SARS-CoV-2 Pandemic: Not the First, Not the Last
Abstract
:1. Introduction
2. Bats as Reservoir of Emerging Viruses
3. Drivers for Human Spill-Over
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorusso, A.; Calistri, P.; Petrini, A.; Savini, G.; Decaro, N. Novel Coronavirus (SARS-CoV-2) Epidemic: A Veterinary Perspective. Vet. Ital. 2020, 1–6. [Google Scholar] [CrossRef]
- Decaro, N.; Lorusso, A. Novel Human Coronavirus (SARS-CoV-2): A Lesson from Animal Coronaviruses. Vet. Microbiol. 2020, 108693. [Google Scholar] [CrossRef]
- WHO—World Health Organization. WHO Director-General’s Remarks at the Media Briefing on 2019-NCoV—11 February 2020. 2020, pp. 1–5. Available online: https://www.who.int/dg/speeches/detail/who-director-general-sremarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 (accessed on 14 January 2021).
- Gonzalez, J.M.; Gomez-Puertas, P.; Cavanagh, D.; Gorbalenya, A.E.; Enjuanes, L. A comparative sequence analysis to revise the current taxonomy of the family coronaviridae. Arch. Virol. 2003, 148, 2207–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICTV—International Committee on Taxonomy of Viruses. Virus Taxonomy: 2019 Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 14 January 2021).
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus disease 2019—COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Daszak, P.; Taubenberger, J.K. Escaping Pandora’s Box—Another Novel Coronavirus. N. Engl. J. Med. 2020, 382, 1293–1295. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Summary of Probable SARS Cases with onset of Illness from 1 November 2002 to 31 July 2003. Available online: https://www.who.int/csr/sars/country/table2004_04_21/en/ (accessed on 14 January 2021).
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- WHO—EMRO, World Health Organization—Eastern Mediterranean Regional Office. MERS Situzation Update. Available online: http://applications.emro.who.int/docs/EMCSR254E.pdf?ua=1 (accessed on 14 January 2020).
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.; Liu, D.; Yang, J.; Holmes, E.C.; et al. Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr. Biol. 2020, 30, 2196–2203.e3. [Google Scholar] [CrossRef]
- Lam, T.T.Y.; Jia, N.; Zhang, Y.W.; Shum, M.H.; Jiang, J.F.; Zhu, H.C.; Tong, Y.G.; Shi, Y.X.; Ni, X.B.; Liao, Y.S.; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillanc 2020, 25, 2001005. [Google Scholar] [CrossRef]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Mitchell, P.K.; Calle, P.P.; Bartlett, S.L.; McAloose, D.; Killian, M.L.; Yuan, F.; Fang, Y.; Goodman, L.B.; Fredrickson, R.; et al. Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection. Microbiol. Resour. Announc. 2020, 9, e00468-20. [Google Scholar] [CrossRef]
- Decaro, N.; Balboni, A.; Bertolotti, L.; Martino, P.A.; Mazzei, M.; Mira, F.; Pagnini, U.; the Board of the Italian Association of Veterinary Infectivologists (ANIV). SARS-CoV-2 infection in dogs and cats: Facts and speculations. Front. Vet. Sci. 2021, 8, 619207. [Google Scholar] [CrossRef]
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 2020, 1–11, Advance online publication. [Google Scholar] [CrossRef]
- Richter, H.V.; Cumming, G.S. First application of satellite telemetry to track African straw-coloured fruit bat migration. J. Zool. 2008, 172–176. [Google Scholar] [CrossRef]
- Lorusso, A.; Teodori, L.; Leone, A.; Marcacci, M.; Mangone, I.; Orsini, M.; Capobianco-Dondona, A.; Cammà, C.; Monaco, F.; Savini, G. A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy. Infect. Genet. Evol. 2015, 30, 55–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef]
- Schountz, T.; Baker, M.L.; Butler, J.; Munster, V. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front. Immunol. 2020, 8, 1098. [Google Scholar] [CrossRef]
- Subudhi, S.; Rapin, N.; Misra, V. Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses 2020, 11, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turmelle, A.S.; Olival, K.J. Correlates of viral richness in bats (order Chiroptera). EcoHealth 2009, 6, 522–539. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L.; Leach, M.; Waldman, L.; Macgregor, H.; Fooks, A.R.; Jones, K.E.; Restif, O.; Dechmann, D.; Hayman, D.T.; Baker, K.S.; et al. A framework for the study of zoonotic disease emergence and its drivers: Spillover of bat pathogens as a case study. Philosophical transactions of the Royal Society of London. Ser. B Biol. Sci. 2012, 367, 2881–2892. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, M.; Baker, M.L.; Daszak, P.; De Barro, P.; Eskew, E.A.; Godde, C.M.; Harwood, T.D.; Herrero, M.; Hoskins, A.J.; Johnson, E.; et al. Opinion: Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA 2020, 117, 3888–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020—Key Findings. Rome. 2020. Available online: http://www.fao.org/3/ca8753en/CA8753EN.pdf (accessed on 14 January 2021). [CrossRef]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef]
- NASA—U.S National Aeronautics and Space Administration. Sub-regional Overview, Africa Environment Outlook 2, United Nations Environment Programme. In Deforestation Guin. Parrot’s Beak Area; 2006. Available online: https://earthobservatory.nasa.gov/images/6450/deforestation-in-guineas-parrots-beak-area (accessed on 14 January 2021).
- Shah, S. Pandemic: Tracking Contagions, from Cholera to Ebola and Beyond; Picador: New York, NY, USA, 2016; p. 290. [Google Scholar]
- Schoepp, R.J.; Rossi, C.A.; Khan, S.H.; Goba, A.; Fair, J.N. Undiagnosed acute viral febrile illnesses, Sierra Leone. Emerg. Infect. Dis. 2014, 20, 1176–1182. [Google Scholar] [CrossRef]
- Worobey, M.; Gemmel, M.; Teuwen, D.E.; Haselkorn, T.; Kunstman, K.; Bunce, M.; Muyembe, J.J.; Kabongo, J.M.; Kalengayi, R.M.; Van Marck, E.; et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 2008, 455, 661–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO—World Health Organisation. In Proceedings of the Declaration of Alma-Ata International Conference on Primary Health Care, Alma-Ata, USSR, 6–12 September 1978. Available online: https://www.who.int/publications/almaata_declaration_en.pdf?ua=1 (accessed on 10 January 2021).
- G20 Leaders’ Declaration: Shaping an Interconnected World. Hamburg, Germany on 7–8 July 2017. Available online: http://europa.eu/rapid/press-release_STATEMENT-17-1960_en.htm (accessed on 6 January 2021).
- Mancusi, C.; Grassi, G.; Borghi, C.; Ferri, C.; Muiesan, M.L.; Volpe, M.; Iaccarino, G.; SARS-RAS Investigator Group. Clinical Characteristics and Outcomes of Patients with COVID-19 Infection: The Results of the SARS-RAS Study of the Italian Society of Hypertension. High Blood Press. Cardiovasc. Prev. 2021, 1–7. [Google Scholar] [CrossRef]
- Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Fonager, J.; Rasmussen, M.; Mundbjerg, K.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Alfaro-Núñez, A.; et al. SARS-CoV-2 Transmission between Mink (Neovison vison) and Humans, Denmark. Emerg. Infect. Dis. 2020, 27, 547, Epub ahead of print. [Google Scholar] [CrossRef]
- WHO—World Health Organisation. Seventy-third World Health Assembly. 19 May 2020, Agenda Item 3: COVID-19 Response. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA73/A73_R1-en.pdf (accessed on 15 January 2021).
- Calistri, P.; Iannetti, S.; Danzetta, M.L.; Narcisi, V.; Cito, F.; Di Sabatino, D.; Bruno, R.; Sauro, F.; Atzeni, M.; Carvelli, A.; et al. The Components of ‘One World—One Health’ Approach. Transbound. Emerg. Dis. 2013, 60, 4–13. [Google Scholar] [CrossRef] [Green Version]
Strain | Complete Genome | 1ab | S | RBD | 3a | E | M | 6 | 7a | 7b | 8 | N | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RmYN02 | 93.3% | 97.2% | 71.9% | 61.3% | 96.4% | 98.7% | 94.8% | 96.8% | 96.2% | 92.4% | 45.8% | 97.3% | 99.1% |
RaTG13 | 96.1% | 96.5% | 92.9% | 85.3% | 96.3% | 99.6% | 95.4% | 98.4% | 95.6% | 99.2% | 97.0% | 96.9% | 99.1% |
SL-CoVZC45 | 87.6% | 89.0% | 75.1% | 62.1% | 87.8% | 98.7% | 93.4% | 95.2% | 88.8% | 94.7% | 88.5% | 91.1% | 99.1% |
SL-CoVZXC21 | 87.4% | 88.7% | 74.6% | 60.6% | 88.9% | 98.7% | 93.4% | 95.2% | 89.1% | 95.5% | 88.5% | 91.2% | / |
Month of Detection | Country | Type of Location | Animal Species | Observed Clinical Signs |
---|---|---|---|---|
Mar 2020 | China (Hong Kong) | residential household | Cat (Felis catus) | No clinical signs |
Mar 2020 | China (Hong Kong) | residential household | Dog (Canis lupus familiaris) | No clinical signs |
Mar 2020 | Belgium | residential household | Cat (Felis catus) | Various clinical signs |
Apr 2020 | New York (US) | zoo | 3 lions (Panthera leo), 2 Malayan tigers (Panthera tigris jacksoni), 2 Amur tigers (Panthera tigris altaica) | Coughing |
Jul 2020 | South Africa | zoo | Puma (Puma concolor) | No clinical signs |
Oct 2020 | Texas (US) | residential household | Cat (Felis catus) | No clinical signs |
Oct 2020 | Utah (US) | wild | American mink (Neovison vison) | |
Oct 2020 | Tennessee (US) | zoo | Malayan tiger (Panthera tigris jacksoni) | 3 tigers showing mild coughing, lethargy, and decrease in appetite. |
Nov 2020 | Slovenia | residential household | Ferret (Mustela putorius furo) | Gastrointestinal clinical signs |
Nov 2020 | Florida (US) | residential household | Dog (Canis lupus familiaris) | History of respiratory issues |
Nov 2020 | Pennsylvania (US) | residential household | Dog (Canis lupus familiaris) | History of respiratory issues |
Nov 2020 | Texas (US) | residential household | Cat (Felis catus) | 3 cats: 2 with no clinical signs and 1 showing tremors, vomiting, and sneezing |
Nov 2020 | Kentucky (US) | zoo | Snow leopards (Panthera uncia) | mild respiratory clinical signs, including dry cough or wheeze. |
Nov 2020 | Wisconsin (US) | residential household | Cat (Felis catus) | clinical signs of lethargy, sinus congestion, wheezing, sneezing, and nasal discharge |
Dec 2020 | Kansas (US) | residential household | Dog (Canis lupus familiaris) | nasal discharge |
Dec 2020 | Spain | zoo | Lion (Panthera leo) | 4 lions with mild clinical signs |
Jan 2021 | San Diego (US) | Zoo | Gorillas (Gorilla gorilla) | 2 gorillas with coughing |
Month of First Detection | Country |
---|---|
Apr 2020 | the Netherlands |
Jun 2020 | Denmark |
Jun 2020 | Spain |
Aug 2020 | Utah (US) |
Oct 2020 | Italy |
Oct 2020 | Sweden |
Nov 2020 | France |
Nov 2020 | Greece |
Nov 2020 | Lithuania |
Nov 2020 | Poland |
Nov 2020 | Wisconsin (US) |
Nov 2020 | Canada |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calistri, P.; Decaro, N.; Lorusso, A. SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms 2021, 9, 433. https://doi.org/10.3390/microorganisms9020433
Calistri P, Decaro N, Lorusso A. SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms. 2021; 9(2):433. https://doi.org/10.3390/microorganisms9020433
Chicago/Turabian StyleCalistri, Paolo, Nicola Decaro, and Alessio Lorusso. 2021. "SARS-CoV-2 Pandemic: Not the First, Not the Last" Microorganisms 9, no. 2: 433. https://doi.org/10.3390/microorganisms9020433
APA StyleCalistri, P., Decaro, N., & Lorusso, A. (2021). SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms, 9(2), 433. https://doi.org/10.3390/microorganisms9020433