Interaction of Acanthamoeba T5 with a Vero Cell Culture: An Exploratory Study Using Live-Cell Imaging and Confocal Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Axenic Culture of Acanthamoeba T5
2.2. Preparation of Acanthamoeba Conditioned Medium (ACM)
2.3. Proteome Profiling of ACM
2.4. Cell Viability Assays
2.5. Effect of ACM over Actin Filaments of Vero Cell
2.6. Acanthamoeba T5 Trophozoite—Vero Cell Co-Culture: Live-Cell Imaging and Confocal Microscopy
2.7. Quantification of DQ-Red BSA Vesicles During an Acanthamoeba Infection
3. Results
3.1. Proteome Profiles of Acanthamoeba T5 Conditioned Medium
3.2. Effect of Acanthamoeba T5 Conditioned Medium over the Vero Cell Monolayer
3.3. Mechanical Damage in Vero Cells Produced by Trophozoites of Acanthamoeba T5
3.4. Lysosomal Activity During an Acanthamoeba T5 Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An Update on Acanthamoeba Keratitis: Diagnosis, Pathogenesis and Treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.W.; Boase, D.L.; Cree, I.A. Factors Affecting the Epidemiology of Acanthamoeba Keratitis. Ophthalmic Epidemiol. 2007, 14, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Peralta, E.; Houser, K. Sip confrmado. TouchReviews Ophthalmol. 2022, 16, 72–75. [Google Scholar] [CrossRef]
- González-Robles, A.; Castañón, G.; Cristóbal-Ramos, A.R.; Lázaro-Haller, A.; Omaña-Molina, M.; Bonilla, P.; Martínez-Palomo, A. Acanthamoeba castellanii: Structural Basis of the Cytopathic Mechanisms. Exp. Parasitol. 2006, 114, 133–140. [Google Scholar] [CrossRef]
- Khan, N. Acanthamoeba: Biology and Pathogenesis, 2nd ed.; Caister Academic Press: Poole, UK, 2015. [Google Scholar] [CrossRef]
- González-Robles, A.; González-lázaro, M.; Omana-Molina, M.; Martínez-Palomo, A. Acanthamoeba castellanii: Endocytic Structures Involved in the Ingestion of Diverse Target Elements. Acta Protozool. 2009, 48, 329–334. [Google Scholar]
- Ubelaker, J.E.; Farmer, M.L.; Martin, J.H. Amebostomes on the Ameba Acanthamoeba castellanii (Acanthamoebidae: Amoebida). Trans. Am. Microsc. Soc. 1994, 113, 211. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Zhao, Y.; Ju, X.; Wang, L.; Jin, L.; Fine, R.D.; Li, M. Biological Characteristics and Pathogenicity of Acanthamoeba. Front. Microbiol. 2023, 14, 1147077. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A. Acanthamoeba: Biology and Increasing Importance in Human Health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef]
- Omaña-Molina, M.; González-Robles, A.; Salazar-Villatoro, L.I.; Lorenzo-Morales, J.; Cristóbal-Ramos, A.R.; Hernández-Ramírez, V.I.; Talamás-Rohana, P.; Cruz, A.R.M.; Martínez-Palomo, A. Reevaluating the Role of Acanthamoeba Proteases in Tissue Invasion: Observation of Cytopathogenic Mechanisms on MDCK Cell Monolayers and Hamster Corneal Cells. BioMed Res. Int. 2013, 2013, 461329. [Google Scholar] [CrossRef]
- Corsaro, D. Update on Acanthamoeba Phylogeny. Parasitol. Res. 2020, 119, 3327–3338. [Google Scholar] [CrossRef]
- Booton, G.C.; Kelly, D.J.; Chu, Y.-W.; Seal, D.V.; Houang, E.; Lam, D.S.C.; Byers, T.J.; Fuerst, P.A. 18S Ribosomal DNA Typing and Tracking of Acanthamoeba Species Isolates from Corneal Scrape Specimens, Contact Lenses, Lens Cases, and Home Water Supplies of Acanthamoeba Keratitis Patients in Hong Kong. J. Clin. Microbiol. 2002, 40, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Spanakos, G.; Tzanetou, K.; Miltsakakis, D.; Patsoula, E.; Malamou-Lada, E.; Vakalis, N. Genotyping of pathogenic Acanthamoebae Isolated from Clinical Samples in Greece—Report of a Clinical Isolate Presenting T5 Genotype. Parasitol. Int. 2006, 55, 147–149. [Google Scholar] [CrossRef]
- Ledee, D.R.; Iovieno, A.; Miller, D.; Mandal, N.; Diaz, M.; Fell, J.; Fini, M.E.; Alfonso, E.C. Molecular Identification of T4 and T5 Genotypes in Isolates from Acanthamoeba Keratitis Patients. J. Clin. Microbiol. 2009, 47, 1458–1462. [Google Scholar] [CrossRef]
- Van Zyl, L.M.; Andrews, N.; Chebade, M.; Sadlon, T.A.; Badenoch, R.P. Acanthamoeba lenticulata Keratitis in a Hard Contact Lens Wearer. Clin. Exp. Ophthalmol. 2013, 41, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Barete, S.; Combes, A.; De Jonckheere, J.F.; Datry, A.; Varnous, S.; Martinez, V.; Ptacek, S.G.; Caumes, E.; Capron, F.; Francès, C.; et al. Fatal Disseminated Acanthamoeba lenticulata Acanthamebiasis in a Heart Transplant Patient. Emerg. Infect. Dis. 2007, 13, 736–738. [Google Scholar] [CrossRef]
- Lackner, P.; Beer, R.; Broessner, G.; Helbok, R.; Pfausler, B.; Brenneis, C.; Auer, H.; Walochnik, J.; Schmutzhard, E. Acute Granulomatous Acanthamoeba Encephalitis in an Immunocompetent Patient. Neurocritical Care 2010, 12, 91–94. [Google Scholar] [CrossRef]
- Iovieno, A.; Oechsler, R.A.; Ledee, D.R.; Miller, D.; Alfonso, E.C. Drug-Resistant Severe Acanthamoeba Keratitis Caused by Rare T5 Acanthamoeba Genotype. Eye Contact Lens. 2010, 36, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.R.; Ramírez, D.V.; Linares, F.; Ledezma, A.P.; Garro, A.V.; Osuna, A.; Morales, J.L.; Sandí, E.A. Isolation of Acanthamoeba T5 from Water: Characterization of Its Pathogenic Potential, Including the Production of Extracellular Vesicles. Pathogens 2020, 9, 144. [Google Scholar] [CrossRef]
- Schuster, F.L. Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol. Rev. 2002, 15, 342–354. [Google Scholar] [CrossRef]
- Fritsche, T.R.; Gautom, R.K.; Seyedirashti, S.; Bergeron, D.L.; Lindquist, T.D. Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J. Clin. Microbiol. 1993, 31, 1122–1126. [Google Scholar] [CrossRef]
- Goñi, P.; Fernández, M.T.; Rubio, E. Identifying endosymbiont bacteria associated with free-living amoebae. Environ. Microbiol. 2014, 16, 339–349. [Google Scholar] [CrossRef]
- Moreira, L.R.; Espinoza, M.F.S.; Camacho, N.C.; Cornet-Gomez, A.; Sáenz-Arce, G.; Osuna, A.; Lomonte, B.; Sandí, E.A. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. Biology 2022, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Camacho, N.C.; Espinoza, M.F.S.; Alvarado-Ocampo, J.; Osuna, A.; Moreira, L.R.; Sandí, E.A. Characterization of Naegleria fowleri from two human cases: Insights into its excretion/secretion products. Front. Cell. Infect. Microbiol. 2025, 15, 1585448. [Google Scholar] [CrossRef] [PubMed]
- Retana-Moreira, L.; Abrahams-Sandí, E.; Ruiz-Campos, M.; Alvarado-Ocampo, J.; Castro, J.; Lorenzo-Morales, J.; Sáenz-Arce, G.; Osuna, A. Detection of immunogenic protein components in excretion/secretion products of Acanthamoeba T5 using polyclonal antibodies. Mem. Do Inst. Oswaldo Cruz 2025, 120, e240190. [Google Scholar] [CrossRef]
- Castro-Artavia, E.; Retana-Moreira, L.; Lorenzo-Morales, J.; Abrahams-Sandí, E. Potentially Pathogenic Acanthamoeba Genotype T4 Isolated from Dental Units and Emergency Combination Showers. Mem. Do Inst. Oswaldo Cruz 2017, 112, 817–821. [Google Scholar] [CrossRef]
- Lomonte, B.; Fernández, J. Solving the Microheterogeneity of Bothrops asper Myotoxin-II by High-Resolution Mass Spectrometry: Insights into C-Terminal Region Variability in Lys49-Phospholipase A2 Homologs. Toxicon 2022, 210, 123–131. [Google Scholar] [CrossRef]
- Fassina, L.; Magenes, G.; Inzaghi, A.; Palumbo, S.; Allavena, G.; Miracco, C.; Pirtoli, L.; Biggiogera, M.; Comincini, S. AUTOCOUNTER, an Imagej Javascript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells. Eur. J. Histochem. 2012, 56, e44. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Jarroll, E.L.; Panjwani, N.; Cao, Z.; Paget, T.A. Proteases as Markers for Differentiation of Pathogenic and Nonpathogenic Species of Acanthamoeba. J. Clin. Microbiol. 2000, 38, 2858–2861. [Google Scholar] [CrossRef]
- Moon, E.-K.; Chung, D.-I.; Hong, Y.-C.; Kong, H.-H. Characterization of a Serine Proteinase Mediating Encystation of Acanthamoeba. Eukaryot. Cell 2008, 7, 1513–1517. [Google Scholar] [CrossRef]
- Brix, K. Lysosomal Proteases. In Lysosomes; Medical Intelligence Unit; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Huang, J.-M.; Liao, C.-C.; Kuo, C.-C.; Chen, L.-R.; Huang, L.L.H.; Shin, J.-W.; Lin, W.-C. Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules 2017, 22, 2263. [Google Scholar] [CrossRef]
- Huang, J.-M.; Chang, Y.-T.; Shih, M.-H.; Lin, W.-C.; Huang, F.-C. Identification and Characterization of a Secreted M28 Aminopeptidase Protein in Acanthamoeba. Parasitol. Res. 2019, 118, 1865–1874. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fanselow, N.; Sirajuddin, N.; Yin, X.-T.; Huang, A.J.W.; Stuart, P.M. Acanthamoeba Keratitis, Pathology, Diagnosis and Treatment. Pathogens 2021, 10, 323. [Google Scholar] [CrossRef]
- Khan, N.A. Pathogenicity, morphology and differentiation of Acanthamoeba. Curr. Microbiol. 2001, 43, 391–395. [Google Scholar] [CrossRef]
- Heredero-Bermejo, I.; Martín-Pérez, T.; Copa-Patiño, J.L.; Gómez, R.; de la Mata, F.J.; Soliveri, J.; Pérez-Serrano, J. Ultrastructural Study of Acanthamoeba polyphaga Trophozoites and Cysts Treated In Vitro with Cationic Carbosilane Dendrimers. Pharmaceutics 2020, 12, 565. [Google Scholar] [CrossRef]
- Diaz, J.; Osuna, A.; Rosales, M.; Cifuentes, J.; Mascaró, C. Sucker-Like Structures in Two Strains of Acanthamoeba: Scanning Electron Microscopy Study. Int. J. Parasitol. 1991, 21, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Pettit, D.A.; Williamson, J.; Cabral, G.A.; Marciano-Cabral, F. In Vitro Destruction of Nerve Cell Cultures by Acanthamoeba spp.: A Transmission and Scanning Electron Microscopy Study. J. Parasitol. 1996, 82, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Kinnear, F.B. Cytopathogenicity of Acanthamoeba, Vahlkampfia and Hartmannella: Quantitative & Qualitative In Vitro Studies on Keratocytes. J. Infect. 2003, 46, 228–237. [Google Scholar] [CrossRef]
- Castelan-Ramírez, I.; Salazar-Villatoro, L.; Chávez-Munguía, B.; Salinas-Lara, C.; Sánchez-Garibay, C.; Flores-Maldonado, C.; Hernández-Martínez, D.; Anaya-Martínez, V.; Ávila-Costa, M.R.; Méndez-Cruz, A.R.; et al. Schwann Cell Autophagy and Necrosis as Mechanisms of Cell Death by Acanthamoeba. Pathogens 2020, 9, 458. [Google Scholar] [CrossRef]
Protein Group | Accession | #Unique Peptide | Avg. Mass | Description |
---|---|---|---|---|
1 | B0FYM3 | 13 | 43,788 | Serine proteinase |
2 | L8HGR3 | 7 | 92,127 | Amidohydrolase domain containing protein |
5 | L8GXZ7 | 4 | 89,226 | Xylosidase |
9 | L8GPK5 | 3 | 15,170 | Aspartyl aminopeptidase |
3 | L8GJ18 | 2 | 84,185 | Dipeptidyl peptidase |
4 | Q27Q47 | 2 | 28,823 | Zinc-containing alcohol dehydrogenase superfamily protein (Fragment) |
6 | L8GJS6 | 2 | 40,838 | Inosineuridine preferring nucleoside hydrolase family protein |
7 | L8GM39 | 2 | 40,797 | Aspartyl aminopeptidase |
10 | L8GNH0 | 2 | 48,458 | 4aminobutyrate aminotransferase |
12 | L8HKQ5 | 2 | 123,298 | Amidohydrolase domain containing protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrahams-Sandi, E.; Prado-Porras, M.; Alvarado-Ocampo, J.; Lorenzo-Morales, J.; Retana-Moreira, L. Interaction of Acanthamoeba T5 with a Vero Cell Culture: An Exploratory Study Using Live-Cell Imaging and Confocal Microscopy. Microorganisms 2025, 13, 1460. https://doi.org/10.3390/microorganisms13071460
Abrahams-Sandi E, Prado-Porras M, Alvarado-Ocampo J, Lorenzo-Morales J, Retana-Moreira L. Interaction of Acanthamoeba T5 with a Vero Cell Culture: An Exploratory Study Using Live-Cell Imaging and Confocal Microscopy. Microorganisms. 2025; 13(7):1460. https://doi.org/10.3390/microorganisms13071460
Chicago/Turabian StyleAbrahams-Sandi, Elizabeth, Mónica Prado-Porras, Johan Alvarado-Ocampo, Jacob Lorenzo-Morales, and Lissette Retana-Moreira. 2025. "Interaction of Acanthamoeba T5 with a Vero Cell Culture: An Exploratory Study Using Live-Cell Imaging and Confocal Microscopy" Microorganisms 13, no. 7: 1460. https://doi.org/10.3390/microorganisms13071460
APA StyleAbrahams-Sandi, E., Prado-Porras, M., Alvarado-Ocampo, J., Lorenzo-Morales, J., & Retana-Moreira, L. (2025). Interaction of Acanthamoeba T5 with a Vero Cell Culture: An Exploratory Study Using Live-Cell Imaging and Confocal Microscopy. Microorganisms, 13(7), 1460. https://doi.org/10.3390/microorganisms13071460