Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures
Abstract
:1. Introduction
2. Material and Methods
2.1. Microorganisms, Growth and Culture Conditions
2.2. Shake-Flask Cultivation
2.3. Methods of Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Microbial Lipid Production by Y. lipolytica Strain in Shake-Flask Cultivation
3.2. Composition of Microbial Lipids Produced by Y. lipolytica Strains
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fakas, S. Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng. Life Sci. 2017, 17, 292–302. [Google Scholar] [CrossRef]
- Ochsenreither, K.; Gluck, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Liu, L.; Zeng, A.P.; Wei, D. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. Bioresour. Technol. 2017, 245, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Bouchedja, D.N.; Danthine, S.; Kar, T.; Fickers, P.; Boudjellal, A.; Delvigne, F. Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells' growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour. Bioprocess. 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dourou, M.; Mizerakis, P.; Papanikolaou, S.; Aggelis, G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl. Microbiol. Biotechnol. 2017, 101, 7213–7226. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Erten, H. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Nicaud, J.-M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016, 61, 40–50. [Google Scholar] [CrossRef]
- Cavallo, E.; Charreau, H.; Cerrutti, P.; Foresti, M.L. Yarrowia lipolytica: A model yeast for citric acid production. FEMS Yeast Res. 2017, 17. [Google Scholar] [CrossRef]
- Timoumi, A.; Cléret, M.; Bideaux, C.; Guillouet, S.E.; Allouche, Y.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: Dependence of the stress response on the culture mode. Appl. Microbiol. Biotechnol. 2017, 101, 351–366. [Google Scholar] [CrossRef]
- Kieliszek, M.; Kot, A.M.; Bzducha-Wróbel, A.; BŁażejak, S.; Gientka, I.; Kurcz, A. Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biol. Rev. 2017, 31, 185–198. [Google Scholar] [CrossRef]
- Juszczyk, P.; Rymowicz, W.; Kita, A.; Rywińska, A. Biomass production by Yarrowia lipolytica yeast using waste derived from the production of ethyl esters of polyunsaturated fatty acids of flaxseed oil. Ind. Crop. Prod. 2019, 138, 111590. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Agirman, B.; Erten, H. Citric Acid Production by Yarrowia lipolytica. In Non-Conventional Yeasts: From Basic Research to Application; Sibirny, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J.-L.; Molina-Jouve, C.; Nicaud, J.-M. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 2009, 48, 375–387. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Rzechonek, D.A.; Biegalska, A.; Rakicka, M.; Dobrowolski, A. A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol. Biofuels 2016, 9, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef]
- Bellou, S.; Triantaphyllidou, I.E.; Aggeli, D.; Elazzazy, A.M.; Baeshen, M.N.; Aggelis, G. Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 2016, 37, 24–35. [Google Scholar] [CrossRef]
- Finco, A.M.O.; Mamani, L.D.G.; Carvalho, J.C.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Soccol, C.R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit. Rev. Biotechnol. 2017, 37, 656–671. [Google Scholar] [CrossRef]
- Maina, S.; Pateraki, C.; Kopsahelis, N.; Paramithiotis, S.; Drosinos, E.H.; Papanikolaou, S.; Koutinas, A. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng. Life Sci. 2017, 17, 333–344. [Google Scholar] [CrossRef]
- Souza, K.S.T.; Ramos, C.L.; Schwan, R.F.; Dias, D.R. Lipid production by yeasts grown on crude glycerol from biodiesel industry. Prep. Biochem. Biotechnol. 2017, 47, 357–363. [Google Scholar] [CrossRef]
- Béligon, V.; Christophe, G.; Fontanille, P.; Larroche, C. Microbial lipids as potential source to food supplements. Curr. Opin. Food Sci. 2016, 7, 35–42. [Google Scholar] [CrossRef]
- Xie, D.; Miller, E.; Sharpe, P.; Jackson, E.; Zhu, Q. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous. Biotechnol. Bioeng. 2017, 114, 798–812. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Chevalot, I.; Komaitis, M.; Aggelis, G.; Marc, I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Leeuwenhoek 2001, 80, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Siewers, V.; Nielsen, J. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl. Microbiol. Biotechnol. 2017, 101, 3577–3585. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, S.; Kampisopoulou, E.; Blanchard, F.; Rondags, E.; Gardeli, C.; Koutinas, A.A.; Chevalot, I.; Aggelis, G. Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. Eur. J. Lipid Sci. Technol. 2017, 119, 1600507. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chevalot, I.; Komaitis, M.; Marc, I.; Aggelis, G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 2002, 58, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Sabra, W.; Bommareddy, R.R.; Maheshwari, G.; Papanikolaou, S.; Zeng, A.-P. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: Insights through transcriptome and fluxome analyses. Microb. Cell Factories 2017, 16, 78. [Google Scholar] [CrossRef] [PubMed]
- Fontanille, P.; Kumar, V.; Christophe, G.; Nouaille, R.; Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 2012, 114, 443–449. [Google Scholar] [CrossRef]
- Poli, J.S.; da Silva, M.A.; Siqueira, E.P.; Pasa, V.M.; Rosa, C.A.; Valente, P. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production. Bioresour. Technol. 2014, 161, 320–326. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Nicaud, J.-M.; Aggelis, G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid Sci. Technol. 2009, 111, 1221–1232. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Beopoulos, A.; Koletti, A.; Thevenieau, F.; Koutinas, A.A.; Nicaud, J.M.; Aggelis, G. Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J. Biotechnol. 2013, 168, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Makri, A.; Fakas, S.; Aggelis, G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 2010, 101, 2351–2358. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Chevalot, I.; Komaitis, M.; Marc, I.; Aggelis, G. Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr. Microbiol. 2006, 52, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Qiao, K.; Imam Abidi, S.H.; Liu, H.; Zhang, H.; Chakraborty, S.; Watson, N.; Kumaran Ajikumar, P.; Stephanopoulos, G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 2015, 29, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dourou, M.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.-E.; Rywinska, A.; Papanikolaou, S.; Aggelis, G. Bioconversion of olive mill wastewater into high-added value products. J. Clean. Prod. 2016, 139, 957–969. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chevalot, I.; Galiotou-Panayotou, M.; Komaitis, M.; Marc, I.; Aggelis, G. Industrial derivative of tallow: A promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron. J. Biotechnol. 2007, 10. [Google Scholar] [CrossRef] [Green Version]
- Rywińska, A.; Juszczyk, P.; Wojtatowicz, M.; Robak, M.; Lazar, Z.; Tomaszewska, L.; Rymowicz, W. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 2013, 48, 148–166. [Google Scholar] [CrossRef]
- Leiva-Candia, D.E.; Pinzi, S.; Redel-Macías, M.D.; Koutinas, A.; Webb, C.; Dorado, M.P. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 2014, 123, 33–42. [Google Scholar] [CrossRef]
Incubation Time (h) | DCW (g/L) | Consumed Glucose (g/L) | Maximum Lipid Content, Lm (g/L) | Maximum Lipid in DCW (g/g) YmL/X (g/g) | |
---|---|---|---|---|---|
Po1dL | 192 | 1.29 ± 0.05 | 8.19 ± 0.10 | 0.42 ± 0.01 c | |
48 | 0.58 ± 0.06 | 0.09 ± 0.01 | 0.61 ± 0.06 e | ||
DBVPG 4558 | 192 | 3.09 ± 0.01 | 23.61 ± 0.13 | 0.95 ± 0.01 h | |
48 | 1.72 ± 0.34 | 7.22 ± 0.18 | 0.45 ± 0.08 d | ||
Zu110 | 48 | 2.39 ± 0.35 | 7.17 ± 0.09 | 0.99 ± 0.01 i | 0.42 ± 0.06 cd |
Ain19 | 96 | 2.40 ± 0.13 | 5.71 ± 1.21 | 0.57 ± 0.00 e | |
24 | 0.66 ± 0.01 | 1.07 ± 0.33 | 0.41 ± 0.01 cd | ||
H917 | 192 | 1.31 ± 0.08 | 9.64 ± 1.30 | 0.46 ± 0.01 d | |
48 | 0.88 ± 0.01 | 1.81 ± 0.10 | 0.41 ± 0.01 cd | ||
Ain16 | 48 | 1.84 ± 0.08 | 3.76 ± 0.11 | 0.71 ± 0.01 f | 0.39 ± 0.02 cd |
DBVPG 5858 | 72 | 3.44 ± 0.40 | 10.93 ± 1.07 | 1.24 ± 0.01 j | 0.36 ± 0.04 bcd |
W29 | 48 | 3.62 ± 0.06 | 10.29 ± 0.88 | 1.27 ± 0.02 k | 0.35 ± 0.00 bcd |
Peggy | 72 | 4.22 ± 0.13 | 10.13 ± 0.42 | 1.28 ± 0.01 k | 0.31 ± 0.01 bc |
N155 | 96 | 3.49 ± 0.05 | 11.21 ± 1.61 | 0.76 ± 0.00 g | |
48 | 2.81 ± 0.01 | 3.88 ± 0.29 | 0.25 ± 0.00 b | ||
K57 | 96 | 4.12 ± 0.18 | 22.74 ± 2.33 | 0.36 ± 0.00 b | 0.09 ± 0.00 a |
CBS 6303 | 72 | 5.16 ± 0.11 | 13.88 ± 2.13 | 0.15 ± 0.01 a | 0.03 ± 0.00 a |
K57 | CBS 6303 | Peggy | W29 | Ain 16 | Ain 19 | N155 | Po1dL | Zu110 | DBVPG 5858 | DBVPG 4558 | H917 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Xmax | 4.34 ± 0.26 | 5.23 ± 0.29 | 5.05 ± 0.10 | 4.04 ± 0.06 | 1.93 ± 0.09 | 2.40 ± 0.13 | 4.09 ± 0.20 | 1.29 ± 0.05 | 3.68 ± 0.05 | 4.00 ± 0.01 | 3.09 ± 0.01 | 1.31 ± 0.08 |
YX/S | 0.25 ± 0.04 | 0.27 ± 0.04 | 0.29 ± 0.00 | 0.13 ± 0.00 | 0.53 ± 0.07 | 0.42 ± 0.05 | 0.27 ± 0.01 | 0.16 ± 0.00 | 0.13 ± 0.00 | 0.21 ± 0.00 | 0.13 ± 0.00 | 0.39 ± 0.11 |
YC/S | 0.43 ± 0.05 | 0.58 ± 0.08 | 0.39 ± 0.01 | 0.67 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.55 ± 0.00 | 0.21 ± 0.01 | 0.75 ± 0.00 | 0.27 ± 0.00 | 0.69 ± 0.01 | 0.15 ± 0.07 |
YL/S | 0.02 ± 0.00 | 0.007 ± 0.00 | 0.06 ± 0.00 | 0.03 ± 0.00 | 0.19 ± 0.02 | 0.10 ± 0.02 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.14 ± 0.05 |
QC | 0.10 ± 0.00 | 0.12 ± 0.01 | 0.03 ± 0.00 | 0.11 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.00 | 0.01 ± 0.00 | 0.11 ± 0.00 | 0.03 ± 0.00 | 0.08 ± 0.00 | 0.003 ± 0.00 |
Lmax | 0.36 ± 0.00 | 0.15 ± 0.00 | 1.28 ± 0.01 | 1.27 ± 0.02 | 0.71 ± 0.01 | 0.57 ± 0.00 | 0.76 ± 0.00 | 0.42 ± 0.01 | 0.99 ± 0.01 | 1.24 ± 0.01 | 0.95 ± 0.01 | 0.45 ± 0.01 |
YX/S | 0.18 ± 0.01 | 0.37 ± 0.12 | 0.42 ± 0.03 | 0.35 ± 0.00 | 0.49 ± 0.07 | 0.42 ± 0.05 | 0.31 ± 0.05 | 0.16 ± 0.00 | 0.33 ± 0.06 | 0.31 ± 0.05 | 0.13 ± 0.00 | 0.39 ± 0.11 |
YC/S | 0.51 ± 0.05 | 0.48 ± 0.15 | 0.20 ± 0.01 | 0.28 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.39 ± 0.06 | 0.21 ± 0.01 | 0.32 ± 0.01 | 0.14 ± 0.01 | 0.69 ± 0.01 | 0.15 ± 0.07 |
YL/S | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.13 ± 0.01 | 0.12 ± 0.00 | 0.19 ± 0.02 | 0.10 ± 0.02 | 0.07 ± 0.01 | 0.05 ± 0.00 | 0.14 ± 0.01 | 0.11 ± 0.01 | 0.04 ± 0.00 | 0.14 ± 0.05 |
QC | 0.12 ± 0.01 | 0.09 ± 0.00 | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.05 ± 0.00 | 0.02 ± 0.00 | 0.08 ± 0.00 | 0.003 ± 0.00 |
Cmax | 21.29 ± 0.02 | 24.67 ± 0.78 | 6.71 ± 0.06 | 20.94 ± 0.02 | 0.47 ± 0.06 | 0.79 ± 0.05 | 9.28 ± 0.03 | 1.68 ± 0.02 | 20.47 ± 0.01 | 5.08 ± 0.02 | 16.21 ± 0.05 | 0.48 ± 0.05 |
YX/S | 0.12 ± 0.00 | 0.14 ± 0.01 | 0.29 ± 0.00 | 0.13 ± 0.00 | 0.16 ± 0.01 | 0.21 ± 0.05 | 0.23 ± 0.01 | 0.16 ± 0.00 | 0.13 ± 0.00 | 0.21 ± 0.00 | 0.13 ± 0.00 | 0.39 ± 0.11 |
YC/S | 0.59 ± 0.01 | 0.67 ± 0.03 | 0.39 ± 0.01 | 0.67 ± 0.01 | 0.04 ± 0.00 | 0.08 ± 0.01 | 0.54 ± 0.02 | 0.21 ± 0.01 | 0.75 ± 0.00 | 0.27 ± 0.00 | 0.69 ± 0.01 | 0.15 ± 0.07 |
YL/S | 0.002 ± 0.00 | 0.003 ± 0.00 | 0.06 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.14 ± 0.05 |
QC | 0.11 ± 0.00 | 0.13 ± 0.00 | 0.03 ± 0.00 | 0.11 ± 0.00 | 0.002 ± 0.00 | 0.004 ± 0.00 | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.11 ± 0.00 | 0.03 ± 0.00 | 0.08 ± 0.00 | 0.003 ± 0.00 |
Fatty Acid Composition % | UFAs/SFAs | Lipid in DCW (g/g)YL/X, g/g | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | Growth Phase | 15:0 | 16:0 | 16:1 | 17:0 | 17:1 | 18:0 | 18:1 | 18:2 | 18:3 | ||
Ain 16 | Early Stationary | 0.9 | 26.9 | 7.2 | 0.7 | 3.3 | 10.5 | 17.8 | 25.1 | 7.4 | 1.6 | 0.4 |
Late Stationary | 1.0 | 27.1 | 7.1 | 0.7 | 3.3 | 10.6 | 18.8 | 24.3 | 7.0 | 1.5 | 0.2 | |
Ain 19 | Early Stationary | 0.9 | 23.4 | 9.3 | 1.2 | 4.3 | 8.0 | 24.6 | 24.3 | 4.0 | 2.0 | 0.3 |
Late Stationary | 1.0 | 24.2 | 9.1 | 1.0 | 3.2 | 9.5 | 27.6 | 21.1 | 3.3 | 1.8 | 0.2 | |
CBS 6303 | Early Stationary | 21.5 | 9.3 | 8.8 | 47.0 | 13.4 | 2.3 | 0.0 | ||||
Late Stationary | 31.8 | 5.7 | 2.8 | 21.7 | 28.1 | 9.9 | 1.9 | 0.0 | ||||
DBVPG 4558 | Early Stationary | 0.6 | 20.6 | 9.4 | 3.5 | 0.5 | 8.6 | 43.6 | 11.5 | 1.6 | 2.0 | 0.4 |
Late Stationary | 0.8 | 20.4 | 8.7 | 5.6 | 0.9 | 8.5 | 41.6 | 12.3 | 1.2 | 1.8 | 0.3 | |
DBVPG 5858 | Early Stationary | 0.7 | 23.0 | 12.6 | 5.9 | 38.6 | 15.5 | 3.6 | 2.4 | 0.3 | ||
Late Stationary | 0.2 | 29.5 | 11.7 | 19.9 | 24.9 | 7.8 | 6.0 | 1.0 | 0.2 | |||
H917 | Early Stationary | 1.1 | 23.4 | 2.1 | 17.2 | 6.1 | 12.2 | 14.6 | 9.0 | 14.2 | 0.8 | 0.4 |
Late Stationary | 0.5 | 17.1 | 4.3 | 21.8 | 1.7 | 6.6 | 22.5 | 13.6 | 11.8 | 1.2 | 0.2 | |
K57 | Early Stationary | 26.7 | 7.4 | 3.0 | 11.8 | 38.5 | 12.6 | 1.4 | ||||
Late Stationary | 0.2 | 26.5 | 7.6 | 13.6 | 35.8 | 15.8 | 0.5 | 1.5 | ||||
N155 | Early Stationary | 0.7 | 26.6 | 8.8 | 0.9 | 1.5 | 12.8 | 34.3 | 13.9 | 0.5 | 1.4 | 0.2 |
Late Stationary | 0.6 | 28.6 | 8.7 | 0.6 | 1.2 | 10.1 | 30.7 | 18.8 | 0.7 | 1.5 | 0.1 | |
Po1dL | Early Stationary | 1.5 | 37.2 | 2.3 | 19.0 | 10.0 | 10.0 | 19.9 | 0.7 | 0.6 | ||
Late Stationary | 1.1 | 34.0 | 2.6 | 16.4 | 15.4 | 12.2 | 18.3 | 0.9 | 0.4 | |||
Peggy | Early Stationary | 0.8 | 37.4 | 6.7 | 2.5 | 0.8 | 15.5 | 22.8 | 10.4 | 2.9 | 0.8 | 0.3 |
Late Stationary | 1.0 | 31.6 | 6.4 | 0.4 | 0.5 | 30.4 | 17.3 | 8.8 | 3.5 | 0.6 | 0.2 | |
W29 | Early Stationary | 0.2 | 25.2 | 8.3 | 0.8 | 8.3 | 34.5 | 18.6 | 4.1 | 2.0 | 0.3 | |
Late Stationary | 0.3 | 23.1 | 6.3 | 0.3 | 0.4 | 13.7 | 38.8 | 16.1 | 1.1 | 1.7 | 0.2 | |
Zu110 | Early Stationary | 0.8 | 21.9 | 6.2 | 0.6 | 1.0 | 9.9 | 35.5 | 23.2 | 0.9 | 2.0 | 0.4 |
Late Stationary | 0.4 | 28.9 | 5.4 | 0.3 | 1.1 | 25.6 | 20.0 | 18.2 | 0.8 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures. Microorganisms 2020, 8, 1054. https://doi.org/10.3390/microorganisms8071054
Carsanba E, Papanikolaou S, Fickers P, Erten H. Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures. Microorganisms. 2020; 8(7):1054. https://doi.org/10.3390/microorganisms8071054
Chicago/Turabian StyleCarsanba, Erdem, Seraphim Papanikolaou, Patrick Fickers, and Huseyin Erten. 2020. "Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures" Microorganisms 8, no. 7: 1054. https://doi.org/10.3390/microorganisms8071054
APA StyleCarsanba, E., Papanikolaou, S., Fickers, P., & Erten, H. (2020). Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures. Microorganisms, 8(7), 1054. https://doi.org/10.3390/microorganisms8071054