Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Housing, and Feeding
2.2. Data Collection and Chemical Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Sugiharto, S. A review of filamentous fungi in broiler production. Ann. Agric. Sci. 2019, 64, 1–8. [Google Scholar] [CrossRef]
- Semjon, B.; Marcinčáková, D.; Koréneková, B.; Bartkovský, M.; Nagy, J.; Turek, P.; Marcinčák, S. Multiple factorial analysis of physicochemical and organoleptic properties of breast and thigh meat of broilers fed a diet supplemented with humic substances. Poult. Sci. 2020, 99, 1750–1760. [Google Scholar] [CrossRef]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Marcinčák, S.; Klempová, T.; Bartkovský, M.; Marcinčáková, D.; Zdolec, N.; Popelka, P.; Mačanga, J.; Čertík, M. Effect of fungal solid-state fermented product in broiler chicken nutrition on quality and safety of produced breast meat. BioMed Res. Int. 2018, 2018, 2609548. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Rehman, A.; Abd El-Hack, M.E.; Saeed, M.; Khan, F.; Akhtar, M.; Swellum, A.A.; Saadeldin, I.M.; Alowaimer, A.N. Growth, carcass traits, cecal microbial counts, and blood chemistry of meat-type quail fed diets supplemented with humic acid and black cumin seeds. Asian Australas. J. Anim. Sci. 2018, 31, 1930–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, H.M.A.; Mohamed, M.A.; Youssef, A.W.; Hassan, E.R. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian Australas. J. Anim. Sci. 2010, 23, 1348–1353. [Google Scholar] [CrossRef]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.d.L.; López-Hernández, L.H.; Reis-de Souza, T.C.; López-García, Y.; Zavala-Franco, A.; Téllez-Isaias, G. Effect of the Addition of Humic Substances as Growth Promoter in Broiler Chickens Under Two Feeding Regimens. Animals 2019, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, Z.; Esmaielzadeh, L.; Karimi-Torshizi, M.A.; Seidavi, A.; Olivares, J.; Rojas, S.; Salem, A.Z.M.; Khusro, A.; López, S. The effect of earthworm (Eisenia foetida) meal with vermi-humus on growth performance, hematology, immunity, intestinal microbiota, carcass characteristics, and meat quality of broiler chickens. Livest. Sci. 2017, 202, 74–81. [Google Scholar] [CrossRef]
- Nagaraju, R.; Reddy, B.S.; Gloridoss, R.; Suresh, B.N.; Ramesh, C. Effect of dietary supplementation of humic acids on performance of broilers. Indian J. Anim. Sci. 2017, 84, 447–452. [Google Scholar]
- Zhernov, Y.V.; Konstantinov, A.I.; Zherebker, A.; Nikolaev, E.; Orlov, A.; Savinykh, M.I.; Kornilaeva, G.V.; Karamov, E.V.; Perminova, I.V. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environ. Res. 2020, 193, 110312. [Google Scholar] [CrossRef]
- Vašková, J.; Vaško, L.; Mudroň, P.; Haus, M.; Žatko, D.; Krempaská, K.; Stupák, M. Effect of humic acids on lead poisoning in bones and on a subcellular level in mitochondria. Environ. Sci. Pollut. Res. Int. 2018, 27, 40679–40689. [Google Scholar] [CrossRef]
- Ozturk, E.; Ocak, N.; Turan, A.; Erener, G.; Altop, A.; Cankaya, S. Performance, carcass, gastrointestinal tract and meat quality traits, and selected blood parameters of broilers fed diets supplemented with humic substances. J. Sci. Food Agric. 2012, 92, 59–65. [Google Scholar] [CrossRef]
- Jaďuttová, I.; Marcinčáková, D.; Bartkovský, M.; Semjon, B.; Harčarová, M.; Nagyová, A.; Váczi, P.; Marcinčák, S. Effect of dietary humic substances on fattening performance, carcass yield, biochemical blood parameters and bone mineral profile of broiler chickens. Acta Vet. Brno 2019, 88, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Visscher, C.; Hankel, J.; Nies, A.; Keller, B.; Galvez, E.; Strowig, T.; Keller, C.; Breves, G. Performance, fermentation characteristics and composition of the microbiome in the digest of piglets kept on a feed with humic acid-rich peat. Front. Vet. Sci. 2019, 6, 29. [Google Scholar] [CrossRef]
- Vašková, J.; Patlevič, P.; Žatko, D.; Vaško, L.; Marcinčák, S. Impact of humic acids on trace element content under different conditions. Folia Vet. 2015, 59, 159–164. [Google Scholar]
- Panda, A.K.; Sridhar, K.; Lavanya, G.; Prakash, B.; Rama Rao, S.V.; Raju, M.V.L.N. Effect of dietary incorporation of fish oil on performance, carcass characteristics, meat fatty acid profile and sensory attributes of meat in broiler chickens. Anim. Nutr. Feed Technol. 2016, 16, 417–425. [Google Scholar] [CrossRef]
- Tang, M.Y.; Ma, Q.G.; Chen, X.D.; Ji, C. Effects of dietary metabolizable energy and lysine on carcass characteristics and meat quality in Arbor Acres broilers. Asian Australas. J. Anim. Sci. 2007, 20, 1865–1873. [Google Scholar] [CrossRef]
- Disetlhe, A.R.P.; Marume, U.; Mlambo, V.; Hugo, A. Effects of dietary humic acid and enzymes on meat quality and fatty acid profiles of broiler chickens fed canola-based diets. Asian Australas. J. Anim. Sci. 2019, 32, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Wideman, N.; O’Bryan, C.A.; Crandall, P.G. Factors affecting poultry meat colour and consumer preferences-A review. Worlds Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Ozturk, E.; Ocak, N.; Coskun, I.; Turhan, S.; Erener, G. Effects of humic substances supplementation provided through drinking water on performance, carcass traits and meat quality of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 78–85. [Google Scholar] [CrossRef]
- Marcinčáková, D.; Mačanga, J.; Nagy, J.; Marcinčák, S.; Popelka, P.; Vašková, J.; Jaďuttová, I.; Mellen, M. Effect of supplementation of the diet with humic acids on growth performance and carcass yield of broilers. Folia Vet. 2015, 59, 165–168. [Google Scholar]
- COBB-VANTRESS. COBB Broiler Management Guide, 1st ed.; Cobb-Vantress: Guapiaçu, Brasil, 2013; pp. 1–73. [Google Scholar]
- AOAC International. Official Methods of Analysis of the Association of Analytical Chemists International; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 0935584781. [Google Scholar]
- Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-Thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules 2017, 22, 1988. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- McLaren, K. XIII—The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. J. Soc. Dye. Colour. 1976, 92, 338–341. [Google Scholar] [CrossRef]
- ISO. Sensory Analysis General Guidance for the Design of Test Rooms. ISO 8589: 2007/Amd 1:2014; International Organization for Standardization: Geneva, Switzerland, 2014; Volume 8589. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: H.F. An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.5; R Foundation for Statistical Computing: Vienna, Austria, 2007. [Google Scholar]
- Pagès, J. Multiple Factor Analysis by Example Using R, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–272. [Google Scholar]
- Semjon, B.; Král, M.; Pospiech, M.; Reitznerová, A.; Maľová, J.; Tremlová, B.; Dudriková, E. Application of multiple factor analysis for the descriptive sensory evaluation and instrumental measurements of bryndza cheese as affected by vacuum packaging. Int. J. Food Prop. 2018, 21, 1508–1522. [Google Scholar] [CrossRef] [Green Version]
- Chapman, K.W.; Lawless, H.T.; Boor, K.J. Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Characterisation of Ultrapasteurized Milk. J. Dairy Sci. 2001, 84, 12–20. [Google Scholar] [CrossRef]
- Kaya, C.A.; Tuncer, S.D. The effects of humates on fattening performance, carcass quality and some blood parameters of broilers. J. Anim. Vet. Adv. 2009, 8, 281–284. [Google Scholar]
- Fejerčáková, A.; Vašková, J.; Bača, M.; Vaško, L.; Marcinčák, S.; Hertelyová, Z.; Petrášová, D.; Guothová, L. Effect of dietary microbially produced gamma-linolenic acid and plant extracts on enzymatic and non-enzymatic antioxidants in various broiler chicken organs. J. Anim. Physiol. Anim. Nutr. 2014, 98, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Khil’ko, S.L.; Efimova, I.V.; Smirnova, O.V. Antioxidant Properties of Humic Acids from Brown Coal. Solid Fuel Chem. 2011, 45, 367–371. [Google Scholar] [CrossRef]
- Trckova, M.; Lorencova, A.; Babak, V.; Neca, J.; Ciganek, M. The effect of leonardite and lignite on the health of weaned piglets. Res. Vet. Sci. 2018, 119, 134–142. [Google Scholar] [CrossRef]
- Karadirek, Ş.; Kanmaz, N.; Balta, Z.; Demirçivi, P.; Üzer, A.; Hızal, J.; Apak, R. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin–Ciocalteu, noble metal nanoparticle-and solid–liquid extraction-based methods. Talanta 2016, 153, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Han, R.; Huang, Z.; Luo, L.; Cao, D.; Zhang, S. Relationship between molecular components and reducing capacities of humic substances. ACS Earth Space Chem. 2018, 2, 330–339. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Hejna, M.; Sotira, S.; Caprarulo, V.; Reggi, S.; Pilu, R.; Miragoli, F.; Callegari, M.L.; Panseri, S.; Rossi, L. Evaluation of leonardite as a feed additive on lipid metabolism and growth of weaned piglets. Anim. Feed Sci. Technol. 2020, 266, 114519. [Google Scholar] [CrossRef]
- Vašková, J.; Patlevič, P.; Žatko, D.; Marcinčák, S.; Vaško, L.; Krempaská, K.; Nagy, J. Effects of humic acids on poultry under stress conditions. Slov. Vet. Res. 2018, 55, 245–253. [Google Scholar]
- Panea, B.; Ripoll, G. Quality and Safety of Meat Products. Foods 2020, 9, 803. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, X.L.; Zhou, G.H.; Wang, P.; Jiang, N.N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci. 2015, 93, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Luo, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; He, J.; Yu, J.; Chen, J.; Chen, D. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhao, X.H.; Chen, X.Y.; Yang, L.; Geng, Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poult. Sci. 2017, 96, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Castellini, C.; Naspetti, S.; Piasentier, E.; Girolami, A.; Braghieri, A. Consumer preference for chicken breast may be more affected by information on organic production than by product sensory properties. Poult. Sci. 2013, 92, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Escobedo del Bosque, C.I.; Altmann, B.A.; Ciulu, M.; Halle, I.; Jansen, S.; Nolte, T.; Weigend, S.; Mörlein, D. Meat Quality Parameters and Sensory Properties of One High-Performing and Two Local Chicken Breeds Fed with Vicia faba. Foods 2020, 9, 1052. [Google Scholar] [CrossRef] [PubMed]
Components | HS | HSA |
---|---|---|
Humic acids in dry matter, % | min. 65.00 | min. 60.00 |
Free humic acids in dry matter, % | min. 60.00 | min. 50.00 |
Fulvic acids, % | min. 5.00 | min. 5.00 |
Formates, mg/kg | - | 32,400 |
Calcium, mg/kg | 42,278 | 51,100 |
Sodium, mg/kg | 7111 | 6818 |
Magnesium, mg/kg | 5111 | 4855 |
Potassium, mg/kg | 903 | 874 |
Ferrum, mg/kg | 19,046 | 18,094 |
Cuprum, mg/kg | 15.00 | 14.25 |
Zinc, mg/kg | 37.00 | 35.15 |
Manganese, mg/kg | 142.00 | 135 |
Cobalt, mg/kg | 1.24 | 1.18 |
Selenium, mg/kg | 1.67 | 1.59 |
Vanadium, mg/kg | 42.10 | 40.00 |
Molybdenum, mg/kg | 2.70 | 2.57 |
Crude fibre, g/kg | 24.3 | 22.4 |
Particle size, μm | <100 | <100 |
Humidity, % | max. 21 | max. 15 |
pH | 5.8 | 5.4 |
Components | C | HS0.7 | HSA0.7 |
---|---|---|---|
Corn grain, % | 44 | 43.7 | 43.7 |
Wheat grain, % | 26.2 | 25.8 | 25.8 |
Soybean meal, % | 20 | 20 | 20 |
Dehulled sunflower meal, % | 4 | 4 | 4 |
Rapeseed oil, % | 0 | 0 | 0 |
Lard, % | 2 | 2 | 2 |
Limestone, % | 0.95 | 0.95 | 0.95 |
Monocalcium phosphate, % | 1.6 | 1.6 | 1.6 |
Salt, % | 0.25 | 0.25 | 0.25 |
Amino acids, vitamins, trace elements, % | 1 | 1 | 1 |
Dietary natural humic substances, % | - | 0.7 | - |
Acidified humic substances, % | - | - | 0.7 |
Dry matter, g/kg | 1000.00 | 1000.00 | 1000.00 |
Crude protein, g/kg | 208.07 | 207.70 | 207.91 |
Crude fat, g/kg | 52.20 | 51.20 | 51.77 |
Crude fibre, g/kg | 45.05 | 45.90 | 46.60 |
Starch, g/kg | 497.52 | 487.53 | 487.26 |
Ca, g/kg | 7.76 | 8.70 | 8.80 |
P, g/kg | 5.15 | 5.18 | 5.53 |
Metabolisable energy, MJ/kg | 13.87 | 13.66 | 13.68 |
Parameters | C | HS0.7 | HSA0.7 | Pooled SEM | p Value |
---|---|---|---|---|---|
Final weight, g | 2319.00 | 2395.50 | 2387.07 | 25.29 | 0.142 |
Total feed consumption, g | 3658.57 | 3696.03 | 3726.17 | 73.27 | 0.814 |
Total weight gain, g | 2272.10 | 2348.83 | 2338.03 | 25.21 | 0.145 |
Feed conversion | 1.61 | 1.57 | 1.59 | 0.02 | 0.317 |
Carcass yield, % | 73.81 | 75.00 | 76.56 | 0.82 | 0.069 |
Breast without bone, % | 30.51 | 31.97 | 30.53 | 0.91 | 0.440 |
Thighs with bone, % | 28.34 | 28.17 | 29.07 | 0.66 | 0.611 |
Wings, % | 10.24 a | 8.85 b | 8.90 b | 0.26 | 0.001 |
Hull, % | 26.52 | 25.64 | 24.92 | 0.75 | 0.321 |
Physicochemical Parameters | C | HS0.7 | HSA0.7 | Pooled SEM | p Value |
---|---|---|---|---|---|
Dry matter, % | 25.46 a | 25.31 a | 24.39 b | 0.20 | 0.017 |
Water content, % | 74.54 a | 74.69 a | 75.61 b | 0.20 | 0.017 |
Fat, % | 2.94 a | 2.28 b | 2.53 b | 0.08 | 0.003 |
Total protein, % | 21.48 a | 22.03 a | 20.76 b | 0.17 | 0.001 |
Parameter | Storage | C | HS0.7 | HSA0.7 | Pooled SEM | p Value | ||
---|---|---|---|---|---|---|---|---|
D × S | D | S | ||||||
pH | 1st day | 5.96 a | 5.80 b | 5.85 Ab | 0.02 | 0.020 | <0.001 | 0.022 |
7th day | 5.96 a | 5.79 b | 5.75 Bb | 0.02 | ||||
MDA, mg/kg | 1st day | 0.23 B | 0.20 B | 0.21 | 0.02 | 0.125 | 0.013 | <0.001 |
7th day | 0.34 Aa | 0.28 Aab | 0.24 b | 0.02 | ||||
AA, % | 1st day | 42.44 Ab | 46.20 Aa | 45.84 Aa | 0.51 | 0.432 | <0.001 | <0.001 |
7th day | 31.89 Bb | 35.73 Ba | 36.48 Ba | 0.49 |
Colorimetric Parameters | Storage | C | HS0.7 | HSA0.7 | Pooled SEM | p Value | ||
---|---|---|---|---|---|---|---|---|
D × S | D | S | ||||||
L* | 1st day | 56.49 b | 58.05 Bab | 58.12 Ba | 0.57 | 0.474 | <0.001 | <0.001 |
(lightness) | 7th day | 57.76 b | 59.97 Aa | 60.54 Aa | 0.34 | |||
a* | 1st day | 16.70 a | 14.56 b | 14.37 b | 0.35 | 0.872 | <0.001 | 0.081 |
(redness) | 7th day | 17.09 a | 15.22 b | 14.71 b | 0.29 | |||
b* | 1st day | 10.91 A | 10.77 | 11.13 | 0.59 | 0.283 | 0.152 | 0.007 |
(yellowness) | 7th day | 8.77 Bb | 9.84 ab | 10.63 a | 0.47 | |||
C* | 1st day | 20.12 a | 18.34 b | 18.22 b | 0.36 | 0.408 | <0.001 | 0.271 |
(chroma) | 7th day | 19.28 | 18.24 | 18.23 | 0.33 | |||
h | 1st day | 33.15 A | 35.70 | 37.81 | 1.80 | 0.457 | <0.001 | 0.005 |
(hue angle) | 7th day | 27.22 Bb | 32.23 ab | 35.91 a | 1.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudák, M.; Semjon, B.; Marcinčáková, D.; Bujňák, L.; Naď, P.; Koréneková, B.; Nagy, J.; Bartkovský, M.; Marcinčák, S. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals 2021, 11, 1087. https://doi.org/10.3390/ani11041087
Hudák M, Semjon B, Marcinčáková D, Bujňák L, Naď P, Koréneková B, Nagy J, Bartkovský M, Marcinčák S. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals. 2021; 11(4):1087. https://doi.org/10.3390/ani11041087
Chicago/Turabian StyleHudák, Marek, Boris Semjon, Dana Marcinčáková, Lukáš Bujňák, Pavel Naď, Beáta Koréneková, Jozef Nagy, Martin Bartkovský, and Slavomír Marcinčák. 2021. "Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat" Animals 11, no. 4: 1087. https://doi.org/10.3390/ani11041087
APA StyleHudák, M., Semjon, B., Marcinčáková, D., Bujňák, L., Naď, P., Koréneková, B., Nagy, J., Bartkovský, M., & Marcinčák, S. (2021). Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals, 11(4), 1087. https://doi.org/10.3390/ani11041087