Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethical Animal Research
2.2. Animals
2.3. Sample Collection
2.4. Serum Biochemical Parameters
2.5. RT-qPCR Analyses
2.6. Statistical Analysis
3. Results
3.1. Serum Biochemical Parameters
3.2. RT-qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| PCV | plasma cell volume |
| TG | triglycerides |
| Chol | cholesterol |
| AST | aspartate aminotransferase |
| GGT | γ-glutamyltransferase |
| ALP | alkaline phosphatase |
| Tbil | total bilirubin |
| LDH | lactate dehydrogenase |
| CK | creatine kinase |
| Alb | albumin |
| TPs | total proteins |
| P | phosphorus |
| Ca2+ | calcium |
| Mg | magnesium |
| Na+ | sodium |
| K− | potassium |
| Cl | chloride |
| SPE | serum protein electrophoresis |
| SAA | serum amyloid A |
| RT-qPCR | real-time qPCR |
| IL-4 | Interleukin-4 |
| IL-6 | Interleukin-6 |
| IL-10 | Interleukin-10 |
| IL-1β | Interleukin-1β |
| OCT1 | Octamer-Binding Transcription Factor 1, https://www.genecards.org/cgi-bin/carddisp.pl?gene=POU2F1 |
| BCL11A | https://www.uniprot.org/uniprot/Q9H165 |
References
- Allaam, M.A.; Elseady, Y.; Nayel, M.H.; El-sify, A.; Salama, A.; Hassan, H.Y.; Hassan, M.M.; Kamar, A. Physiological and hemato-chemical evaluation of thoroughbred race horse after exercise. IJAVMS 2014, 8, 81–93. [Google Scholar]
- McGowan, C. Clinical pathology in the racing horse; the role of clinical pathology in assessing fitness and performance in the racehorse. Vet. Clin. N. Am. Equine Pract. 2008, 24, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Casella, S.; Giannetto, C.; Messina, V.; Monteverde, V.; Caola, G.; Guttadauro, S. Hemathological and haematobiochemical responses to training and competition in standardbred horses. Comp. Cl. Pathol. 2010, 19, 95–101. [Google Scholar] [CrossRef]
- Hassan, H.Y.; Aly, M.A.; ELseady, Y.M.; Nayel, M.A.; Elsify, A.M.; Salama, A.A.; Hassan, M.S.; Elbarody, E.F.; Kamar, A.B. The Effect of Race in the Clinical, Hematological and Biochemical Biomarkers in Thoroughbred Horses. Alexandria J. Vet. Sci. 2015, 46, 161–169. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Giannetto, C.; Monteverde, V.; Ferrantelli, V. Exercise-induced Modifications on Haematochemical and Electrophoretic Parameters During 1600 and 2000 Meters Trot Races in Standardbred Horses. J. Appl. Anim. Res. 2009, 35, 131–135. [Google Scholar] [CrossRef]
- Snow, D.H.; Mackenzie, G. Effect of Training on some Metabolic Changes associated with Submaximal Endurance Exercise in the Horse. Equine Vet. J. 1977, 9, 226–230. [Google Scholar] [CrossRef]
- Jablonska, E.M.; Ziolkowska, S.M.; Gill, J.; Szykula, R.; Faff, J. Changes in some haematological and metabolic indices in young horses during the first year of jump-training. Equine Vet. J. 1991, 23, 309–311. [Google Scholar] [CrossRef]
- Pedersen, B.K. The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays Biochem. 2006, 42, 105–117. [Google Scholar]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef]
- Cappelli, K.; Felicetti, M.; Capomaccio, S.; Nocelli, C.; Silvestrelli, M.; Verini-Supplizi, A. Effect of training status on immune defence related gene expression in Thoroughbred: Are genes ready for the sprint? Vet. J. 2013, 195, 373–376. [Google Scholar] [CrossRef]
- Horohov, D.W.; Sinatra, S.T.; Chopra, R.K.; Jankowitz, S.; Betancourt, A.; Bloomer, R.J. The Effect of Exercise and Nutritional Supplementation on Proinflammatory Cytokine Expression in Young Racehorses During Training. J. Equine Vet. Sci. 2012, 32, 805–815. [Google Scholar] [CrossRef]
- Miglio, A.; Antognoni, M.T.; Miniscalco, B.; Caivano, D.; Lepri, E.; Birettoni, F.; Mangili, V. Acute undifferentiated leukaemia in a dog. Aust. Vet. J. 2014, 92, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Spada, E.; Antognoni, M.T.; Proverbio, D.; Ferro, E.; Mangili, V.; Miglio, A. Haematological and biochemical reference intervals in adult Maine Coon cat blood donors. J. Feline Med. Surg. 2015, 17, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, K.; Felicetti, M.; Capomaccio, S.; Spinsanti, G.; Silvestrelli, M.; Verini Supplizi, A. Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 2008, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–143. 2019. Available online: https://CRAN.R-project.org/package=nlme (accessed on 25 August 2019).
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 1.9.12. 2019. Available online: https://CRAN.R-project.org/package=psych (accessed on 25 August 2019).
- Rossdales Laboratories, Reference Ranges. Available online: https://www.rossdales.com/laboratories/reference-ranges (accessed on 25 August 2019).
- Miglio, A.; Morelli, C.; Maresca, C.; Felici, A.; Moscati, L.; Maria, T.A. Biochemical reference intervals for the Italian Heavy Draft horse. Comp. Clin. Pathol. 2019, 28, 841–851. [Google Scholar] [CrossRef]
- Miglio, A.; Morelli, C.; Maresca, C.; Felici, A.; Di Gianbattista, A.; Antognoni, M.T. Serum protein concentrations and protein fractions in clinically healthy Italian Heavy Draft Horses using agarose gel electrophoresis. Vet. Clin. Pathol. 2019, 48, 677–682. [Google Scholar] [CrossRef]
- Moghetti, P.; Bacchi, E.; Brangani, C.; Donà, S.; Negri, C. Metabolic Effects of Exercise. Front. Horm. Res. 2016, 47, 44–57. [Google Scholar]
- Geor, R.J.; McCutcheon, L.J.; Hinchcliff, K.W.; Sams, R.A. Training-induced alterations in glucose metabolism during moderate-intensity exercise. Equine Vet. J. 2002, 34, 22–28. [Google Scholar] [CrossRef]
- Fragala, M.S.; Bi, C.; Chaump, M.; Kaufman, H.W.; Kroll, M.K. Associations of aerobic ad strength exercise with clinical laboratory test values. PLoS ONE 2017, 12, 1–22. [Google Scholar] [CrossRef]
- Li, G.; Lee, P.; Mori, N.; Yamamoto, I.; Arai, T. Long term intensive exercise training leads to a higher plasma malate/lactate dehydrogenase (M/L) ratio and increased level of lipid mobilization in horses. Vet. Res. Commun. 2012, 36, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Hargreaves, M. Exercise, Glut4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed]
- Pösö, A.R.; Viljanen-Tarifa, E.; Soveri, T.; Oksanen, H.E. Exercise-induced transient hyperlipidemia in the racehorse. J. Vet. Med. Ser. A 1989, 36, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, M.; Mihara, M. IL-6 and lipid metabolism. Inflamm. Regen. 2011, 31, 325–333. [Google Scholar] [CrossRef]
- Capomaccio, S.; Cappelli, K.; Spinsanti, G.; Mencarelli, M.; Muscettola, M.; Felicetti, M.; Supplizi, A.; Bonifazi, M. Athletic humans and horses: Comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest. BMC Physiol. 2011, 11, 3. [Google Scholar] [CrossRef]
- Kitaoka, Y.; Endo, Y.; Mukai, K.; Aida, H.; Hiraga, A.; Hatta, H. Muscle glycogen breakdown and lactate metabolism during intensive exercise in Thoroughbred horses. J. Phys. Fit. Sports Med. 2014, 3, 451–456. [Google Scholar] [CrossRef]
- Nalbandian, M.; Takeda, M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology 2016, 5, 38. [Google Scholar] [CrossRef]
- Weaver, C.W.; Heaney, R.H. Influence of physical activity on calcium and bone. In Calcium in Human Health (Nutrition and Health), 1st ed.; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 227–246. [Google Scholar]
- Makhro, A.; Haider, T.; Wang, J.; Bogdanov, N.; Steffen, P.; Wagner, C.; Meyer, T.; Gassmann, M.; Hecksteden, A.; Kaestner, L.; et al. Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca2+ handling, and red cell function in athletes and untrained subjects. Cell. Calcium 2016, 60, 235–244. [Google Scholar] [CrossRef]
- Piccione, G.; Arfuso, F.; Marafioti, S.; Giannetto, C.; Giudice, E.; Fazio, F. Different training schedules influence serum electrophoretic protein profile in the athletic horse. J. Equine Vet. Sci. 2015, 35, 856–859. [Google Scholar] [CrossRef]
- Tothova, C.; Nagy, O.; Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine: A review. Vet. Med. (Praha) 2016, 61, 475–496. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.D.; Żmigrodzka, M.; Winnicka, A.; Miśkiewicz, A.; Strzelec, K.; Cywińska, A. Serum amyloid A in equine health and disease. Equine Vet. J. 2019, 51, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szczepaniak, J.; Szarska, E.; Winnicka, A.; Cywińska, A. Changes in Serum Amyloid A (SAA) Concentration in Arabian Endurance Horses During First Training Season. Animals 2019, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Karacabey, K.; Saygin, O.; Ozmerdivenli, R.; Zorba, E.; Godekmerdan, A.; Bulut, V. The effects of exercise on the immune system and stress hormones in sportswomen. Neuroendocrinol. Lett. 2005, 26, 361–366. [Google Scholar]
- Shah, P.C.; Bertolino, E.; Singh, H. Using altered specificity Oct-1 and Oct-2 mutants to analyze the regulation of immunoglobulin gene transcription. EMBO J. 1997, 16, 7105–7117. [Google Scholar] [CrossRef]
- Gasparello, J.; Fabbri, E.; Bianchi, N.; Breveglieri, G.; Zuccato, C.; Borgatti, M.; Gambari, R.; Finotti, A. BCL11A mRNA Targeting by miR-210: A Possible Network Regulating γ-Globin Gene Expression. Int. J. Mol. Sci. 2017, 18, 2530. [Google Scholar] [CrossRef]



| February | March (T-30) | April (T0) | May (T30) | June (T60) | July (T90) |
|---|---|---|---|---|---|
| 15 min Walk 10 min Trot Rest 10 min Trot Walk | 15 min Walk 10 min Trot 3 min Canter | 15 min Walk 10 min Trot 6 min Canter every Tuesday: 1 min Gallop | 15 min Walk 10 min Trot 6 min Canter every Tuesday: 2 min Gallop | 15 min Walk 10 min Trot 6 min Canter every Tuesday: 3 min Gallop | 15 min Walk 10 min Trot 6 min Canter every Tuesday: 4 min Gallop |
| Gene Name | Accession ID | Amplicon Length (bp) | Primer Forward | Primer Reverse | Reference |
|---|---|---|---|---|---|
| IL-4 | NM_001082519.1 | 75 | AAGAATGCCTGAGCGGACTG | TGGCTTCATTCACAGTACAGCA | This work |
| IL-10 | XM_014739408.1 | 107 | TTCAGCAGGGTGAAGACTTTCT | AAGGCTTGGCAACCCAGGTA | This work |
| Oct1 | XM_023640479.1 | 165 | GATTGAGGGCTTGAACCGC | ACCAAACACGAATCACCTCC | This work |
| BCL11A | XM_023619062.1 | 87 | TTTGCCCCAAACAGGAACAC | ATGCACTGGTGAATGGCTGT | This work |
| IL-6 | NM_001082496 | 98 | TCAAGGGTGAAAAGGAAAACATC | GGTGGTTACTTCTGGATTCTTC | [8] |
| IL-1β | NM_001082526 | 135 | AGAACCTGTACCTGTCTTGTG | CGTTGCCCTTGATTTCCATC | [8] |
| HPRT1 | AY372182 | 121 | AATTATGGACAGGACTGAACGG | ATAATCCAGCAGGTCAGCAAAG | [9] |
| SDHA | DQ402987 | 91 | GAGGAATGGTCTGGAATACTG | GCCTCTGCTCCATAAATCG | [9] |
| Parameters | T-30 | T0 | T30 | T60 | T90 | RIs of Two-Year-Old Thoroughbred Horses in Training [17,18,19] | RIs of Adult Thoroughbred Horses at Rest [17,18,19] |
|---|---|---|---|---|---|---|---|
| PCV (%) | 35 ± 2.5 | 38 ± 3.1 | 37 ± 3.3 | 35 ± 3.09 | 36 ± 2.2 | 34–45 | 38–50 |
| Gluc (mg/dL) | 104 ± 14.6 | 98 ± 9.3 | 95 ± 11.6 | 78 ± 9.5 | 75 ± 6.9 | 61–106 | 75–115 |
| TG (mg/dL) | 15 ± 5.5 | 19 ± 5.8 | 19 ± 6.9 | 22 ± 10.6 | 19 ± 5.8 | 23–230 | 4–44 |
| Chol (mg/dL) | 92.2 ± 16.0 | 94.8 ± 17.1 | 90.1 ± 17.2 | 90.5 ± 15.3 | 83.2 ± 14.4 | 77–128 | 75–150 |
| Urea (mg/dL) | 22 ± 4.7 | 19 ± 4.2 | 25 ± 3.9 | 23 ± 5.8 | 24 ± 4.0 | 11–20 | 21.4–51.4 |
| Creat (mg/dL) | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.2–1.8 | 1.2–1.9 |
| Tbil (mg/dL) | 2.2 ± 0.7 | 2.5 ± 0.8 | 2.064 ± 0.4 | 3.2 ± 0.6 | 2.7 ± 0.6 | 0.8–2.3 | 1–2 |
| AST (IU/L) | 501 ± 211 | 477 ± 262 | 474 ± 221 | 489 ± 213 | 453 ± 148 | 308–820 | 243–327 |
| GGT (IU/L) | 22 ± 10.6 | 27 ± 18.0 | 23 ± 10.1 | 23 ± 14.0 | 22 ± 7.8 | 12–40 | 4.3–13.4 |
| ALP (IU/L) | 591 ± 149 | 619 ± 133 | 569 ± 141 | 561 ± 99 | 520 ± 129 | 293–672 | 143–395 |
| CK (IU/L) | 364 ± 176 | 412 ± 387 | 337 ± 137 | 347 ± 156 | 392 ± 196 | 166–572 | 76–154 |
| LDH (IU/L) | 735 ± 183 | 686 ± 195 | 777 ± 146 | 920 ± 146 | 953 ± 168 | 569–917 | 477–813 |
| P (mg/dL) | 4.8 ± 0.7 | 4.893 ± 0.5 | 4.9 ± 0.7 | 4.6 ± 0.8 | 4.9 ± 0.7 | 3.4–5.0 | 3.1–5.6 |
| Mg (mg/dL) | 1.7 ± 1.1 | 1.9 ± 0.0 | 2.0 ± 0.1 | 1.9 ± 0.3 | 1.9 ± 0.1 | 1.5–2.2 | 2.2–2.8 |
| Na (mmol/L) | 140 ± 4.4 | 139 ± 4.9 | 136 ± 4.4 | 137 ± 2.7 | 139 ± 1.9 | 130–142 | 132–146 |
| K (mmol/L) | 3.7 ± 0.3 | 3.6 ± 0.4 | 3.9 ± 0.2 | 3.5 ± 0.5 | 3.6 ± 0.4 | 2.8–4.2 | 2.4–4.7 |
| CL (mmol/L) | 98.7 ± 2.0 | 99.5 ± 8.0 | 98.4 ± 1.2 | 99.6 ± 1.2 | 99.7 ± 1.8 | 99–109 | 99–109 |
| Ca (mg/dL) | 11.8 ± 0.6 | 12.5 ± 0.9 | 12.3 ± 0.8 | 12.5 ± 0.3 | 13.1 ± 0.6 | 11.6–13.2 | 11.2–13.6 |
| Lac (mmol/L) | 0.7 ± 0.1 | 1.2 ± 0.5 | 1.4 ± 0.4 | 2.6 ± 0.6 | 1.4 ± 0.5 | 1.11–1.78 | 1.11–1.78 |
| Alb (g/dL) | 3.8 ± 0.2 | 3.9 ± 0.2 | 3.8 ± 0.2 | 3.8 ± 0.2 | 3.5 ± 0.2 | 3.5–3.9 | 2.6–3.7 |
| TP (g/dL) | 5.9 ± 0.2 | 6.2 ± 0.3 | 6.4 ± 0.2 | 6.3 ± 0.2 | 6.5 ± 0.3 | 5.9–6.6 | 5.2–7.9 |
| α1-glob (g/dL) | 0.11 ± 0.02 | - | - | - | 0.14 ± 0.31 | 0.06–0.14 | 0.06–0.7 |
| α2-glob (g/dL) | 0.77 ± 0.11 | - | - | - | 0.97 ± 0.02 | 0.54–0.78 | 0.31–1.31 |
| β1-glob (g/dL) | 0.55 ± 0.14 | - | - | - | 0.75 ± 0.08 | 0.57–0.85 | 0.4–1.58 |
| β2-glob (g/dL) | 0.39 ± 0.10 | - | - | - | 0.56 ± 0.12 | 0.18–0.68 | 0.29–0.89 |
| γ-glob (g/dL) | 0.87 ± 0.14 | - | - | - | 1.18 ± 0.14 | 0.37–0.82 | 0.55–1.9 |
| A/G ratio | 1.12 ± 0.2 | 0.8 ± 0.1 | 0.6–1.46 | 0.6–1.46 | |||
| SAA(mg/L) | 1.9 ± 2.9 | 10.2 ± 11.1 | 0.0–20.0 | 0.0–20.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miglio, A.; Cappelli, K.; Capomaccio, S.; Mecocci, S.; Silvestrelli, M.; Antognoni, M.T. Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season. Animals 2020, 10, 317. https://doi.org/10.3390/ani10020317
Miglio A, Cappelli K, Capomaccio S, Mecocci S, Silvestrelli M, Antognoni MT. Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season. Animals. 2020; 10(2):317. https://doi.org/10.3390/ani10020317
Chicago/Turabian StyleMiglio, Arianna, Katia Cappelli, Stefano Capomaccio, Samanta Mecocci, Maurizio Silvestrelli, and Maria Teresa Antognoni. 2020. "Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season" Animals 10, no. 2: 317. https://doi.org/10.3390/ani10020317
APA StyleMiglio, A., Cappelli, K., Capomaccio, S., Mecocci, S., Silvestrelli, M., & Antognoni, M. T. (2020). Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season. Animals, 10(2), 317. https://doi.org/10.3390/ani10020317

