Biosphere Plastic Contamination and Microbial Alternatives for a Sustainable Degradation of Plastic Waste
Abstract
:1. Introduction
2. Plastics in the Biosphere: Outlining the Problem
2.1. Most Used Plastics Around the World
Plastic Degradation Is a Significant Concern in Environmental and Human Health Scenarios
3. Biodegradability of Plastics and Factors Affecting the Degradation Process: An Overview
4. Diversity of Fungi and Bacteria Capable of Degrading Plastics
Polymer/Acronym | Chemical Structure | Degrading Microorganism | Reference |
---|---|---|---|
Poly(ethylene adipate)/PEA | [-OCH2CH2OOC(CH2)4CO-]n | Penicillium sp. strain 14-3, Penicillium sp. (ATCC 36507); Pullularia sp. | [33,68] |
Poly(ethylene succinate)/PES | [-O(CH2)2OOC(CH2)2CO-]n | Penicillium sp. strain 14-3, Bacillus pumilis, Aspergillus clavatus, Streptomyces sp., Actinomadura sp., Thermoactinomyces sp. Saccharomonospora sp. | [33] |
Pseudomonas sp. AKS2, Microbispora sp., Bacillus subtilis, Paenibacillus amylolyticus, Rhizopus delemar | [58] | ||
Poly(butylene succinate)/PBS | [-O(CH2)4OOC(CH2)2CO-]n | Penicillium sp. strain 14-Microbispora rosea, Excellospora japonica, Excellospora viridilutea, Firmicutes, Proteobacteria, Streptomyces sp. | [33] |
Poly(butylene adipate)/PBA | [-O(CH2)4O2C(CH2)4CO-]n | Penicillium sp. strain 14-3 | [33] |
Poly(ethylene adipate)/PEA and Poly(-ε-caprolactone)/PCL | [-OCH2CH2OOC(CH2)4CO-]n [-OCH2CH2CH2CH2CH2CO-]n | Rhizopus arrhizus, R. delemar, Achromobacter sp., Candida cylindracea, Aspergillus, Aureobasidium, Penicillium, pullularia. | [33,68] |
PCL | [-OCH2CH2CH2CH2CH2CO-]n | Aspergilus sp. ST-01, Penicillium sp. (ATCC 36507), Firmicutes, Proteobacteria, Clostridium sp., Aspergillus flavus, Penicillium funiculosum. Arcobacter thereius | [33,58] |
Shewanella sp., Moritella sp., Psychrobacter sp., Pseudomonas sp. | [75] | ||
PBS, PCL, and PLA | Saccharothrix JMC9114, Kibdelosporangium aridum JMC7912, Actinomadura keratinilytica T16-1, Amycolatopsis thailandensis PLA07, Streptomyces bangladeshensis 77T-4, Streptomyces thermoviolaceus 76T-2, Aureobasidium sp., Chaetomium sp., Rhizopus sp., Thermoascus aurantiacus, Cryptococcus sp. S-2., and Pseudozyma anctarctica. | [68] | |
Cryptococcus laurentii, Clostridium botulinum, Alcaligenes faecalis. Bacillus brevis, Clostridium botulinum, C. acetobutylicum, Amycolatopsis sp., Fusarium solani, Aspergillus flavus, Tenacibaculum sp., Alcanivorax sp., and Pseudomonas sp. | [58] | ||
PCL and PLA | Arcobacter thereius, Methanobacterium petrolearium, Methanosaeta concilii. | [80] | |
Chaetomium globosum ATCC 16021 | [66] | ||
Streptoverticillium kashmeriense AF1 | [71] | ||
Poly(β-propiolactone)/PPL | [-OCH2CH2CO-]n | Bacillus sp., Acidovorax sp., Variovorax paradoxus, Sphingomonas paucimobilis, and R. delemar | [33] |
Poly(propylene succinate)/PPS and poly(butylen tereftalate/PBT | [O(CH2)3O2CCH2CH2CO]n [OOCC6H4COO(CH2) 4]n | R. delemar | [33] |
AAC’s | Thermobifida fusca | [33] | |
Poly(ethylene)/PE | [–CH2CH2–]n | Lysinibacillus xylanilyticus, Aspergillus niger, A. versicolor, A. flavus, Cladosporium cladosporioides, Fusarium redolens, Fusarium sp. AF4, Penicillium simplicissimum YK, P. pinophilum, P. frequentans, Phanerochaete chrysosporium, Verticillium lecanii, Glioclodium virens, Mucor circinelloides, Acremonium kiliense, Gordonia sp., Nocardia sp., Staphylococcus sp., Streptococcus sp., Micrococcus sp., Streptomyces sp., Rhodococcus sp., Proteussp., Listeriasp., Vibrio sp., Brevibacillus sp., Serratia sp., Diplococcus sp., Moraxella sp., Penicillium sp., Arthrobacter sp., Aspergillus sp., Phanerochaete sp., Chaetomium sp., Gliocladium sp., Mucor rouxii, Methylobacter sp., Nitrosomonas sp. AL212, Nitrobacter winogradskyi, Burkholderia sp., Methylococcus capsulatus, Methylocystic sp., Methylocella sp., Streptomyces coelicoflavus 15399, B. thuringiensis, Stenotrophomonas pavanii, Paecilomyces lilacinus, Lysinibacillus fusiformis, Bacillus cereus, Bacillus mycoides, Avicennia marina, Pseudomonas citronellolis, Burkholderia seminalis, Lasiodiplodia theobromae, Pseudomonas sp. AKS2. | [58] |
Aspergillus japonicus | [59] | ||
Pseudomonas knackmussii, Pseudomonas aeruginosa. | [78] | ||
Brevibacillus parabrevis, P. citronellolis, Acinetobacter baumannii. | [79] | ||
Trametes versicolor, Rhodococcus ruber. | [65] | ||
Brevibacillus borstelensis, Acinetobacter baumannii, Bacillus amyloliquefaciens, B. brevis, B. cereus, B. circulans, B. halodenitrificans, B. mycoides, B. pumilus, B. sphaericus, B. thuringiensis, Arthrobacter paraffineus, A. viscosus, Microbacterium paraoxydans, Nocardia asteroides, Micrococcus luteus, M. lylae, Paenibacillus macerans, P. aeruginosa, P. fluorescens, Rahnella aquatilis, Ralstonia spp., R.ruber, R. rhodochrous, Rhodococcus erythropolis, Staphylococcus cohnii, S. epidermidis, S. xylosus, Stenotrophomonas sp., Streptomyces badius, S. setonii, S. viridosporus. | [22] | ||
Penicillium pinophilum, A. cremeus, A. candidus, A. niger, A. nidulans, A. glaucus, A. flavus. | [68] | ||
Poly(urethane) (PUR) | Pseudomonas chlororaphis ATCC 55729, Comamonas acidovorans TB-35, Chaetomium globosum, Aspergillus terreus, Fusarium solani, Candida ethanolica, Curvularia senegalensis, Aspergillus fumigatus, A. niger, A. flavus, Emericellasp., Lichthemiasp.,Thermomyces sp., Corynebacterium sp., Neonectriasp., Plectosphaerellasp., Phomasp., Nectriasp., Alternariasp., P. aeruginosa, Bacillus sp., Aspergillus foetidus, Pestalotiopsis microspora, Acinetobacter gerneri, Aspergillus terreus, Aspergillus fumigatus, Aspergillus flavus, Fusarium solani | [58] | |
Lasiodiplodia sp. E2611A., Bionectria sp., Pestalotiopsis microspora | [59] | ||
Spicaria sp. Alternaria solani. | [68] |
Polymer/Acronym | Chemical Structure | Degrading Microorganisms | Reference |
---|---|---|---|
Poly(hydroxyalkanoates)/PHAs | Acinetobacter calcoaceticus, Arthrobacter artocyaneus, Bacillus aerophilus, Bacillus megaterium, Brevibacillus agri, Brevibacillus invocatus, Chromobacterium violaceum, Cupriavidus gilardii, Mycobacterium fortuitum, Ochrobactrum anthropi, Staphylococcus arlettae, Staphylococcus haemolyticus, Staphylococcus pasteuri, Pseudomonas acephalitica, Rodococcus equi, Bacillus cereus, Bacillus mycoides, Gordonia terrari, Microbacterium paraoxidans, Nocardiopsis sp., Streptomyces sp., Burkholderia sp., Gongronella butleri, Penicillium sp., Acremonium recifei, Paecilomyces lilacinus, Trichoderma pseudokoningii. | [64] | |
PHAs/PCL/not PLA | Terrabacter tumescens, Terracoccus luteus, Brevibacillus reuszeri, Agrobacterium tumefaciens, Duganella zoogloeoides, Ralstonia eutropha, Ralstonia pickettii, Matsuebacter chitosanotabidus, Roseateles depolymerans, Rhodoferax fermentans, Variovorax paradoxus, Acinetobacter calcoaceticus, Acinetobacter junii, Pseudomonas pavonaceae, Pseudomonas rhodesiae, Pseudomonas amygdali, Pseudomonas veronii. | [74] | |
Poly(3-hydroxybutyrate)/P3HB | [-(OCH3)CHCH2CO-]n | S. kashmirens, Bacillus sp., Streptomyces sp. | [71] |
Comamonas testosterone, Pseudomonas lemoignei, Pseudomonas stutzeri, Acidovorax faecalis, Aspergillus fumigatus, Variovorax paradoxus, Sphingomonas paucimobilis, Amycolatopsis sp. HT-6, Alcaligenes faecalis, Ilyobacter delafieldii, Penicillium funiculosum, Schlegelella thermodepolymerans, Paecilomyces lilacinus, Fusarium sp., Trichoderma sp., Alternaria sp., Aspergillus oryzae. | [33,58] | ||
Nocardiopsis aegyptia | [67] | ||
Acremonium sp., Cladosporium sp, Debaryomyces sp., Emericellopsis sp., Eupenicillium sp., Fusarium sp., Mucor sp., Paecilomyces sp., Penicillium sp., Pullularia sp., Rhodosporidium sp., Verticillium sp. | [68] | ||
P3HB and Poly(ethylene succinate)/PES | [-(OCH3)CHCH2CO-]n ([-O(CH2)2OOC(CH2)2CO-]n | Actinomadura sp., Microbispora sp., Streptomyces sp., Thermoactinomyces sp., Saccharomonospora sp., Aspergillus ustas. | [33] |
Poly(lactic acid)/PLA | [-O(CH3)CHCO-]n | Amycolatopsis sp., Saccharotrix sp., Tritirachium album. | [33] |
Streptomyces bangladeshensis. | [70] | ||
Amycolatopsis sp., Penicillium roqueforti, Bacillus brevis, Rhizopus delemar. | [71] | ||
Fusarium moniliforme, Mesorhizobium sp., Actinomadura keratinilytica NBRC 104111, Bacillus amyloliquefaciens, Pleurotus ostreatus, Cryptococcus sp. S-2, Aneurinibacillus migulanus, Pseudomonas tamsuii, Thermopolyspora sp., Thermomonospora sp., Paecilomyces sp. | [58] | ||
Bordetella petrii, Penicillium roqueforti, Kibdelosporangium aridum JMC7912, Actinomadura keratinilytica T16-1, Amycolatopsis thailandensis PLA07 | [68] | ||
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/P3HB-co-P3HV | Clostridium botulinum, C. acetobutylicum, Streptomyces sp. SNG9 | [58] | |
Streptoverticillium kashmeriense AF1 | [71] |
4.1. Degradation of Copolymers by Individual or Consortium Microorganisms
4.2. Archaea, Cyanobacteria, and Algae Degrading Plastic: Discovering Unknown Abilities from Old Earth Inhabitants
4.3. Plastic-Degrading Microorganisms Living in the Waxworm’s Gut: A New Source for Microbial Enzyme Searching
5. Genetic Basis of Plastic Degradation
6. Concluding Remarks and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segura, D.; Noguez, R.; Espín, G. Contaminación ambiental y bacterias productoras de plásticos biodegradables. Biotecnología 2007, 14, 361–372. [Google Scholar]
- Plastics Europe. Plastics—The Fast Facts 2023; Plastics Europe: Brussels, Belgium, 2023. [Google Scholar]
- Peng, R.; Xia, M.; Ru, J.; Huo, Y.; Yang, Y. Microbial degradation of polyurethane plastics. Sheng Wu Gong Cheng Xue Bao=Chin. J. Biotechnol. 2018, 34, 1398–1409. [Google Scholar]
- Ru, J.; Huo, Y.; Yang, Y. Microbial degradation and valorization of plastic wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Le Juge, C.; Davranche, M.; El Hadri, H.; Grassl, B.; Reynaud, S.; Gigault, J. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere 2021, 262, 127784. [Google Scholar] [CrossRef]
- Surendran, U.; Jayakumar, M.; Raja, P.; Gopinath, G.; Chellam, P.V. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere 2023, 318, 137946. [Google Scholar] [CrossRef]
- Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ. Res. 2022, 207, 112142. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- De Tender, C.A.; Devriese, L.I.; Haegeman, A.; Maes, S.; Ruttink, T.; Dawyndt, P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 2015, 49, 9629–9638. [Google Scholar] [CrossRef]
- De Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Caruso, G.; Bergami, E.; Singh, N.; Corsi, I. Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biol. Secur. 2022, 1, 100034. [Google Scholar] [CrossRef]
- Bergmann, M.; Collard, F.; Fabres, J.; Gabrielsen, G.W.; Provencher, J.F.; Rochman, C.M.; Van Sebille, E.; Tekman, M.B. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 2022, 3, 323–337. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; Vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef]
- Bhattacharya, P. A review on the impacts of microplastic beads used in cosmetics. Acta Biomed. Sci. 2016, 3, 4. [Google Scholar]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Zhou, Y.; Ashokkumar, V.; Amobonye, A.; Bhattacharjee, G.; Sirohi, R.; Singh, V.; Flora, G.; Kumar, V.; Pillai, S.; Zhang, Z. Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review. Environ. Pollut. 2023, 320, 121106. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; De Luca, C.; D’Avino, S.; Gulotta, A.; Rongioletti, M.C.A. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Schwiebs, A.; Solhaug, H.; Stenvik, J.; Nilsen, A.M.; Wagner, M.; Relja, B.; Radeke, H.H. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ. Int. 2022, 163, 107173. [Google Scholar] [CrossRef]
- Kathiresan, K. Polythene and plastics-degrading microbes from the mangrove soil. Rev. Biol. Trop. 2003, 51, 629–633. [Google Scholar]
- Restrepo-Flórez, J.-M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene–A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Joksimovic, N.; Selakovic, D.; Jovicic, N.; Jankovic, N.; Pradeepkumar, P.; Eftekhari, A.; Rosic, G. Nanoplastics as an Invisible Threat to Humans and the Environment. J. Nanomater. 2022, 2022, 6707819. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Waters, C.N.; Do Sul, J.A.I.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef]
- Isobe, A.; Iwasaki, S.; Uchida, K.; Tokai, T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 2019, 10, 417. [Google Scholar] [CrossRef]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Plastics Europe. Association of Plastics Manufacturers y European Association of Plastics Recycling and Recovery Organisations; Plastics Europe: Brussels, Belgium, 2022. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Harper, C.A. Handbook of Plastics Technologies: The Complete Guide to Properties and Performance; McGraw-Hill: Singapore, 2006. [Google Scholar]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- De Blasio, N.; Fallon, P. Avoiding a Plastic Pandemic: The Future of Sustainability in a Post COVID-19 World; Belfer Center for Science and International Affairs Harvard Kennedy School: Cambridge, MA, USA, 2021. [Google Scholar]
- Mueller, R.-J. Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochem. 2006, 41, 2124–2128. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- Babu, R.P.; O’connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef]
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.; Mititelu, M.; Neacșu, S.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O. Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Barrett, J.; Chase, Z.; Zhang, J.; Holl, M.M.B.; Willis, K.; Williams, A.; Hardesty, B.D.; Wilcox, C. Microplastic pollution in deep-sea sediments from the Great Australian Bight. Front. Mar. Sci. 2020, 7, 576170. [Google Scholar] [CrossRef]
- Benson, N.U.; Agboola, O.D.; Fred-Ahmadu, O.H.; De-la-Torre, G.E.; Oluwalana, A.; Williams, A.B. Micro (nano) plastics prevalence, food web interactions, and toxicity assessment in aquatic organisms: A review. Front. Mar. Sci. 2022, 9, 851281. [Google Scholar] [CrossRef]
- Gurjar, U.R.; Xavier, M.; Nayak, B.B.; Ramteke, K.; Deshmukhe, G.; Jaiswar, A.K.; Shukla, S.P. Microplastics in shrimps: A study from the trawling grounds of north eastern part of Arabian Sea. Environ. Sci. Pollut. Res. 2021, 28, 48494–48504. [Google Scholar] [CrossRef] [PubMed]
- Reunura, T.; Prommi, T. Detection of microplastics in Litopenaeus vannamei (Penaeidae) and Macrobrachium rosenbergii (Palaemonidae) in cultured pond. PeerJ 2022, 10, e12916. [Google Scholar] [CrossRef]
- Wu, H.; Hou, J.; Wang, X. A review of microplastic pollution in aquaculture: Sources, effects, removal strategies and prospects. Ecotoxicol. Environ. Saf. 2023, 252, 114567. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Agenda, I. The new plastics economy rethinking the future of plastics. In Proceedings of the World Economic Forum, Davos, Switzerland, 20–23 January 2016. [Google Scholar]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V.R.; Sonke, J.E. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 2020, 15, e0232746. [Google Scholar] [CrossRef]
- Brahney, J. Microplastics are raining down from the sky. Thesciencebreaker 2021, 7, 1–2. [Google Scholar] [CrossRef]
- Revell, L.E.; Kuma, P.; Le Ru, E.C.; Somerville, W.R.; Gaw, S. Direct radiative effects of airborne microplastics. Nature 2021, 598, 462–467. [Google Scholar] [CrossRef]
- Allesch, A.; Staudner, M.; Rexeis, M.; Schwingshackl, M.; Huber-Humer, M.; Part, F. Static modelling of the material flows of micro-and nanoplastic particles caused by the use of vehicle tyres. Environ. Pollut. 2021, 290, 118102. [Google Scholar]
- Ragusa, A.; Lelli, V.; Fanelli, G.; Svelato, A.; D’Avino, S.; Gevi, F.; Santacroce, C.; Catalano, P.; Rongioletti, M.C.A.; De Luca, C. Plastic and placenta: Identification of polyethylene glycol (PEG) compounds in the human placenta by HPLC-MS/MS system. Int. J. Mol. Sci. 2022, 23, 12743. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Castillo, E.F.; Gullapalli, R.R.; Howard, T.; Bleske, B. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 2025, 31, 1114–1119. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, Y.; Du, Z.; Li, L.; Zhang, M.; Ni, S.; Yue, Z.; Yang, K.; Wang, Y. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 2024, 469, 133855. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Liu, J.; Xia, P.; Qu, Y.; Zhang, X.; Shen, R.; Yang, P.; Tan, H.; Chen, H.; Deng, Y. Long-Term Exposure to Environmentally Realistic Doses of Starch-Based Microplastics Suggests Widespread Health Effects. J. Agric. Food Chem. 2025, 73, 9867–9878. [Google Scholar] [CrossRef] [PubMed]
- Brandon, J.; Jones, W.; Ohman, M. Multidecadal increase in plastic particles in coastal ocean sediments. Sci. Adv. 2019, 5, eaax0587. [Google Scholar] [CrossRef]
- Pathak, V.M. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Kale, S.K.; Deshmukh, A.G.; Dudhare, M.S.; Patil, V.B. Microbial degradation of plastic: A review. J. Biochem. Technol. 2015, 6, 952–961. [Google Scholar]
- Jendrossek, D. Polyethylene and related hydrocarbon polymers (“plastics”) are not biodegradable. New Biotechnol. 2024, 83, 231–238. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef]
- Cosgrove, L.; McGeechan, P.L.; Robson, G.D.; Handley, P.S. Fungal communities associated with degradation of polyester polyurethane in soil. Appl. Environ. Microbiol. 2007, 73, 5817–5824. [Google Scholar] [CrossRef]
- Méndez, C.R.; Vergaray, G.; Béjar, V.R.; Cárdenas, K.J. Aislamiento y caracterización de micromicetos biodegradadores de polietileno. Rev. Peru. Biol. 2007, 13, 203–206. [Google Scholar] [CrossRef]
- Boyandin, A.N.; Prudnikova, S.V.; Karpov, V.A.; Ivonin, V.N.; Đỗ, N.L.; Nguyễn, T.H.; Lê, T.M.H.; Filichev, N.L.; Levin, A.L.; Filipenko, M.L. Microbial degradation of polyhydroxyalkanoates in tropical soils. Int. Biodeterior. Biodegrad. 2013, 83, 77–84. [Google Scholar] [CrossRef]
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874. [Google Scholar] [CrossRef]
- Vivi, V.K.; Martins-Franchetti, S.M.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, N.B.; Mabrouk, M.E.; Sabry, S.A.; El-Badan, D.E. Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: Application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J. Gen. Appl. Microbiol. 2005, 51, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Raziyafathima, M.; Praseetha, P.; Rimal, I. Microbial degradation of plastic waste: A review. J. Pharma. Chem. Biol. Sci. 2016, 4, 231–242. [Google Scholar]
- Ohtaki, S.; Maeda, H.; Takahashi, T.; Yamagata, Y.; Hasegawa, F.; Gomi, K.; Nakajima, T.; Abe, K. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl. Environ. Microbiol. 2006, 72, 2407–2413. [Google Scholar] [CrossRef]
- Hsu, K.-J.; Tseng, M.; Don, T.-M.; Yang, M.-K. Biodegradation of poly (β-hydroxybutyrate) by a novel isolate of Streptomyces bangladeshensis 77T-4. Bot. Stud. 2012, 53, 307–313. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Oceguera-Cervantes, A.; Carrillo-García, A.n.; López, N.; Bolanos-Nunez, S.; Cruz-Gómez, M.J.; Wacher, C.; Loza-Tavera, H. Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone. Appl. Environ. Microbiol. 2007, 73, 6214–6223. [Google Scholar] [CrossRef]
- Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E. Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus 2016, 5, 762. [Google Scholar] [CrossRef]
- Suyama, T.; Tokiwa, Y.; Ouichanpagdee, P.; Kanagawa, T.; Kamagata, Y. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 1998, 64, 5008–5011. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Sato, T.; Enoki, M.; Kanehiro, H.; Uematsu, K.; Kato, C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res. Dev. 2011, 11, 33–41. [Google Scholar] [CrossRef]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE 2017, 12, e0183984. [Google Scholar] [CrossRef] [PubMed]
- Delacuvellerie, A.; Cyriaque, V.; Gobert, S.; Benali, S.; Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 2019, 380, 120899. [Google Scholar] [CrossRef]
- Hou, L.; Xi, J.; Liu, J.; Wang, P.; Xu, T.; Liu, T.; Qu, W.; Lin, Y.B. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 2022, 286, 131758. [Google Scholar] [CrossRef] [PubMed]
- Pramila, R.; Padmavathy, K.; Ramesh, K.V.; Mahalakshmi, K. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis-Potential candidates for biodegradation of low density polyethylene (LDPE). J. Bacteriol. Res. 2012, 4, 9–14. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters. Polym. Degrad. Stab. 2014, 110, 278–283. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J. Appl. Polym. Sci. 1981, 26, 441–448. [Google Scholar] [CrossRef]
- Kleeberg, I.; Welzel, K.; VandenHeuvel, J.; Müller, R.-J.; Deckwer, W.-D. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic–aromatic copolyesters. Biomacromolecules 2005, 6, 262–270. [Google Scholar] [CrossRef]
- Yan, Z.-F.; Wang, L.; Xia, W.; Liu, Z.-Z.; Gu, L.-T.; Wu, J. Synergistic biodegradation of poly (ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase. Appl. Microbiol. Biotechnol. 2021, 105, 4551–4560. [Google Scholar] [CrossRef]
- Cobos-Peralta, M.A.; Mata-Espinosa, M.A.; Pérez-Sato, M.; Hernández-Sánchez, D.; Ferrera-Cerrato, R. Envases de polietilentereftalato molidos y su función como sustituto de fibra en la dieta de borregos. Agrociencia 2011, 45, 33–41. [Google Scholar]
- Quartinello, F.; Kremser, K.; Schoen, H.; Tesei, D.; Ploszczanski, L.; Nagler, M.; Podmirseg, S.M.; Insam, H.; Piñar, G.; Sterflingler, K. Together is better: The rumen microbial community as biological toolbox for degradation of synthetic polyesters. Front. Bioeng. Biotechnol. 2021, 9, 684459. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Kumar, R.V.; Kanna, G.; Elumalai, S. Biodegradation of polyethylene by green photosynthetic microalgae. J. Bioremediat. Biodegrad. 2017, 8, 2. [Google Scholar]
- Yang, J.; Yang, Y.; Wu, W.-M.; Zhao, J.; Jiang, L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 2014, 48, 13776–13784. [Google Scholar] [CrossRef] [PubMed]
- Kundungal, H.; Gangarapu, M.; Sarangapani, S.; Patchaiyappan, A.; Devipriya, S.P. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. Res. 2019, 26, 18509–18519. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 2015, 49, 12080–12086. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Gupta, R.; Tiwari, A. Communities of microbial enzymes associated with biodegradation of plastics. J. Polym. Environ. 2013, 21, 575–579. [Google Scholar] [CrossRef]
- Taniguchi, I.; Yoshida, S.; Hiraga, K.; Miyamoto, K.; Kimura, Y.; Oda, K. Biodegradation of PET: Current status and application aspects. Acs Catal. 2019, 9, 4089–4105. [Google Scholar] [CrossRef]
- Negoro, S. Biodegradation of nylon oligomers. Appl. Microbiol. Biotechnol. 2000, 54, 461–466. [Google Scholar] [CrossRef]
- Stingley, R.L.; Brezna, B.; Khan, A.A.; Cerniglia, C.E. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 2004, 150, 3749–3761. [Google Scholar] [CrossRef]
- Takahashi, T.; Maeda, H.; Yoneda, S.; Ohtaki, S.; Yamagata, Y.; Hasegawa, F.; Gomi, K.; Nakajima, T.; Abe, K. The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol. Microbiol. 2005, 57, 1780–1796. [Google Scholar] [CrossRef]
- Yoon, M.G.; Jeon, H.J.; Kim, M.N. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J. Bioremed. Biodegrad. 2012, 3, 145. [Google Scholar]
- Mahalakshmi, V.; Sabari, D.; Andrew, S.N. Genetic Analysis of Plastic Degrading Bacterial Strains. Int. J. Pharm. Biol. Arch. 2012, 3, 1174–1179. [Google Scholar]
- Shinozaki, Y.; Morita, T.; Cao, X.-h.; Yoshida, S.; Koitabashi, M.; Watanabe, T.; Suzuki, K.; Sameshima-Yamashita, Y.; Nakajima-Kambe, T.; Fujii, T. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: Cloning, sequencing, and characterization. Appl. Microbiol. Biotechnol. 2013, 97, 2951–2959. [Google Scholar] [CrossRef]
- Kawai, F.; Oda, M.; Tamashiro, T.; Waku, T.; Tanaka, N.; Yamamoto, M.; Mizushima, H.; Miyakawa, T.; Tanokura, M. A novel Ca 2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 2014, 98, 10053–10064. [Google Scholar] [CrossRef]
- Wei, R.; Oeser, T.; Then, J.; Kühn, N.; Barth, M.; Schmidt, J.; Zimmermann, W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 2014, 4, 44. [Google Scholar] [CrossRef]
- Kim, J.W.; Park, S.-B.; Tran, Q.-G.; Cho, D.-H.; Choi, D.-Y.; Lee, Y.J.; Kim, H.-S. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb. Cell Factories 2020, 19, 97. [Google Scholar] [CrossRef]
- Weinberger, S.; Beyer, R.; Schüller, C.; Strauss, J.; Pellis, A.; Ribitsch, D.; Guebitz, G.M. High throughput screening for new fungal polyester hydrolyzing enzymes. Front. Microbiol. 2020, 11, 554. [Google Scholar] [CrossRef]
- Müller, C.A.; Perz, V.; Provasnek, C.; Quartinello, F.; Guebitz, G.M.; Berg, G. Discovery of polyesterases from moss-associated microorganisms. Appl. Environ. Microbiol. 2017, 83, e02641-16. [Google Scholar] [CrossRef]
- Danso, D.; Schmeisser, C.; Chow, J.; Zimmermann, W.; Wei, R.; Leggewie, C.; Li, X.; Hazen, T.; Streit, W.R. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 2018, 84, e02773-17. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, D.; Wei, N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40, 22–37. [Google Scholar] [CrossRef]
- Kumari, A.; Bano, N.; Bag, S.K.; Chaudhary, D.R.; Jha, B. Transcriptome-guided insights into plastic degradation by the marine bacterium. Front. Microbiol. 2021, 12, 751571. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Zhang, H. PMBD: A comprehensive plastics microbial biodegradation database. Database 2019, 2019, baz119. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, V.; Pantos, O.; Kingsbury, J.M.; Weaver, L.; Handley, K.M.; Lear, G. PlasticDB: A database of microorganisms and proteins linked to plastic biodegradation. Database 2022, 2022, baac008. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Báez-Flores, M.E.; Tiznado-Hernández, M.E.; Gracia-Valenzuela, M.H.; Troncoso-Rojas, R. Biosphere Plastic Contamination and Microbial Alternatives for a Sustainable Degradation of Plastic Waste. Microorganisms 2025, 13, 1246. https://doi.org/10.3390/microorganisms13061246
Báez-Flores ME, Tiznado-Hernández ME, Gracia-Valenzuela MH, Troncoso-Rojas R. Biosphere Plastic Contamination and Microbial Alternatives for a Sustainable Degradation of Plastic Waste. Microorganisms. 2025; 13(6):1246. https://doi.org/10.3390/microorganisms13061246
Chicago/Turabian StyleBáez-Flores, María Elena, Martín Ernesto Tiznado-Hernández, Martina Hilda Gracia-Valenzuela, and Rosalba Troncoso-Rojas. 2025. "Biosphere Plastic Contamination and Microbial Alternatives for a Sustainable Degradation of Plastic Waste" Microorganisms 13, no. 6: 1246. https://doi.org/10.3390/microorganisms13061246
APA StyleBáez-Flores, M. E., Tiznado-Hernández, M. E., Gracia-Valenzuela, M. H., & Troncoso-Rojas, R. (2025). Biosphere Plastic Contamination and Microbial Alternatives for a Sustainable Degradation of Plastic Waste. Microorganisms, 13(6), 1246. https://doi.org/10.3390/microorganisms13061246