Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Components
2.2. Cloning, Expression, and Purification of rLigA7’-13’ (625-1224) and rLigB1’-7’ (131-645) Recombinant Proteins
2.3. Antiserum Production
2.4. Binding of Recombinant Fragments to Human Integrins and to GAGs
2.5. The Interaction Between rLigA7’-13’ and rLigB1’-7’ and Human Complement Components
2.6. Dose Response Analysis of Recombinant Protein Fragments and the Host Components
2.7. Characterization of rLigA7’-13’ and rLigB1’-7’ Binding to C9
2.8. Ethics Statement
3. Results
3.1. Cloning, Expression, and Purification of rLigA7’-13’ and rLigB1’-7’
3.2. Detection of Recombinant Fragments by Western Blotting with the Respective Antiserum
3.3. Binding of Recombinant Fragments to Human Integrins and to GAGs
3.4. Interaction of rLigA7’-13’ and rLigB1’-7’ Proteins with the Terminal Complement System Molecules
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faine, S.; Adler, B.; Bolin, C.; Perolat, P. “Leptospira” and Leptospirosis; MediSci: Tuscany, Italy, 1999; ISBN 978-0-9586326-0-7. [Google Scholar]
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E.; et al. Leptospirosis: A Zoonotic Disease of Global Importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.I.; Goarant, C.; Picardeau, M. Leptospira: The Dawn of the Molecular Genetics Era for an Emerging Zoonotic Pathogen. Nat. Rev. Microbiol. 2009, 7, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Trevejo, R.T.; Rigau-Pérez, J.G.; Ashford, D.A.; McClure, E.M.; Jarquín-González, C.; Amador, J.J.; de los Reyes, J.O.; Gonzalez, A.; Zaki, S.R.; Shieh, W.J.; et al. Epidemic Leptospirosis Associated with Pulmonary Hemorrhage-Nicaragua, 1995. J. Infect. Dis. 1998, 178, 1457–1463. [Google Scholar] [CrossRef]
- Gouveia, E.L.; Metcalfe, J.; de Carvalho, A.L.F.; Aires, T.S.F.; Villasboas-Bisneto, J.C.; Queirroz, A.; Santos, A.C.; Salgado, K.; Reis, M.G.; Ko, A.I. Leptospirosis-Associated Severe Pulmonary Hemorrhagic Syndrome, Salvador, Brazil. Emerg. Infect. Dis. 2008, 14, 505–508. [Google Scholar] [CrossRef]
- Haake, D.A.; Dundoo, M.; Cader, R.; Kubak, B.M.; Hartskeerl, R.A.; Sejvar, J.J.; Ashford, D.A. Leptospirosis, Water Sports, and Chemoprophylaxis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2002, 34, e40–e43. [Google Scholar] [CrossRef]
- Hartskeerl, R.A.; Collares-Pereira, M.; Ellis, W.A. Emergence, Control and Re-Emerging Leptospirosis: Dynamics of Infection in the Changing World. Clin. Microbiol. Infect. 2011, 17, 494–501. [Google Scholar] [CrossRef]
- Patti, J.M.; Allen, B.L.; McGavin, M.J.; Höök, M. MSCRAMM-Mediated Adherence of Microorganisms to Host Tissues. Annu. Rev. Microbiol. 1994, 48, 585–617. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.L.; Vasconcellos, S.A.; Gonçales, A.P.; de Morais, Z.M.; Nascimento, A.L.T.O. Plasminogen Acquisition and Activation at the Surface of Leptospira Species Lead to Fibronectin Degradation. Infect. Immun. 2009, 77, 4092–4101. [Google Scholar] [CrossRef]
- Daroz, B.B.; Fernandes, L.G.V.; Cavenague, M.F.; Kochi, L.T.; Passalia, F.J.; Takahashi, M.B.; Nascimento Filho, E.G.; Teixeira, A.F.; Nascimento, A.L.T.O. A Review on Host-Leptospira Interactions: What We Know and Future Expectations. Front. Cell. Infect. Microbiol. 2021, 11, 777709. [Google Scholar] [CrossRef]
- Castiblanco-Valencia, M.M.; Fraga, T.R.; Pagotto, A.H.; Serrano, S.M.d.T.; Abreu, P.A.E.; Barbosa, A.S.; Isaac, L. Plasmin Cleaves Fibrinogen and the Human Complement Proteins C3b and C5 in the Presence of Leptospira Interrogans Proteins: A New Role of LigA and LigB in Invasion and Complement Immune Evasion. Immunobiology 2016, 221, 679–689. [Google Scholar] [CrossRef]
- Poljak, R.J.; Amzel, L.M.; Avey, H.P.; Chen, B.L.; Phizackerley, R.P.; Saul, F. Three-Dimensional Structure of the Fab′ Fragment of a Human Immunoglobulin at 2.8-Å Resolution. Proc. Natl. Acad. Sci. USA 1973, 70, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.G.V.; Foltran, B.B.; Teixeira, A.F.; Nascimento, A.L.T.O. LipL41 and LigA/LigB Gene Silencing on a LipL32 Knockout Leptospira Interrogans Reveals the Impact of Multiple Mutations on Virulence. Pathog. Basel Switz. 2023, 12, 1191. [Google Scholar] [CrossRef]
- Haake, D.A.; Matsunaga, J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front. Immunol. 2020, 11, 579907. [Google Scholar] [CrossRef]
- Evangelista, K.V.; Lourdault, K.; Matsunaga, J.; Haake, D.A. Immunoprotective Properties of Recombinant LigA and LigB in a Hamster Model of Acute Leptospirosis. PLoS ONE 2017, 12, e0180004. [Google Scholar] [CrossRef] [PubMed]
- Monaris, D.; Sbrogio-Almeida, M.E.; Dib, C.C.; Canhamero, T.A.; Souza, G.O.; Vasconcellos, S.A.; Ferreira, L.C.S.; Abreu, P.A.E. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira Interrogans Outer Membrane Proteins and Flagellin Adjuvant. Clin. Vaccine Immunol. CVI 2015, 22, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Forster, K.M.; Hartwig, D.D.; Seixas, F.K.; Bacelo, K.L.; Amaral, M.; Hartleben, C.P.; Dellagostin, O.A. A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis. Clin. Vaccine Immunol. CVI 2013, 20, 725–731. [Google Scholar] [CrossRef]
- Croda, J.; Ramos, J.G.R.; Matsunaga, J.; Queiroz, A.; Homma, A.; Riley, L.W.; Haake, D.A.; Reis, M.G.; Ko, A.I. Leptospira Immunoglobulin-Like Proteins as a Serodiagnostic Marker for Acute Leptospirosis. J. Clin. Microbiol. 2007, 45, 1528–1534. [Google Scholar] [CrossRef]
- Evangelista, K.V.; Coburn, J. Leptospira as an Emerging Pathogen: A Review of Its Biology, Pathogenesis and Host Immune Responses. Future Microbiol. 2010, 5, 1413–1425. [Google Scholar] [CrossRef]
- Lin, Y.-P.; McDonough, S.P.; Sharma, Y.; Chang, Y.-F. Leptospira Immunoglobulin-like Protein B (LigB) Binding to the C-Terminal Fibrinogen αC Domain Inhibits Fibrin Clot Formation, Platelet Adhesion and Aggregation. Mol. Microbiol. 2011, 79, 1063–1076. [Google Scholar] [CrossRef]
- Choy, H.A.; Kelley, M.M.; Croda, J.; Matsunaga, J.; Babbitt, J.T.; Ko, A.I.; Picardeau, M.; Haake, D.A. The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira Interrogans. PLoS ONE 2011, 6, e16879. [Google Scholar] [CrossRef]
- Castiblanco-Valencia, M.M.; Fraga, T.R.; da Silva, L.B.; Monaris, D.; Abreu, P.A.E.; Strobel, S.; Józsi, M.; Isaac, L.; Barbosa, A.S. Leptospiral Immunoglobulin-like Proteins Interact with Human Complement Regulators Factor H, FHL-1, FHR-1, and C4BP. J. Infect. Dis. 2012, 205, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.S.; Lu, N.; Denessiouk, K.; Heino, J.; Gullberg, D. Integrins during Evolution: Evolutionary Trees and Model Organisms. Biochim. Biophys. Acta 2009, 1788, 779–789. [Google Scholar] [CrossRef]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef]
- Rostand, K.S.; Esko, J.D. Microbial Adherence to and Invasion through Proteoglycans. Infect. Immun. 1997, 65, 1–8. [Google Scholar] [CrossRef]
- Fagan, R.P.; Lambert, M.A.; Smith, S.G.J. The Hek Outer Membrane Protein of Escherichia Coli Strain RS218 Binds to Proteoglycan and Utilizes a Single Extracellular Loop for Adherence, Invasion, and Autoaggregation. Infect. Immun. 2008, 76, 1135–1142. [Google Scholar] [CrossRef]
- Evangelista, K.; Franco, R.; Schwab, A.; Coburn, J. Leptospira Interrogans Binds to Cadherins. PLoS Negl. Trop. Dis. 2014, 8, e2672. [Google Scholar] [CrossRef]
- Breiner, D.D.; Fahey, M.; Salvador, R.; Novakova, J.; Coburn, J. Leptospira Interrogans Binds to Human Cell Surface Receptors Including Proteoglycans. Infect. Immun. 2009, 77, 5528–5536. [Google Scholar] [CrossRef] [PubMed]
- Robbins, G.T.; Hahn, B.L.; Evangelista, K.V.; Padmore, L.; Aranda, P.S.; Coburn, J. Evaluation of Cell Binding Activities of Leptospira ECM Adhesins. PLoS Negl. Trop. Dis. 2015, 9, e0003712. [Google Scholar] [CrossRef] [PubMed]
- Cavenague, M.F.; Teixeira, A.F.; Fernandes, L.G.V.; Nascimento, A.L.T.O. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Trop. Med. Infect. Dis. 2023, 8, 249. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Wei, J.; Yang, Y.; Chen, X.; Zhao, X.; Gu, Y.; Cui, S.; Zhu, X. Trichinella Spiralis Paramyosin Binds to C8 and C9 and Protects the Tissue-Dwelling Nematode from Being Attacked by Host Complement. PLoS Negl. Trop. Dis. 2011, 5, e1225. [Google Scholar] [CrossRef]
- Foltran, B.B.; Teixeira, A.F.; Romero, E.C.; Fernandes, L.G.V.; Nascimento, A.L.T.O. Leucine-Rich Repeat Proteins of Leptospira Interrogans That Interact to Host Glycosaminoglycans and Integrins. Front. Microbiol. 2024, 15, 1497712. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, G.F.A.; Listik, E.; Justo, G.Z.; Vicente, C.M.; Toma, L. The Glypican Proteoglycans Show Intrinsic Interactions with Wnt-3a in Human Prostate Cancer Cells That Are Not Always Associated with Cascade Activation. BMC Mol. Cell Biol. 2021, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.F.; de Morais, Z.M.; Kirchgatter, K.; Romero, E.C.; Vasconcellos, S.A.; Nascimento, A.L.T.O. Features of Two New Proteins with OmpA-like Domains Identified in the Genome Sequences of Leptospira Interrogans. PLoS ONE 2015, 10, e0122762. [Google Scholar] [CrossRef]
- Coburn, J.; Leong, J.M.; Erban, J.K. Integrin Alpha IIb Beta 3 Mediates Binding of the Lyme Disease Agent Borrelia burgdorferi to Human Platelets. Proc. Natl. Acad. Sci. USA 1993, 90, 7059–7063. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.; Magoun, L.; Bodary, S.C.; Leong, J.M. Integrins Alpha(v)Beta3 and Alpha5beta1 Mediate Attachment of Lyme Disease Spirochetes to Human Cells. Infect. Immun. 1998, 66, 1946–1952. [Google Scholar] [CrossRef]
- Cinco, M.; Cini, B.; Perticarari, S.; Presani, G. Leptospira Interrogans Binds to the CR3 Receptor on Mammalian Cells. Microb. Pathog. 2002, 33, 299–305. [Google Scholar] [CrossRef]
- Siqueira, G.H.; de Souza, G.O.; Heinemann, M.B.; Vasconcellos, S.A.; Nascimento, A.L.T.O. The Role of Lsa23 to Mediate the Interaction of Leptospira Interrogans with the Terminal Complement Components Pathway. Microb. Pathog. 2017, 112, 182–189. [Google Scholar] [CrossRef]
- Pizarro-Cerdá, J.; Cossart, P. Bacterial Adhesion and Entry into Host Cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef]
- da Cunha, C.E.P.; Bettin, E.B.; Bakry, A.F.A.A.Y.; Seixas Neto, A.C.P.; Amaral, M.G.; Dellagostin, O.A. Evaluation of Different Strategies to Promote a Protective Immune Response against Leptospirosis Using a Recombinant LigA and LigB Chimera. Vaccine 2019, 37, 1844–1852. [Google Scholar] [CrossRef]
- Ptak, C.P.; Akif, M.; Hsieh, C.-L.; Devarajan, A.; He, P.; Xu, Y.; Oswald, R.E.; Chang, Y.-F. Comparative Screening of Recombinant Antigen Thermostability for Improved Leptospirosis Vaccine Design. Biotechnol. Bioeng. 2019, 116, 260–271. [Google Scholar] [CrossRef]
- Pappas, C.J.; Picardeau, M. Control of Gene Expression in Leptospira Spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira Interrogans Virulence. Appl. Environ. Microbiol. 2015, 81, 7888–7892. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.J.A.; Cerqueira, G.M.; Suchard, M.A.; Moreira, A.N.; Zuerner, R.L.; Reis, M.G.; Haake, D.A.; Ko, A.I.; Dellagostin, O.A. Genetic Diversity of the Leptospiral Immunoglobulin-like (Lig) Genes in Pathogenic Leptospira spp. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2009, 9, 196. [Google Scholar] [CrossRef]
- Silva, E.F.; Medeiros, M.A.; McBride, A.J.A.; Matsunaga, J.; Esteves, G.S.; Ramos, J.G.R.; Santos, C.S.; Croda, J.; Homma, A.; Dellagostin, O.A.; et al. The Terminal Portion of Leptospiral Immunoglobulin-like Protein LigA Confers Protective Immunity against Lethal Infection in the Hamster Model of Leptospirosis. Vaccine 2007, 25, 6277–6286. [Google Scholar] [CrossRef] [PubMed]
- Choy, H.A.; Kelley, M.M.; Chen, T.L.; Møller, A.K.; Matsunaga, J.; Haake, D.A. Physiological Osmotic Induction of Leptospira Interrogans Adhesion: LigA and LigB Bind Extracellular Matrix Proteins and Fibrinogen. Infect. Immun. 2007, 75, 2441–2450. [Google Scholar] [CrossRef] [PubMed]
- van Putten, J.P.; Paul, S.M. Binding of Syndecan-like Cell Surface Proteoglycan Receptors Is Required for Neisseria gonorrhoeae Entry into Human Mucosal Cells. EMBO J. 1995, 14, 2144–2154. [Google Scholar] [CrossRef]
- Menozzi, F.D.; Pethe, K.; Bifani, P.; Soncin, F.; Brennan, M.J.; Locht, C. Enhanced Bacterial Virulence through Exploitation of Host Glycosaminoglycans. Mol. Microbiol. 2002, 43, 1379–1386. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, C.; Barbieri, A.M.; Berón, W.; Wandinger-Ness, A.; Stahl, P.D. Phagocytosed Live Listeria monocytogenes Influences Rab5-Regulated in Vitro Phagosome-Endosome Fusion. J. Biol. Chem. 1996, 271, 13834–13843. [Google Scholar] [CrossRef]
- Fleckenstein, J.M.; Holland, J.T.; Hasty, D.L. Interaction of an Outer Membrane Protein of Enterotoxigenic Escherichia coli with Cell Surface Heparan Sulfate Proteoglycans. Infect. Immun. 2002, 70, 1530–1537. [Google Scholar] [CrossRef]
- Leong, J.M.; Wang, H.; Magoun, L.; Field, J.A.; Morrissey, P.E.; Robbins, D.; Tatro, J.B.; Coburn, J.; Parveen, N. Different Classes of Proteoglycans Contribute to the Attachment of Borrelia burgdorferi to Cultured Endothelial and Brain Cells. Infect. Immun. 1998, 66, 994–999. [Google Scholar] [CrossRef]
- Parveen, N.; Leong, J.M. Identification of a Candidate Glycosaminoglycan-Binding Adhesin of the Lyme Disease Spirochete Borrelia burgdorferi. Mol. Microbiol. 2000, 35, 1220–1234. [Google Scholar] [CrossRef]
- Fischer, J.R.; Parveen, N.; Magoun, L.; Leong, J.M. Decorin-Binding Proteins A and B Confer Distinct Mammalian Cell Type-Specific Attachment by Borrelia burgdorferi, the Lyme Disease Spirochete. Proc. Natl. Acad. Sci. USA 2003, 100, 7307–7312. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.R.; LeBlanc, K.T.; Leong, J.M. Fibronectin Binding Protein BBK32 of the Lyme Disease Spirochete Promotes Bacterial Attachment to Glycosaminoglycans. Infect. Immun. 2006, 74, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-P.; Bhowmick, R.; Coburn, J.; Leong, J.M. Host Cell Heparan Sulfate Glycosaminoglycans Are Ligands for OspF-Related Proteins of the Lyme Disease Spirochete. Cell. Microbiol. 2015, 17, 1464–1476. [Google Scholar] [CrossRef]
- Takahashi, M.B.; Teixeira, A.F.; Nascimento, A.L.T.O. The Leptospiral LipL21 and LipL41 Proteins Exhibit a Broad Spectrum of Interactions with Host Cell Components. Virulence 2021, 12, 2798–2813. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Ojcius, D.M.; Sun, D.; Zhao, J.; Lin, X.; Li, L.; Li, L.; Yan, J. The Mammalian Cell Entry (Mce) Protein of Pathogenic Leptospira Species Is Responsible for RGD Motif-Dependent Infection of Cells and Animals. Mol. Microbiol. 2012, 83, 1006–1023. [Google Scholar] [CrossRef]
- Hauck, C.R.; Agerer, F.; Muenzner, P.; Schmitter, T. Cellular Adhesion Molecules as Targets for Bacterial Infection. Eur. J. Cell Biol. 2006, 85, 235–242. [Google Scholar] [CrossRef]
- Johnson, R.C.; Muschel, L.H. Antileptospiral Activity of Normal Serum. J. Bacteriol. 1965, 89, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
- Meri, T.; Murgia, R.; Stefanel, P.; Meri, S.; Cinco, M. Regulation of Complement Activation at the C3-Level by Serum Resistant Leptospires. Microb. Pathog. 2005, 39, 139–147. [Google Scholar] [CrossRef]
- Barbosa, A.S.; Abreu, P.A.E.; Vasconcellos, S.A.; Morais, Z.M.; Gonçales, A.P.; Silva, A.S.; Daha, M.R.; Isaac, L. Immune Evasion of Leptospira Species by Acquisition of Human Complement Regulator C4BP. Infect. Immun. 2009, 77, 1137–1143. [Google Scholar] [CrossRef]
- Verma, A.; Hellwage, J.; Artiushin, S.; Zipfel, P.F.; Kraiczy, P.; Timoney, J.F.; Stevenson, B. LfhA, a Novel Factor H-Binding Protein of Leptospira Interrogans. Infect. Immun. 2006, 74, 2659–2666. [Google Scholar] [CrossRef]
- McDowell, J.V.; Frederick, J.; Miller, D.P.; Goetting-Minesky, M.P.; Goodman, H.; Fenno, J.C.; Marconi, R.T. Identification of the Primary Mechanism of Complement Evasion by the Periodontal Pathogen, Treponema Denticola. Mol. Oral Microbiol. 2011, 26, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kraiczy, P.; Skerka, C.; Brade, V.; Zipfel, P.F. Further Characterization of Complement Regulator-Acquiring Surface Proteins of Borrelia burgdorferi. Infect. Immun. 2001, 69, 7800–7809. [Google Scholar] [CrossRef] [PubMed]
Host | Components | rLigA7’-13’ (μM) | rLigB1’-7’ (μM) |
---|---|---|---|
Integrins | αVβ1 | 4.45 ± 2.82 | 1.57 ± 0.12 |
αVβ5 | 3.84 ± 1.91 | 1.09 ± 0.31 | |
αVβ8 | 11.36 ± 1.33 | 0.72 ± 0.02 | |
αIIbβ3 | 3.25 ± 0.24 | 0.50 ± 0.005 | |
αVβ6 | 20.39 ± 8.31 | 31.00 ± 18.69 | |
αVβ3 | 1.98 ± 2.12 | 16.88 ± 0.77 | |
αMβ2 | 5.69 ± 1.18 | 72.00 ± 23.93 | |
αLβ2 | 3.44 ± 1.14 | 1.68 ± 0.66 | |
α8 | 7.66 ± 4.58 | 19.45 ± 8.22 | |
α5β1 | 1.51 ± 2.75 | 34.22 ± 12.95 | |
GAGs | Chondroitin-4-sulfate | 2.38 ± 0.47 | - |
Chondroitin sulfate | 2.62 ± 0.77 | - | |
Chondroitin sulfate B | 3.78 ± 0.93 | - | |
Heparin | 2.70 ± 0.52 | - | |
Heparan Sulfate | 7.98 ± 4.87 | - | |
Complement system components | C5b,6 | ND | ND |
C6 | - | ND | |
C7 | 3.59 ± 2.03 | 18.78 ± 4.92 | |
C8 | 4.62 ± 4.12 | 6.50 ± 6.12 | |
C9 | 1.95 ± 3.88 | 6.12 ± 5.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, H.M.; Silva, I.R.M.; Teixeira, A.F.; Nascimento, A.L.T.O. Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains. Microorganisms 2025, 13, 1293. https://doi.org/10.3390/microorganisms13061293
Pires HM, Silva IRM, Teixeira AF, Nascimento ALTO. Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains. Microorganisms. 2025; 13(6):1293. https://doi.org/10.3390/microorganisms13061293
Chicago/Turabian StylePires, Henrique M., Igor R. M. Silva, Aline F. Teixeira, and Ana L. T. O. Nascimento. 2025. "Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains" Microorganisms 13, no. 6: 1293. https://doi.org/10.3390/microorganisms13061293
APA StylePires, H. M., Silva, I. R. M., Teixeira, A. F., & Nascimento, A. L. T. O. (2025). Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains. Microorganisms, 13(6), 1293. https://doi.org/10.3390/microorganisms13061293