 31A, 376–415. [Google Scholar]
- Bakshi, A.; Panigrahi, A.K. A comprehensive review on chromium induced alterations in fresh water fishes. Tox. Rep. 2018, 5, 440–447. [Google Scholar] [CrossRef]
- Lovell, R.T.; Limsuwan, T. Intestinal synthesis and dietary non-essentiality of vitamin B12 for Tilapia niloticus. Trans. Am. Fish. Soc. 1982, 111, 485–490. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Lung, C.Q. No dietary vitamin B12 required for juvenile tilapia Oreochromis niloticus × O. aureus. Comp. Biochem. Physiol. 1993, 105A, 147–150. [Google Scholar]
- Limsuwan, T.; Lovell, R.T. Intestinal synthesis and absorption of vitamin B12 in channel catfish. J. Nutr. 1981, 111, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Anadu, D.I.; Anozie, O.C.; Anthony, A.D. Growth responses of Tilapia zillii fed diets containing various levels of ascorbic acid and cobalt chloride. Aquaculture 1990, 88, 329–336. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wu, J.Y.; Shiau, S.Y. Dietary cobalt can promote gastrointestinal bacterial production of vitamin B12 in sufficient amounts to supply growth requirements of grouper, Epinephelus malabaricus. Aquaculture 2010, 302, 89–93. [Google Scholar]
- Baudin, J.P.; Veran, M.P.; Adam, C.; Garnier-LaPlace, J. Dietary uptake, retention and tissue distribution of 54Mn, 60Co and 137Cs in rainbow trout, Oncorhynchus mykiss Walbaum. Water Res. 2000, 34, 2869–2878. [Google Scholar]
- Blust, R. Cobalt. In Fish Physiology: Homeostasis and Toxicology of Essential Metals; Wood, C.M., Farrell, A.M., Brauner, C.J., Eds.; Elsevier/Academic Press: Cambridge, MA, USA, 2012; pp. 291–326. [Google Scholar]
- Kuenze, J.; Buhringer, H.; Harms, V. Accumulation of cobalt during embryonic development of rainbow trout (Salmo gairdneri Rich). Aquaculture 1978, 13, 61–66. [Google Scholar] [CrossRef]
- Eckhert, C.D.; Rowe, R.I. Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish. J. Trace Elem. Exp. Med. 1999, 12, 213–219. [Google Scholar] [CrossRef]
- Eckhert, C.D. Boron stimulates embryonic trout growth. J. Nutr. 1998, 128, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.D. Dietary boron: Progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 2012, 26, 157–160. [Google Scholar] [CrossRef]
- Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol. 2014, 28, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.P.; Wu, Y.; Carrano, C.J. Boron uptake, localization, and speciation in marine brown algae. Metallomics 2016, 8, 161–169. [Google Scholar]
- Verbost, P.M.; Rooij, J.; Flik, G.; Lock, R.A.C.; Wendelaar Bonga, S.E. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J. Exp. Biol. 1989, 145, 185–197. [Google Scholar] [CrossRef]
- Adamse, P.; Van der Fels-Klerx, H.J.I.; de Jong, J. Cadmium, lead, mercury and arsenic in animal feed and feed materials—Trend analysis of monitoring results. Food Addit. Contam. Part A 2017, 34, 1298–1311. [Google Scholar] [CrossRef]
- Francesconi, K.; Kuehnelt, D. Arsenic Compounds in the Environment. In Environmental Chemistry of Arsenic; Frankenberger, J., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 51–94. [Google Scholar]
- Ackley, K.; Bhymer, C.; Sutton, K.; Caruso, J. Speciation of arsenic in fish tissue using microwave-assisted extraction followed by HPLC–ICP–MS. J. Anal. Atom. Spectrom. 1999, 14, 845–885. [Google Scholar] [CrossRef]
- Camurati, J.R.; Salomone, V.N. Arsenic in edible macroalgae: An integrated approach. J. Toxicol. Environ. Health Part B 2019, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sele, V.; Sloth, J.J.; Lundebye, A.-K.; Larsen, E.H.; Berntssen, M.H.G.; Amlund, H. Arsenolipìds in marine oils and fats: A review of occurrence, chemistry and future research needs. Food Chem. 2012, 133, 618–630. [Google Scholar] [CrossRef]
- Cockell, K.A.; Hilton, J.W.; Bettger, W.J. Chronic toxicity of dietary disodium arsenate heptahydrate to juvenile rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol 1991, 21, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Erickson, R.J.; Mount, D.R.; Highland, T.L.; Russell Hockett, J.; Jenson, C.T. The relative importance of waterborne and dietborne arsenic exposure on survival and growth of juvenile rainbow trout. Aquat. Toxicol 2011, 104, 108–115. [Google Scholar] [CrossRef]
- Sloth, J.J.; Julshamn, K.; Lundebye, A.K. Total arsenic and inorganic arsenic content in Norwegian fish feed products. Aquac. Nutr. 2005, 11, 61–66. [Google Scholar] [CrossRef]
- Biancarosa, I.; Sele, V.; Belghit, I.; Ørnsrud, R.; Lock, E.-J.; Amlund, H. Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Addit. Contam. Part A 2019, 36, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.M.; Brix, K.V.; Wood, C.M. Mechanisms of Ca2+ uptake in freshwater and seawater-acclimated killifish, Fundulus heteroclitus, and their response to acute salinity transfer. J. Comp. Physiol. B 2019, 189, 47–60. [Google Scholar]
- Persson, P.; Sundell, K.; Björnsson, B.T.; Lundqvist, H. Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon. J. Fish Biol. 1998, 52, 334–349. [Google Scholar] [CrossRef]
- Kwon, H.; Hayashi, S.; Mugiya, Y. Vitellogenin induction by estradiol-17β in primary hepatocyte culture in the rainbow trout, Oncorhynchus mykiss. Comp. Biochem. Physiol. Part B Comp. Biochem. 1993, 104, 381–386. [Google Scholar] [CrossRef]
- Flik, G.; Verbost, P.M.; Bonga, S.E.W. Calcium transport processes in fishes. Fish Physiol. 1995, 12, 317–342. [Google Scholar]
- Lin, C.H.; Hwang, P.P. The control of calcium metabolism in zebrafish (Danio rerio). Int. J. Mol. Sci. 2016, 17, 1783. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.S.N. Cl−, Ca2+, and Zn2+ transport by fish gills: Retrospective review and prospective synthesis. J. Exp. Zool. 2002, 293, 264–283. [Google Scholar] [CrossRef]
- Sundell, K.; Bishop, J.E.; Bjornsson, B.T.; Norman, A.W. 1,25-Dihydroxyvitamin-D3 in the Atlantic cod-plasma-levels, a plasma binding component, and organ distribution of a high affinity receptor. Endocrinology 1992, 131, 2279–2286. [Google Scholar] [CrossRef]
- Graff, I.E.; Aksnes, L.; Lie, O. In vitro hydroxylation of vitamin D3 and 25-hydroxy vitamin D3 in tissues of Atlantic salmon Salmo salar, Atlantic mackerel Scomber scombrus, Atlantic halibut Hippoglossus hippoglossus and Atlantic cod Gadus morhua. Aquac. Nutr. 1999, 5, 23–32. [Google Scholar] [CrossRef]
- Fraser, D.R. Evolutionary biology: Mysteries of vitamin D in fish. In Vitamin D (Fourth Edition) Volume 1: Biochemistry, Physiology and Diagnostics; Feldman, D., Pike, J.W., Bouillon, R., Giovannucci, E., Hewison, M., Eds.; Academic Press: San Diego, CA, USA, 2018; Volume 1, pp. 13–27. [Google Scholar]
- Coloso, R.; King, K.; Fletcher, J.W.; Hendrix, H.A.; Subrmanyam, M.; Weiss, P.; Ferraris, R.A. Phosphorus utilization in rainbow trout (Oncorhynchus mykiss) fed practical diets and its consequences on effluent phosphorus levels. Aquaculture 2003, 220, 801–820. [Google Scholar] [CrossRef]
- Hernando, N.; Wagner, C.A. Mechanisms and regulation of intestinal phosphate absorption. Compreh. Physiol. 2018, 8, 1065–1090. [Google Scholar]
- Wagner, G.F. Stanniocalcin: Structure, function, and regulation. In The Biochemistry and Molecular Biology of Fishes; Hochachka, P.W., Mommsen, T.P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1993; pp. 419–434. [Google Scholar]
- Wagner, G.F.; Jaworski, E.M.; Haddad, M. Stanniocalcin in the seawater salmon: Structure, function, and regulation. Am. J. Physiol. 1998, 274, 117–118. [Google Scholar] [CrossRef]
- Potts, J.T. Parathyroid hormone: Past and present. J. Endocrinol. 2005, 187, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, P.M.; Renfro, J.L.; Power, D.M.; Canario, A.V. The parathyroid hormone family of peptides: Structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 679–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendalaar Bonga, S.E.; Flik, G. Calcium regulation in fish. In Aquaculture: Fundamental and Applied Research; Lahlou, B., Vitiello, P., Eds.; American Geophysical Union: Washington, DC, USA, 1995; pp. 47–59. [Google Scholar]
- Fenwick, J.C.; Vermette, M.G. Vitamin D3 and the renal handling of phosphate in American eels. Fish Physiol. Biochem. 1989, 177, 351–358. [Google Scholar] [CrossRef]
- Vielma, J.; Lall, S.; Koskela, J.; Mattila, P. Influence of low dietary cholecalciferol intake on phosphorus and trace element metabolism by rainbow trout (Oncorhynchus mykiss, Walbaum). Comp. Biochem. Physiol. Mol. Integr. Physiol. 1999, 122B, 117–125. [Google Scholar] [CrossRef]
- Fjelldal, P.G.; Lock, E.J.; Hansen, T.J.; Waagbø, R.; Wargelius, A.; Martens, L.G.; El-Mowafi, A.; Ørnsrud, R. Continous light induces bone resorption and affects vertebral morphology in Atlantic salmon (Salmo salar L.) fed a phosphorous deficient diet. Aquac. Nutr. 2012, 18, 610–619. [Google Scholar] [CrossRef]
- Hossain, M.A.; Yoshimatsu, T. Dietary calcium requirements of fishes. Aquac. Nutr. 2014, 20, 1–11. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamada, J. Effects of dietary calcium levels. Ca/P ratios, and calcium components on calcium absorption rate in carp. Bull. Fac. Fish. Hokkaido Univ. 1980, 31, 277–282. [Google Scholar]
- Ogino, C.; Takeda, H. Mineral requirements in fish. 3. Calcium and phosphorus requirements of carp. Bull. Jpn. Soc. Sci. Fish. 1976, 42, 793–799. [Google Scholar] [CrossRef]
- Robinson, E.; Rawles, S.D.; Yette, H.E.; Greene, L.W. An estimate of the dietary calcium requirement of fingerling Tilapia aurea reared in calcium-free water. Aquaculture 1984, 41, 389–393. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Effect of dietary calcium/phosphorus ratio upon growth, feed efficiency and blood serum Ca and P level in red sea bream. Bull. Jpn. Soc. Sci. Fish. 1973, 39, 343–348. [Google Scholar] [CrossRef]
- Lovell, R.T. Dietary phosphorus requirement of channel catfish (Ictalurus punctatus). Trans. Am. Fish. Soc. 1978, 107, 617–621. [Google Scholar] [CrossRef]
- Dougall, D.S.; Woods, L.C.; Douglass, L.W.; Soares, J.H. Dietary phosphorus requirement of juvenile striped bass Morone saxatilis. J. World Aquac. Soc. 1996, 27, 82–91. [Google Scholar] [CrossRef]
- Robinson, E.; Rawles, S.D.; Yette, H.E.; Greene, L.W. Dietary calcium requirement of channel catfish (Ictalurus punctatus), reared in calcium-free water. Aquaculture 1986, 53, 263–270. [Google Scholar] [CrossRef]
- Robinson, E.H.; LaBomascus, D.; Brown, P.B.; Linton, T.L. Dietary calcium and phosphorus requirements of Oreochromis aureus reared in calcium-free water. Aquaculture 1987, 64, 267–276. [Google Scholar] [CrossRef]
- Åsgård, T.; Shearer, K.D. Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L. Aquac. Nutr. 1997, 3, 17–23. [Google Scholar] [CrossRef]
- Ketola, H.G. Requirement of Atlantic salmon for dietary phosphorus. Trans. Am. Fish. Soc. 1975, 104, 548–551. [Google Scholar] [CrossRef]
- Vielma, J.; Lall, S.P. Phosphorus utilization by Atlantic salmon (Salmo salar) reared in freshwater is not influenced by higher dietary calcium intake. Aquaculture 1998, 160, 117–128. [Google Scholar] [CrossRef]
- Rodehutscord, M. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 200 g to supplements of dibasic sodium phosphate in a semipurified diet. J. Nutr. 1996, 126, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketola, H.G.; Richmond, M.E. Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents. Trans. Am. Fish. Soc. 1994, 123, 587–594. [Google Scholar] [CrossRef]
- Watanabe, T.; Murakami, A.; Takeuchi, L.; Nose, T.; Ogino, C. Mineral requirements in fish 9. Requirement of chum salmon held in fresh-water for dietary phosphorus. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.W.; Murai, T.; Campbell, C. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish. J. Nutr. 1973, 103, 766–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.P.; Robinson, E.H.; Gatlin, D.M., III; Poe, W.E. Dietary phosphorus requirement of channel catfish. J. Nutr. 1988, 112, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Borlongan, I.; Satoh, S. Dietary phosphorus requirement of juvenile milkfish, Chanos chanos Forsskal. Aquac. Res. 2001, 32, 26–32. [Google Scholar] [CrossRef]
- Carvalho, P.L.P.F.; Koch, J.F.A.; Cintra, F.T.; Fernandes, A.C., Jr.; Sartori, M.M.P.; Barros, M.; Padihla, P.D.; Pezzato, L.L. Available phosphorus as a reproductive performance enhancer for female Nile tilapia. Aquaculture 2018, 486, 202–209. [Google Scholar] [CrossRef]
- Yao, Y.F.; Jiang, M.; Wen, H.; Wu, F.; Liu, W.; Tian, J.; Yang, C.G. Dietary phosphorus requirement of GIFT strain of Nile tilapia Oreochromis niloticus reared in fresh water. Aquac. Nutr. 2014, 20, 273–280. [Google Scholar] [CrossRef]
- Xie, D.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Liu, H.; Xie, S. Dietary available phosphorus requirement for on-growing gibel carp (Carassius auratus gibelio var CAS III). Aquac. Nutr. 2017, 23, 1104–1112. [Google Scholar] [CrossRef]
- Liang, J.J.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y. Dietary available phosphorus requirement of juvenile grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2012, 18, 181–188. [Google Scholar] [CrossRef]
- Sun, Y.; Li, B.; Zhang, X.; Chen, M.; Tang, H.; Yu, X. Dietary available phosphorus requirement of crucian carp, Carassius auratus. Aquac. Nutr. 2018, 24, 1494–1501. [Google Scholar] [CrossRef]
- Nwanna, L.C.; Adebayo, I.A.; Omitoyin, B.O. Phosphorus requirements of African catfish, Clarias gariepinus, based on broken-line regression analysis methods. ScienceAsia 2009, 35, 227–233. [Google Scholar] [CrossRef]
- Yu, H.R.; Zhang, Q.; Xiong, D.M.; Huang, G.Q.; Li, W.Z.; Liu, S.W. Dietary available phosphorus requirement of juvenile walking catfish. Clarias Leather. Aquac. Nutr. 2012, 19, 483–490. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Yang, H.J.; Gong, S.Y.; Luo, Z.; Yu, D.H.; Yan, J.L.; Yang, X.F. Dietary phosphorus requirement of juvenile Chinese sucker Myxocyprinus asiaticus. Aquac. Nutr. 2011, 17, 159–169. [Google Scholar] [CrossRef]
- Brown, M.L.; Jaramillo, F., Jr.; Gatlin, D.M., III. Dietary phosphorus requirement of juvenile sunshine bass, Morone chrysops × M. saxatilis. Aquaculture 1993, 113, 355–363. [Google Scholar] [CrossRef]
- Shen, H.M.; Chen, X.R.; Chen, W.Y.; Lin, S.M.; Chen, Y.J.; Zhang, L.; Luo, L. Influence of dietary phosphorus levels on growth, body composition, metabolic response and antioxidant capacity of juvenile snakehead (Channa argus × Channa maculata). Aquac. Nutr. 2016, 23, 662–670. [Google Scholar] [CrossRef]
- Araújo, J.G.; Guimarães, I.G.; Mota, C.S.; Paula, F.G.; Café, M.B.; Pádua, D.M.C. Dietary available phosphorus requirement for tambaqui, Colossoma macropomum, juveniles based on growth, haematology and bone mineralization. Aquac. Nutr. 2016, 23, 822–832. [Google Scholar] [CrossRef]
- Davis, D.A.; Robinson, E.H. Dietary phosphorus requirement of juvenile red drum Sciaenops ocellatus. J. World Aquac. Soc. 1987, 18, 129–136. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Effect of dietary phosphorus level on chemical composition of red sea bream. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Pimentel Rodrigues, A.; Oliva Teles, A. Phosphorus requirements of gilthead sea bream (Sparus aurata L.) juveniles. Aquac. Res. 2001, 32, 15–161. [Google Scholar] [CrossRef]
- Shao, Q.; Ma, J.; Xu, Z.; Hu, W.; Xu, J.; Xie, S. Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture 2008, 277, 92–100. [Google Scholar] [CrossRef]
- Roy, P.K.; Lall, S.P. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L). Aquaculture 2003, 221, 451–468. [Google Scholar] [CrossRef]
- Zhang, C.; Mai, K.; Ai, Q.; Zhang, W.; Duan, Q.; Tan, B.; Ma, H.; Xu, W.; Linfu, Z.; Wang, X. Dietary phosphorus requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 2006, 255, 201–209. [Google Scholar] [CrossRef]
- Olivia-Teles, A.; Pimentel-Rodrigues, A. Phosphorus requirement of European sea bass (Dicentrarchus labrax L.) juveniles. Aquac. Res. 2004, 35, 636–642. [Google Scholar] [CrossRef]
- Ye, C.X.; Liu, Y.J.; Tian, L.X.; Mai, K.S.; Du, Z.Y.; Yang, H.J.; Niu, J. Effect of dietary calcium and phosphorus on growth, feed efficiency, mineral content and body composition of juvenile grouper, Epinephelus coioides. Aquaculture 2006, 255, 263–271. [Google Scholar] [CrossRef]
- Mai, K.; Zhang, C.; Ai, Q.; Duan, Q.; Xu, W.; Zhang, L.; Liufu, Z.; Tan, B. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 2006, 251, 346–353. [Google Scholar] [CrossRef]
- Choi, S.M.; Kim, K.W.; Kang, Y.J.; Wang, X.J.; Kim, J.W.; Yoo, G.Y.; Bai, S.C. Re-evaluation of the phosphorus requirement of juvenile olive flounder Paralichthys olivaceus and the bioavailability of various inorganic phosphorus sources. J. World Aquac. Soc. 2005, 36, 217–222. [Google Scholar] [CrossRef]
- Uyan, O.; Koshio, S.; Ishikawa, M.; Uyan, S.; Ren, T.; Yokoyama, S.; Komilus, F.C.; Michael, F.R. Effects of dietary phosphorus and phospholipid level on growth, and phosphorus deficiency signs in juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 2007, 267, 44–54. [Google Scholar] [CrossRef]
- Wang, X.J.; Choi, S.; Park, S.; Yoo, G.; Kim, K.; Kang, J.C.; Bai, S.C. Optimum dietary phosphorus level of juvenile Japanese flounder Paralichthys olivaceus reared in the recirculating system. Fish. Sci. 2005, 71, 168–173. [Google Scholar] [CrossRef]
- Antony Jesu Prabhu, P.; Schrama, J.W.; Kaushik, S.J. Quantifying the dietary phosphorus requirement of fish—A meta-analytic approach. Aquac. Nutr. 2013, 19, 243–249. [Google Scholar] [CrossRef]
- National-Research-Council, N. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Skonberg, D.I.; Yogev, L.; Hardy, R.W.; Dong, F.M. Metabolic response to dietary phosphorus intake in rainbow trout (Oncorhynchus mykiss). Aquaculture 1997, 157, 11–24. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Hardy, R.W.; Roberts, R.J. The pathology of phosphorus deficiency in fish—A review. J. Fish. Dis 2004, 27, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Lall, S.P.; Lewis-McCrea, L.M. Role of nutrients in skeletal metabolism and pathology in fish-An overview. Aquaculture 2007, 267, 3–19. [Google Scholar] [CrossRef]
- Baeverfjord, G.; Antony Jesu Prabhu, P.; Fjelldal, P.G.; Albrektsen, S.; Hatlen, B.; Denstadli, V.; Waagbø, R. Mineral nutrition and bone health in salmonids. Rev. Aquac. 2019, 11, 740–765. [Google Scholar] [CrossRef] [Green Version]
- Drábiková, L.; Fjelldal, P.G.; De Clercq, A.M.N.; Morken, T.; McGurk, C.; Witten, P.E. Vertebral column adaptations in juvenile Atlantic salmon Salmo salar, L. as a response to dietary phosphorus. Aquaculture 2021, 541, 736776. [Google Scholar] [CrossRef]
- Fjelldal, P.G.; Hansen, T.; Breck, O.; Ørnsrud, R.; Lock, E.J.; Waagbø, R.; Wargelius, A.; Eckhard Witten, P. Vertebral deformities in farmed Atlantic salmon (Salmo salar L.) – etiology and pathology. J. Appl. Ichthyol. 2012, 28, 433–440. [Google Scholar] [CrossRef]
- Witten, P.E.; Fjelldal, P.G.; Huysseune, A.; McGurk, C.; Obach, A.; Owen, M.A.G. Bone without minerals and its secondary mineralization in Atlantic salmon (Salmo salar): The recovery from phosphorus deficiency. J. Exp. Biol. 2019, 222, 188763. [Google Scholar] [CrossRef] [Green Version]
- Witten, P.E.; Owen, M.A.; Fontanillas, R.; Soenens, M.; McGurk, C.; Obach, A. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: The uncoupling of bone formation and mineralization. J. Fish Biol. 2016, 88, 690–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lall, S.P. Digestibility, metabolism and excretion of dietary phosphorous in fish. In Nutritional Strategies and Aquaculture Waste; Cowey, C.B., Cho, C.Y., Eds.; University of Guelph: Guelph, ON, Canada, 1991; pp. 21–36. [Google Scholar]
- Cheryan, M.; Rackis, J.J. Phytic acid interactions in food systems. Crit. Rev. Food Sci. 1980, 13, 297–335. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, W.; Yang, C.; Yang, Y.; Diana, J.; Yakupitiyage, A.; Luo, Z.; Li, D. Review: Application of microbial phytase in fish feed. Enzym. Microb. Technol. 2007, 40, 497–507. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [Green Version]
- Lemos, D.E.L.; Tacon, A.G.J. Use of phytases in fish and shrimp feeds: A review. Rev. Aquac. 2017, 9, 266–282. [Google Scholar] [CrossRef]
- Vohra, A.; Satanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotech. 2003, 23, 29–60. [Google Scholar] [CrossRef]
- Verlhac-Trichet, V.; Vielma, J.; Dias, J.; Rema, P.; Santigosa, E.; Wahli, T.; Vogl, K. The efficacy of a novel microbial 6-phytase expressed in Aspergillus oryzae on the performance and phosphorus utilization of cold- and warm-water fish: Rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2014, 45, 367–379. [Google Scholar] [CrossRef]
- Albrektsen, S.; Lock, E.J.; Bæverfjord, G.; Pedersen, M.; Krasnov, A.; Takle, H.; Veiseth-Kent, E.; Ørnsrud, R.; Waagbø, R.; Ytteborg, E. Utilization of H2SO4-hydrolysed phosphorus from herring bone byproducts in feed for Atlantic salmon (Salmo salar) 0+ postsmolt. Aquac. Nutr. 2017, 24, 348–365. [Google Scholar] [CrossRef]
- Ogino, C.; Takeuchi, L.; Takeda, H.; Watanabe, T. Availability of dietary phosphorus in carp and rainbow trout. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 1527–1532. [Google Scholar] [CrossRef]
- Watanabe, K.; Satoh, S.; Takeuchi, T. Availability of minerals in fish meal. Asian Fish. Soc. 1988, 1, 175–195. [Google Scholar]
- Köprücü, K.; Özdemir, Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 2005, 250, 308–316. [Google Scholar] [CrossRef]
- Houston, A.H. Erythrocytic magnesium in freshwater fishes. Magnesium 1985, 4, 106–128. [Google Scholar] [PubMed]
- Bijvelds, M.; Velden, J.; Kolar, Z.I.; Flik, G. Magnesium transport in freshwater teleosts. J. Exp. Biol. 1998, 201, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Cowey, C.B.; Knox, D.; Adron, J.W.; George, S.; Pirie, B. The production of renal calcinosis by magnesium deficiency in rainbow trout (Salmo gairdneri). Br. J. Nutr. 1977, 38, 127–135. [Google Scholar] [CrossRef]
- Shearer, K.D.; Åsgård, T. The effect of water-borne magnesium on the dietary magnesium requirement of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 1992, 9, 387–392. [Google Scholar] [CrossRef]
- Dabrowska, H.; Meyer-Burgdorff, K.; Gunther, K.D. Magnesium status in freshwater fish, common carp (Cyprinus carpio, L.) and the dietary protein-magnesium interaction. Fish Physiol. Biochem. 1991, 9, 165–172. [Google Scholar] [CrossRef]
- Oikari, A.O.J.; Rankin, J.C. Renal excretion of magnesium in a freshwater teleost, Salmo gairdneri. J. Exp. Biol. 1985, 117, 319–333. [Google Scholar] [CrossRef]
- Hickman, C.P.; Trump, B.F. The Kidney; Academic Press: New York, NY, USA, 1969; Volume 1, pp. 91–239. [Google Scholar]
- El-Zibdeh, M.; Ide, K.; Furuichi, M. Effects of the deletion of mg or fe from semi purified diets on growth and efficiency of feed utilization of Yellow croaker Nibea albiflora. J. Fac. Agric. Kyushu Univ. 1996, 40, 391–397. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary Mg. Bull. Jpn. Soc. Fish. 1979, 45, 57–60. [Google Scholar] [CrossRef]
- Ogino, C.; Takashima, F.; Chiou, J.Y. Requirement of rainbow trout for dietary magnesium. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1105–1108. [Google Scholar] [CrossRef]
- Van Der Velden, J.A.; Kolar, Z.I.; Flik, G. Intake of magnesium from water by freshwater tilapia fed on a low-Mg diet. Comp. Biochem. Physiol. 1991, 99A, 103–105. [Google Scholar] [CrossRef]
- Dabrowska, H.; Meyer-Burgdorff, K.; Gunther, K.D. Interaction between dietary protein and magnesium level in tilapia (Oreochromis niloticus). Aquaculture 1989, 76, 277–291. [Google Scholar] [CrossRef]
Fish Species | Copper a | Iron e | ||||
---|---|---|---|---|---|---|
mg kg−1 | Main Response Criteria | Reference | mg kg−1 | Main Response Criteria | Reference | |
Atlantic salmon | 5–10 | Liver Cu | [50] | 60–100 | H f, liver Fe | [51,52] |
60 | Weight gain, H f, Liver Fe | [52] | ||||
Rainbow trout | 3 | Body, vertebral, liver Cu | [53] | |||
Coho salmon | 5.1–5.5 | WG, body, vertebrae Cu | [48] | |||
Channel catfish | 5 | Liver Cu–Zn SOD | [54] | 30 | WG, H f | [55] |
Yellow catfish | 3.1–4.2 | WG b, Cu retention | [56] | 55.7 | [57] | |
Common carp | 3 c | Body, vertebral, liver Cu | [53] | 147.4 | Serum Fe | [58] |
Gibel carp | 202 | Hematocrit, liver Fe | [59] | |||
Grass carp | 4.7–5 | WG, plasma ceruplasmin activity | [60] | |||
Hybrid tilapia | 4 | WG, body Cu retention | [61] | 150–160 g 85 e | Weight gain, hemoglobin, liver Fe | [62] |
Japanese eel | 170 | [63] | ||||
Asian stinging catfish | 5.2–5.7 | WG, plasma ceruplasmin activity | [64] | |||
Russian sturgeon | 7–8 | WG, whole body Cu, liver Cu–Zn SOD, serum ceruloplasmin activity | [65] | |||
Red sea bream | 150 | [66] | ||||
Tongue sole | 11–12 | WG, serum Cu–Zn SOD activity | [67] | |||
Malabar grouper | 4–6 | WG, liver Cu–Zn SOD activity, body Cu retention | [68] | 100 h | Liver Fe | [69] |
2–3 d | WG, liver Cu–Zn SOD activity, body Cu retention | [70] | ||||
Yellow croaker | 3.4–7 | Serum Cu–Zn SOD activity, body and vertebral Cu | [71] | |||
Cobia | 80.5–94.7 e 71.3–75.1 i | WG, serum catalase activity | [72] |
Fish Species | mg kg−1 | Main Response Criteria | Reference |
---|---|---|---|
Atlantic salmon | 15 7.5–10.5 | Body and vertebral Mn Body Mn | [127] [128] |
Rainbow trout | 12–13 | WG b | [53] |
Channel catfish | 2.4 | WG | [129] |
Yellow catfish | 5.5–6.4 | WG, vertebral Mn, liver Mn-SOD c | [130] |
Common carp | 12–13 | Growth rate | [53] |
Gibel carp | 13.8 | WG, body and vertebral Mn | [131] |
Hybrid tilapia | 7 | Body Mn, liver Mn-SOD | [132] |
Grouper d | 15 | Body and vertebral Mn | [123] |
Yellow croaker | 16.4 | Growth rate, liver Mn-SOD | [133] |
Cobia | 21.7–24.9 10.5–15.4 e | WG, body and vertebral Mn Specific growth rate, liver Mn-SOD | [134] [125] |
Fish Species | Requirement, mg kg−1 | Selenium Source | Main Response Criteria | Reference |
---|---|---|---|---|
Atlantic salmon | 0.27 a(0.65) | Na2SeO3 or SeMet b | Body and tissue Se | [169] |
Rainbow trout | 0.15–0.38 | Na2SeO3 | Plasma GPx | [146] |
Coho salmon | 0.39–0.43 | Na2SeO3 | WG, whole body, liver Se, | [168] |
Channel catfish | 0.25 0.28, 0.17 0.09, 0.12 0.11, 0.12 | Na2SeO3 Na2SeO3 SeMet Se-yeast | Liver and plasma GPx WG c, GPx WG, GPx WG, GPx | [170] [171] |
Gibel carp | 1.18 0.73–1.19 | SeMet SeMet | WG, liver GPx, tissue Se Liver Se, liver SOD, T-AOC | [172] [173] |
Nile tilapia | 0.57 | SeMet | WG, liver GPx | [174] |
Largemouth bass | 1.60–1.85 | Na2SeO3 | Liver GPx | [175] |
Gilthead sea bream | 0.94 | Na2SeO3 | Growth, liver Se | [176] |
Black sea bream | 0.86 | Se-polysaccharide d | Liver SOD and GPx | [177] |
Malabar grouper | 0.7 0.9 0.98 | SeMet SeMet Na2SeO3 | WG, Se retention WG, flesh Se | [178] [179] |
Cobia | 0.8 | SeMet | Liver and serum GPx, whole body Se | [180] |
Fish Species | Requirement, mg kg−1 | Main Response Criteria | Reference |
---|---|---|---|
Atlantic salmon | 37–67 | Body and serum Zn | [230] |
Rainbow trout | 15–30 30.1 | WG b, vertebral Zn WG | [231] [232] |
Channel catfish | 20 | WG, vertebral Zn | [233] |
Yellow catfish | 17.1–20.9 | WG, PER c | [234] |
Common carp | 15 | WG, vertebral Zn | [235] |
Jian carp | 43.2–48.7 d | WG, serum Zn | [236] |
Grass carp | 55 | WG, whole body, vertebral, scale and tissue Zn | [237] |
Indian major carp | 47.8–52.9 | WG, vertebral, scale serum and liver Zn | [238] |
Hybrid tilapia | 26–29 105–115 e | WG, whole body Zn WG, whole body and plasma Zn | [239] [240] |
Blue tilapia | 20 | Scale and vertebral Zn | [241] |
Nile tilapia | 30 37.2–52.1 | WG, vertebral and serum Zn WG, bone Zn | [242] [243] |
Russian sturgeon | 28.2–34.6 | WG and liver Zn | [244] |
Red drum | 20 | WG, serum and bone Zn | [245] |
Blunt snout sea bream | 52.1 f, 86.2 f | WG, whole body Zn | [246] |
Malabar grouper | 28.9–33.7 | WG, vertebral and scale Zn | [247] |
Cobia | 42.9 | WG, vertebral Zn | [248] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. https://doi.org/10.3390/ani11092711
Lall SP, Kaushik SJ. Nutrition and Metabolism of Minerals in Fish. Animals. 2021; 11(9):2711. https://doi.org/10.3390/ani11092711
Chicago/Turabian StyleLall, Santosh P., and Sadasivam J. Kaushik. 2021. "Nutrition and Metabolism of Minerals in Fish" Animals 11, no. 9: 2711. https://doi.org/10.3390/ani11092711
APA StyleLall, S. P., & Kaushik, S. J. (2021). Nutrition and Metabolism of Minerals in Fish. Animals, 11(9), 2711. https://doi.org/10.3390/ani11092711