Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Test Strains
2.2. Isolation and Screening of Bacterial Strains
2.3. Fermentation Culture of Strain YJ-2 and Preparation of the Active Extract
2.4. Morphological Observation
2.5. Biological Characteristics of Strain YJ-2
2.6. Phylogenetic Identification of Strain YJ-2 Based on 16S rRNA Sequencing and Genome Sequencing
2.7. Determination of the Bacteriostatic Spectrum
2.8. Effect of Strain YJ-2 Active Extract on the Hyphal Morphology of V. mali
2.9. Stability Analysis of the Active Extract of Strain YJ-2
2.10. Experiment on Prevention of the Infection of V. mali in Apple Tree Branches
2.11. Potted Anti-Efficiency Experiment of Strain YJ-2 Bone Gum Agent
2.12. Potted Anti-Efficiency Experiment of Strain YJ-2 Seed-Coating Agent
2.13. Potted Anti-Efficiency Experiment of Strain YJ-2 Wettable Powder
2.14. Colonization of Strain YJ-2 in the Root and Shoot Parts of Tomato and Wheat Plants
2.15. Bioinformatics Analysis of Biocontrol
2.16. Construction of Mutant and Complementary Strains
2.17. Identification of Genes Involved in the Antifungal Activity of Strain YJ-2
2.18. Statistical Analysis
3. Results
3.1. Isolation of Strain YJ-2
3.2. Identification of Strain YJ-2
3.3. Antifungal Spectrum of B. stagnalis YJ-2
3.4. Hyphal Morphology Changes
3.5. Assessment of the Stability of the Active Extract of Burkholderia sp. YJ-2
3.6. Evaluation of the Biocontrol Ability of Burkholderia sp. YJ-2 Against Pathogenic Plant Fungi
3.7. Analysis of the Colonization Ability of Burkholderia sp. YJ-2 in Plants
3.8. Bioinformatics Analysis of Burkholderia sp. YJ-2
3.8.1. Genome Sequencing and Species Annotation of Burkholderia sp. YJ-2
3.8.2. Genome Analysis and Secondary Metabolite Synthesis Gene Cluster Prediction of B. stagnalis YJ-2
3.9. Identification of Genes Involved in the Antifungal Effects of YJ-2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, K.D.; Yu, N.H.; Park, A.R.; Park, D.J.; Kim, C.J.; Kim, J.C. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 2022, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Dürr, C.; Schwanck, A.A.; Robin, M.H.; Sarthou, J.P.; Cellier, V.; Messéan, A.; Aubertot, J.N. Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 2017, 37, 10. [Google Scholar]
- Wu, X.M.; Wang, H.X.; Yun, Y.Z.; Ma, Z.H. Research progress on the resistance of plant pathogenic fungi to fungicides. Plant Prot. 2023, 49, 243–259. [Google Scholar]
- Walder, F.; Schmid, M.W.; Riedo, J.; Valzano-Held, A.Y.; Banerjee, S.; Büchi, L.; Bucheli, T.D.; van Der Heijden, M.G.A. Soil microbiome signatures are associated with pesticide residues in arable landscapes. Soil Biol. Biochem. 2022, 174, 108830. [Google Scholar]
- Miles, L.A.; Lopera, C.A.; González, S.; de García, M.C.C.; Franco, A.E.; Restrepo, S. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. Biocontrol 2012, 57, 697–710. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). All Standards ZH | CODEXALIMENTARIUS FAO-WHO. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/all-standards/zh/ (accessed on 27 May 2025).
- Mourouzidou, S.; Ntinas, G.K.; Tsaballa, A.; Monokrousos, N. Introducing the power of plant growth promoting microorganisms in soilless systems: A promising alternative for sustainable agriculture. Sustainability 2023, 15, 5959. [Google Scholar] [CrossRef]
- Wei, J.B.; Zhao, J.; Suo, M.; Wu, H.; Zhao, M.; Yang, H.Y. Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biol. Control 2023, 182, 105222. [Google Scholar]
- Handelsman, J.; Stabb, E.V. Biocontrol of soilborne plant pathogens. Plant Cell 1996, 8, 1855–1869. [Google Scholar]
- Dai, P.B.; Zong, Z.F.; Ma, Q.; Wang, Y. Isolation, evaluation and identification of rhizosphere actinomycetes with potential application for biocontrol of Valsa mali. Eur. J. Plant Pathol. 2019, 153, 119–130. [Google Scholar] [CrossRef]
- Yang, C.J.; Gao, Y.; Du, K.Y.; Luo, X.Y. Screening of 17 Chinese medicine plants against phytopathogenic fungi and active component in Syzygium aromaticum. J. Plant Dis. Prot. 2020, 127, 237–244. [Google Scholar] [CrossRef]
- Valetti, L.; Lima, N.B.; Cazón, L.; Crociara, C.; Ortega, L.; Pastor, S. Mycoparasitic Trichoderma isolates as a biocontrol agent against Valsa ceratosperma, the causal agent of apple valsa canker. Eur. J. Plant Pathol. 2022, 163, 923–935. [Google Scholar]
- Wang, H.; Tian, R.Z.; Tian, Q.Z.; Yan, X.; Huang, L.L.; Ji, Z.Q. Investigation on the antifungal ingredients of saccharothrix yanglingensis hhs.015, an antagonistic endophytic actinomycete isolated from cucumber plant. Molecules 2019, 24, 3686. [Google Scholar] [CrossRef]
- Li, Y.K.; Aioub, A.A.A.; Lv, B.; Hu, Z.N.; Wu, W.J. Antifungal activity of pregnane glycosides isolated from Periploca sepium root barks against various phytopathogenic fungi. Ind. Crops Prod. 2019, 132, 150–155. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.H.; Xi, Y.G.; Tian, W. Research progress on application of antagonistic bacteria in biological control of plant diseases. Jiangsu Agric. Sci. 2017, 45, 1–6. [Google Scholar]
- Villavicencio-Vásquez, M.; Espinoza-Lozano, F.; Espinoza-Lozano, L.; Coronel-León, J. Biological control agents: Mechanisms of action, selection, formulation and challenges in agriculture. Front. Agron. 2025, 7, 1578915. [Google Scholar] [CrossRef]
- Kong, P.; Richardson, P.; Hong, C. Burkholderia sp. SSG is a broad-spectrum antagonist against plant diseases caused by diverse pathogens. Biol. Control 2020, 151, 104380. [Google Scholar]
- Mendes, R.; Pizzirani-Kleiner, A.A.; Araujo, W.L.; Raaijmakers, J.M. Diversity of cultivated endophytic bacteria from sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 2007, 73, 7259–7267. [Google Scholar] [CrossRef] [PubMed]
- Bevivino, A.; Dalmastri, C.; Tabacchioni, S.; Chiarini, L. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils 2000, 31, 225–231. [Google Scholar] [CrossRef]
- Li, W.; Roberts, D.P.; Dery, P.D.; Meyer, S.L.F.; Lohrke, S.; Lumsden, R.D.; Hebbar, K.P. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 2002, 21, 129–135. [Google Scholar]
- Li, X.; Quan, C.S.; Fan, S.D. Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Lett. Appl. Microbiol. 2007, 45, 508–514. [Google Scholar]
- Li, X.; Quan, C.S.; Yu, H.Y.; Wang, J.H.; Fan, S.D. Assessment of antifungal effects of a novel compound from Burkholderia cepacia against Fusarium solani by fluorescent staining. World J. Microbiol. Biotechnol. 2009, 25, 151–154. [Google Scholar] [CrossRef]
- Sandani, H.B.P.; Ranathunge, N.P.; Lakshman, P.L.N.; Weerakoon, W.M.W. Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Sci. Technol. 2019, 29, 727–745. [Google Scholar] [CrossRef]
- An, C.; Ma, S.J.; Liu, C.; Ding, H.; Xue, W.J. Burkholderia ambifaria XN08: A plant growth-promoting endophytic bacterium with biocontrol potential against sharp eyespot in wheat. Front. Microbiol. 2022, 13, 906724. [Google Scholar] [CrossRef] [PubMed]
- García-Fraile, P.; Benada, O.; Cajthaml, T.; Baldrian, P.; Lladó, S. Terracidiphilus gabretensis gen. nov., sp. nov.: An abundant and active forest soil Acidobacteria important in organic matter transformation. Appl. Environ. Microbiol. 2016, 82, 560–569. [Google Scholar] [CrossRef]
- Park, H.G.; Sathiyanarayanan, G.; Hwang, C.H.; Ann, D.H.; Kim, J.H.; Bang, G.; Jang, K.S.; Ryu, H.W.; Lee, Y.K.; Yang, Y.H.; et al. Chemical structure of the lipid A component of Pseudomonas sp. strain PAMC 28618 from thawing permafrost in relation to pathogenicity. Sci. Rep. 2017, 7, 2168. [Google Scholar] [CrossRef]
- Jia, F.A.; Chen, L.; Chen, L.; Chen, W.L. Isolation and characterization of antagonistic bacteria against three major fungal pathogens of greenhouse melon. Acta Phytophy. Sin. 2010, 37, 505–510. [Google Scholar]
- Zhang, H.; Cheng, J.L.; Zhu, X.F.; Zhang, S.L.; Yan, L.W.; Lin, J.S. Identification and biocontrol evaluation of Streptomyces sp. strain ZH-356 antagonistic to plant pathogenic fungi. Acta Microbiol. Sin. 2022, 62, 3421–3436. [Google Scholar]
- Han, H.J.; Ko, M.N.; Shin, C.S.; Hyun, C.G. Human health benefits and microbial consortium of stevia fermented with barley nuruk. Fermentation 2024, 10, 330. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wei, L.; Xu, R.; Lin, G.D.; Xin, H.J.; Lv, Z.B.; Qian, H.; Shi, H.B. Evaluation of the Antibacterial Material Production in the Fermentation of Bacillus amyloliquefaciens-9 from Whitespotted Bamboo Shark (Chiloscyllium plagiosum). Mar. Drugs 2020, 18, 119. [Google Scholar] [CrossRef]
- Krieg, N.R. Identification of procaryotes. In Bergey’s Manual® of Systematic Bacteriology; Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 33–38. [Google Scholar]
- Shin, S.H.; Lim, Y.; Lee, S.E.; Yang, N.W.; Rhee, J.H. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 2001, 44, 89–95. [Google Scholar] [CrossRef]
- Meng, X.J.; Galileya Medison, R.; Cao, S.; Wang, L.Q.; Cheng, S.; Tan, L.T.; Sun, Z.X.; Zhou, Y. Isolation, identification, and biocontrol mechanisms of endophytic Burkholderia vietnamiensis C12 from Ficus tikoua Bur against Rhizoctonia solani. Biol. Control 2023, 178, 105132. [Google Scholar] [CrossRef]
- Ehmann, A. Vanurk-salkowski reagent-sensitive and specific chromogenic reagent for silica-gel thin-layer chromatographic detection and identification of indole-derivatives. J. Chromatogr. 1977, 132, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Tang, B.; Deng, B.; Li, J.H.; He, Y.J.; Zhang, J.L. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis. Acta Pratacult. Sin. 2021, 30, 59–71. [Google Scholar]
- Akhter, M.S.; Hossain, S.J.; Hossain, S.A.; Datta, R.K. Isolation and characterization of salinity tolerant Azotobacter sp. Greener J. Biol. Sci. 2012, 2, 43–51. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Z.R. Random local neighbor joining: A new method for reconstructing phylogenetic trees. Mol. Phylogenet. Evol. 2008, 47, 117–128. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Klenk, H.P.; Göker, M. Taxonomic use of DNA G plus C content and DNA-DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Ghyselinck, J.; Coorevits, A.; Van Landschoot, A.; Samyn, E.; Heylen, K.; De Vos, P. An rpoD gene sequence based evaluation of cultured Pseudomonas diversity on different growth media. Microbiology 2013, 159, 2097–2108. [Google Scholar] [CrossRef]
- Deng, Z.S.; Zhao, L.F.; Zhang, W.W.; Ji, Y.L.; Wei, G.H. Isolation of endophytic fungi from ginkgo biloba l. and their antagonism on the valsa mali miyabe et yamada. Acta Bot. Boreali-Occident. Sin. 2009, 29, 608–613. [Google Scholar]
- Sabaté, D.C.; Audisio, M.C. Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol. Res. 2013, 168, 125–129. [Google Scholar] [CrossRef]
- Guo, X.F.; Xu, B.L.; Han, J.; Xu, C.Z.; Wang, W.X.; Zhang, S.W. Control effect of 5 chemicals against apple tree canker in laboratory. Chin. Agric. Sci. Bull. 2015, 31, 285–290. [Google Scholar]
- Zhu, H.X.; Ma, Y.Q. Development of the wettable powder of fungal endophyte HL-1 and evaluation of its herbicidal activity. Acta Agrestia Sin. 2019, 27, 1301–1308. [Google Scholar]
- Ma, H.S.; Zhang, F.X.; Ruan, S.L.; Wang, S.Z.; Wang, F. Effects of the mutagenesis strain HZ0501 of Trichoderma green on downy mildew of Chinese cabbage. J. Zhejiang Agric. Sci. 2010, 3, 587–589. [Google Scholar]
- Ma, X.; Li, W.W.; Xiao, W.; Cheng, J.L.; Lin, J.S. Construction and phenotypic characterization of fur-deleted mutant of Pseudomonas aeruginosa. Acta Microbiol. Sin. 2024, 64, 917–937. [Google Scholar]
- Zhou, L.; Cheng, P.; Yu, G.H.; Li, Y.J.; Yang, Z.H. Colonization of Bacillus subtilis strain TR21 in banana plant and rhizosphere. Chin. Agric. Sci. Bull. 2010, 26, 392–396. [Google Scholar]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef]
- Hsiao, W.; Wan, I.; Jones, S.J.; Brinkman, F.S.L. IslandPath: Aiding detection of genomic islands in prokaryotes. Bioinformatics 2003, 19, 418–420. [Google Scholar] [CrossRef]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- Lin, J.S.; Zhang, W.P.; Cheng, J.L.; Yang, X.; Zhu, K.X.; Wang, Y.; Wei, G.H.; Qian, P.Y.; Luo, Z.Q.; Shen, X.H. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 2017, 8, 14888. [Google Scholar] [PubMed]
- Zeng, J.; Ma, X.; Zheng, Y.; Liu, D.D.; Ning, W.Q.; Xiao, W.; Mao, Q.; Bai, Z.Q.; Mao, R.J.; Cheng, J.L. Traditional Chinese medicine monomer bakuchiol attenuates the pathogenicity of pseudomonas aeruginosa via targeting PqsR. Int. J. Mol. Sci. 2024, 26, 243. [Google Scholar] [CrossRef]
- Meyer, J.M.; Van Van, T.; Stintzi, A.; Berge, O.; Winkelmann, G. Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). Biometals 1995, 8, 309–317. [Google Scholar] [PubMed]
- Dose, B.; Niehs, S.P.; Scherlach, K.; Florez, L.V.; Kaltenpoth, M.; Hertweck, C. Unexpected bacterial origin of the antibiotic icosalide: Two-tailed depsipeptide assembly in multifarious burkholderia symbionts. ACS Chem. Biol. 2018, 13, 2414–2420. [Google Scholar] [PubMed]
- Sun, Z.X.; Meng, X.J.; Long, X.Y.; Qiu, M.S.; Mao, G.Q.; Zhou, Y. Effects of Burkholderia sp.YZU-S230 on the control and growth promotion of watermelon Fusarium wilt. J. Yangtze Univ. (Nat. Sci. Ed.) 2021, 18, 82–88. [Google Scholar]
- Han, C.; Wu, G.Y.; Liu, A.X.; Wang, Y.J. Screening and identification of an antagonistic Burkholderia pyrrocinia strain A12 and its growth-promoting effects on tobacco seedling. Acta Agric. Zhejiangensis 2012, 24, 880–885. [Google Scholar]
- El-Banna, N.; Winkelmann, G. Pyrrolnitrin from Burkholderia cepacia antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 1998, 85, 69–78. [Google Scholar] [CrossRef]
- Lu, S.E.; Novak, J.; Austin, F.W.; Gu, G.; Ellis, D.; Kirk, M.; Wilson-Stanford, S.; Tonelli, M.; Smith, L. Occidiofungin, a unique antifungal glycopeptide produced by a strain of burkholderia contaminans. Biochemistry 2009, 48, 8312–8321. [Google Scholar]
- Mahenthiralingam, E.; Song, L.; Sass, A.; White, J.; Wilmot, C.; Marchbank, A.; Boaisha, O.; Paine, J.; Knight, D.; Challis, G.L. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem. Biol. 2011, 18, 665–677. [Google Scholar]
- Itoh, J.; Amano, S.; Ogawa, Y.; Kodama, Y.; Ezaki, N.; Yamada, Y. Studies on antibiotics BN-227 and BN-227-F, new antibiotics II. Chemical structure of antibiotics BN-227 and BN-227-F. J. Antibiot. 1980, 33, 377–382. [Google Scholar] [CrossRef]
- Trinh, L.L.; Nguyen Ngoc, M.D.; Nguyen, H.H. Cell-free supernatant crude extracts of mold-competing bacteria protect peanut crops against yellow mold disease caused by Aspergillus flavus AF1. Biocatal. Agric. Biotechnol 2024, 56, 103028. [Google Scholar] [CrossRef]
- Stephan, H.; Freund, S.; Beck, W.; Jung, G.; Meyer, J.M.; Winkelmann, G. Ornibactins—A new family of siderophores from Pseudomonas. Biometals 1993, 6, 93–100. [Google Scholar] [CrossRef] [PubMed]
- De Smet, B.; Mayo, M.; Peeters, C.; Zlosnik, J.E.A.; Spilker, T.; Hird, T.J.; LiPuma, J.J.; Kidd, T.J.; Kaestli, M.; Ginther, J.L.; et al. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int. J. Syst. Evol. Microbiol. 2015, 65, 2265–2271. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.T.; Cao, Y.Q.; Li, Y.L.; Bai, F.L.; Bai, B.X.; Ren, J.H.; Meng, J.; Li, L.; Wang, Y. Isolation, identification, and whole-genome sequence analysis of a plant growth-promoting bacterium LWK2 from Cercidiphyllum japonicum rhizosphere. Microbiol. China 2023, 50, 1917–1940. [Google Scholar]
- Franke, J.; Ishida, K.; Hertweck, C. Evolution of Siderophore Pathways in Human Pathogenic Bacteria. J. Am. Chem. Soc. 2014, 136, 5599–5602. [Google Scholar]
- Deng, P.; Foxfire, A.; Xu, J.H.; Baird, S.M.; Jia, J.Y.; Delgado, K.H.; Shin, R.; Smith, L.; Lu, S.E. Siderophore product ornibactin is required for the bactericidal activity of Burkholderia contaminans MS14. Appl. Environ. Microbiol. 2017, 83, e00051-17. [Google Scholar]
- Zhang, H.; Yang, J.S.; Cheng, J.L.; Zeng, J.; Ma, X.; Lin, J.S. PQS and pyochelin in Pseudomonas aeruginosa share inner membrane transporters to mediate iron uptake. Microbiol. Spectrum 2024, 12, e0325623. [Google Scholar]
- Yu, M.; Tang, Y.; Lu, L.; Kong, W.; Ye, J. CysB is a key regulator of the antifungal activity of burkholderia pyrrocinia JK-SH007. Int. J. Mol. Sci. 2023, 24, 8067. [Google Scholar]
- Florez, L.V.; Scherlach, K.; Gaube, P.; Ross, C.; Sitte, E.; Hermes, C.; Rodrigues, A.; Hertweck, C.; Kaltenpoth, M. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. 2017, 8, 15172. [Google Scholar] [CrossRef]
- Dose, B.; Niehs, S.P.; Scherlach, K.; Shahda, S.; Florez, L.V.; Kaltenpoth, M.; Hertweck, C. Biosynthesis of sinapigladioside, an antifungal isothiocyanate from burkholderia symbionts. Chembiochem 2021, 22, 1920–1924. [Google Scholar]
- Dose, B.; Thongkongkaew, T.; Zopf, D.; Kim, H.J.; Bratovanov, E.V.; Garcia-Altares, M.; Scherlach, K.; Kumpfmueller, J.; Ross, C.; Hermenau, R.; et al. Multimodal molecular imaging and identification of bacterial toxins causing mushroom soft rot and cavity disease. Chembiochem 2021, 22, 2901–2907. [Google Scholar] [PubMed]
- Zhao, T.X.; Zhang, L.D.; Qi, C.P.; Bing, H.; Ling, L.; Cai, Y.; Guo, L.F.; Wang, X.J.; Zhao, J.W.; Xiang, W.S. A seed-endophytic bacterium NEAU-242-2: Isolation, identification, and potential as a biocontrol agent against Bipolaris sorokiniana. Biol. Control 2023, 185, 105312. [Google Scholar]
- Lyu, Y.H.; Zhang, T.T.; Dou, B.J.; Li, G.J.; Ma, C.X.; Li, Y.Y. A lipopeptide biosurfactant from Bacillus sp Lv13 and their combined effects on biodesulfurization of dibenzothiophene. RSC Adv. 2018, 8, 38787–38791. [Google Scholar]
- Cordova-Kreylos, A.L.; Fernandez, L.E.; Koivunen, M.; Yang, A.; Flor-Weiler, L.; Marrone, P.G. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 2013, 79, 7669–7678. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.; Zlosnik, J.E.; Spilker, T.; Hird, T.J.; LiPuma, J.J.; Vandamme, P. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst. Appl. Microbiol. 2013, 36, 483–489. [Google Scholar] [CrossRef]
- Vanlaere, E.; LiPuma, J.J.; Baldwin, A.; Henry, D.; De Brandt, E.; Mahenthiralingam, E.; Speert, D.; Dowson, C.; Vandamme, P. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int. J. Syst. Evol. Microbiol. 2008, 58, 1580–1590. [Google Scholar] [CrossRef]
- Bach, E.; Sant’Anna, F.H.; dos Passos, J.F.M.; Balsanelli, E.; de Baura, V.A.; Pedrosa, F.d.O.; de Souza, E.M.; Passaglia, L.M.P. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov. Pathog. Dis. 2017, 75, ftx076. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.S.; Aw, Y.K.; Lee, L.H.; Yule, C.M.; Cheow, Y.L.; Lee, S.M. Burkholderia paludis sp. nov., an Antibi-otic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil. Front Microbiol. 2016, 7, 2046. [Google Scholar]
- Yabuuchi, E.; Kawamura, Y.; Ezaki, T.; Ikedo, M.; Dejsirilert, S.; Fujiwara, N.; Naka, T.; Kobayashi, K. Burkholderia uboniae sp. Nov., l-Arabinose-Assimilating but Different from Burkholderia thailandensis and Burkholderia vietnamiensis. Microbiol. Immunol. 2000, 44, 307–317. [Google Scholar]
- Velez, L.S.; Aburjaile, F.F.; Farias, A.R.; Baia, A.D.; Oliveira, W.J.; Silva, A.M.; Benko-Iseppon, A.M.; Azevedo, V.; Brenig, B.; Ham, J.H.; et al. Burkholderia semiarida sp. nov. and Burkholderia sola sp. nov., two novel B. cepacia complex species causing onion sour skin. Syst. Appl. Microbiol. 2023, 46, 126415. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Holmes, B.; Vancanneyt, M.; Coenye, T.; Hoste, B.; Coopman, R.; Revets, H.; Lauwers, S.; Gillis, M.; Kersters, K.; et al. Occurrence of Multiple Genomovars of Burkholderia cepacia in Cystic Fibrosis Patients and Proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Evol. Microbiol. 1997, 47, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T.; Mahenthiralingam, E.; Henry, D.; LiPuma, J.J.; Laevens, S.; Gillis, M.; Speert, D.P.; Vandamme, P. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 2001, 51, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Mahenthiralingam, E.; Holmes, B.; Coenye, T.; Hoste, B.; De Vos, P.; Henry, D.; Speert, D.P. Identification and Population Structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia Genomovar IV). J. Clin. Microbiol. 2000, 38, 1042–1047. [Google Scholar] [CrossRef]
- Depoorter, E.; De Canck, E.; Peeters, C.; Wieme, A.D.; Cnockaert, M.; Zlosnik, J.E.A.; LiPuma, J.J.; Coenye, T.; Vandamme, P. Burkholderia cepacia Complex Taxon K: Where to Split? Front. Microbiol. 2020, 11, 1594. [Google Scholar] [CrossRef]
- Morales-Ruíz, L.-M.; Rodríguez-Cisneros, M.; Kerber-Díaz, J.-C.; Rojas-Rojas, F.-U.; Ibarra, J.A.; Santos, P.E.-D.L. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch. Microbiol. 2022, 204, 1–9. [Google Scholar] [CrossRef]
T/°C | Antimicrobial Activity | pH | Antimicrobial Activity |
---|---|---|---|
25 | +++ | 2 | +++ |
50 | +++ | 4 | +++ |
60 | +++ | 6 | +++ |
70 | +++ | 8 | +++ |
80 | +++ | 10 | +++ |
90 | ++ | 12 | ++ |
100 | + | CK1 | - |
ND | ND | CK2 | - |
Clusters | Type | Gene ID | Similar Known Cluster | Similarity (%) |
---|---|---|---|---|
Cluster 1 | Arylpolyene | YJ-2_GM000898-YJ-2_GM000935 | APE-Vf | 10 |
Cluster 2 | Terpene | YJ-2_GM001765-YJ-2_GM001781 | - | - |
Cluster 3 | RiPP-like | YJ-2_GM002008-YJ-2_GM002012 | - | - |
Cluster 4 | NRPS | YJ-2_GM002015-YJ-2_GM002048 | Icosalide A/icosalide B | 100 |
Cluster 5 | NRPS | YJ-2_GM002090-YJ-2_GM002133 | Ornibactin C8/ornibactin C4/ornibactin C6 | 100 |
Cluster 6 | NRPS | YJ-2_GM002209-YJ-2_GM002245 | Aminochelin/azotochelin/protochelin | 62 |
Cluster 7 | Arylpolyene | YJ-2_GM002427-YJ-2_GM002464 | APE-Ec | 36 |
Cluster 8 | Hserlactone, terpene | YJ-2_GM003941-YJ-2_GM003963 | - | - |
Cluster 9 | NRPS-like, T1PKS, betalactone | YJ-2_GM004190-YJ-2_GM004214 | - | - |
Cluster 10 | Terpene | YJ-2_GM004564-YJ-2_GM004582 | N-acyloxyacylglutamine | 50 |
Cluster 11 | Phosphonate | YJ-2_GM004702-YJ-2_GM004730 | Pf-5 pyoverdine | 2 |
Cluster 12 | HR-T2PKS | YJ-2_GM006205-YJ-2_GM006244 | S56-p1 | 7 |
Cluster 13 | RRE-containing, RiPP-like | YJ-2_GM005923-YJ-2_GM005932 | - | - |
Cluster 14 | Ectoine | YJ-2_GM000056-YJ-2_GM000064 | Kosinostatin | 4 |
Cluster 15 | NRPS, NRPS-like | YJ-2_GM006155-YJ-2_GM006226 | Bolagladin A/bolagladin B | 19 |
Cluster 16 | Hydrogen-cyanide | YJ-2_GM006725-YJ-2_GM006735 | - | - |
Cluster 17 | Hserlactone | YJ-2_GM006304YJ-2_GM006324 | Bactobolin | 23 |
Cluster 18 | T1PKS | YJ-2_GM006380-YJ-2_GM006411 | Difficidin | 13 |
Cluster 19 | Betalactone | YJ-2_GM006478-YJ-2_GM006504 | Pacifibactin | 10 |
Cluster 20 | RiPP-like | YJ-2_GM006534-YJ-2_GM006569 | Sinapigladioside | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Ning, W.; Xiao, W.; Wang, Z.; Li, S.; Zhang, J.; Ren, M.; Xu, C.; Liu, B.; Wang, Y.; et al. Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases. Microorganisms 2025, 13, 1289. https://doi.org/10.3390/microorganisms13061289
Zhu X, Ning W, Xiao W, Wang Z, Li S, Zhang J, Ren M, Xu C, Liu B, Wang Y, et al. Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases. Microorganisms. 2025; 13(6):1289. https://doi.org/10.3390/microorganisms13061289
Chicago/Turabian StyleZhu, Xufei, Wanqing Ning, Wei Xiao, Zhaoren Wang, Shengli Li, Jinlong Zhang, Min Ren, Chengnan Xu, Bo Liu, Yanfeng Wang, and et al. 2025. "Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases" Microorganisms 13, no. 6: 1289. https://doi.org/10.3390/microorganisms13061289
APA StyleZhu, X., Ning, W., Xiao, W., Wang, Z., Li, S., Zhang, J., Ren, M., Xu, C., Liu, B., Wang, Y., Cheng, J., & Lin, J. (2025). Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases. Microorganisms, 13(6), 1289. https://doi.org/10.3390/microorganisms13061289