Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications
Abstract
:1. Background
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendricks, R.; Pool, E.J. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2012, 47, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Al-Gheethi, A.A.; Efaq, A.N.; Bala, J.D.; Norli, I.; Abdel-Monem, M.O.; Ab Kadir, M.O. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl. Water Sci. 2018, 8, 74. [Google Scholar] [CrossRef]
- Aleisa, E.; Alshayji, K.A.; Al-Jarallah, R. Residential wastewaters treatment system in Kuwait. In Proceedings of the 2nd International Conference on Environmental Science and Technology IPCBEE; IACSIT Press: Singapore, 2011; Volume 6, pp. 285–289. [Google Scholar]
- Aleisa, E.; Alshayji, K. Analysis on reclamation and reuse of wastewater in Kuwait. J. Eng. Res. 2019, 7, 1–13. [Google Scholar]
- Anastasi, E.M.; Matthews, B.; Gundogdu, A.; Vollmerhausen, T.L.; Ramos, N.L.; Stratton, H.; Ahmed, W.; Katouli, M. Prevalence and persistence of Escherichia coli strains with uropathogenic virulence characteristics in sewage treatment plants. Appl. Environ. Microbiol. 2010, 76, 5882–5886. [Google Scholar] [CrossRef]
- Motlagh, A.M.; Yang, Z. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res. 2019, 91, 1402–1408. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Nyirabahizi, E.; Tyson, G.H.; Dessai, U.; Zhao, S.; Kabera, C.; Crarey, E.; Womack, N.; Crews, M.K.; Strain, E.; Tate, H. Evaluation of Escherichia coli as an indicator for antimicrobial resistance in Salmonella recovered from the same food or animal ceca samples. Food Control. 2020, 115, 107280. [Google Scholar] [CrossRef]
- Al-Tamimi, M.; Abu-Raideh, J.; Albalawi, H.; Shalabi, M.; Saleh, S. Effective oral combination treatment for extended-spectrum beta-lactamase-producing Escherichia coli. Microb. Drug Resist. 2019, 25, 1132–1141. [Google Scholar] [CrossRef]
- Ezure, Y.; Rico, V.; Paterson, D.L.; Hall, L.; Harris, P.N.A.; Soriano, A.; Roberts, J.A.; Bassetti, M.; Roberts, M.J.; Righi, E.; et al. Efficacy and safety of carbapenems vs. new antibiotics for treatment of adult patients with complicated urinary tract infections: A systematic review and meta-analysis. Open Forum Infect. Dis. 2020, 9, ofaa480. [Google Scholar] [CrossRef]
- Sherchan, J.B.; Hayakawa, K.; Miyoshi-Akiyama, T.; Ohmagari, N.; Kirikae, T.; Nagamatsu, M.; Tojo, M.; Ohara, H.; Sherchand, J.B.; Tandukar, S. Clinical epidemiology, and molecular analysis of extended-spectrum-β-lactamase-producing Escherichia coli in Nepal: Characteristics of sequence types 131 and 648. Antimicrob. Agents Chemother. 2015, 59, 3424–3432. [Google Scholar] [CrossRef]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed]
- Schaufler, K.; Semmler, T.; Pickard, D.J.; de Toro, M.; de la Cruz, F.; Wieler, L.H.; Ewers, C.; Guenther, S. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. Front. Microbiol. 2016, 7, 336. [Google Scholar] [CrossRef] [PubMed]
- Redha, M.A.; Al Sweih, N.; Albert, M.J. Virulence and phylogenetic groups of Escherichia coli cultured from raw sewage in Kuwait. Gut Pathog. 2022, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing (M100), 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- European Committee on Antibiotic Susceptibility Testing (EUCAST). Available online: http://www.eucast.org (accessed on 5 May 2022).
- Nordmann, P.; Jayol, A.; Poirel, L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg. Infect. Dis. 2016, 22, 1038–1043. [Google Scholar] [CrossRef]
- Hubney, J.; Ciesielski, S.; Harnisz, M.; Korzeniewska, E.; Dulski, T.; Jalowiecki, L.; Plaza, G. Genes during wastewater treatment with an emphasis on carbapenemase genes: A metagenomic approach. Front. Environ. Sci. 2021, 9, 738158. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, H.; Du, H. Carbapenemases in Enterobacteriaceae: Detection and antimicrobial therapy. Front. Microbiol. 2019, 10, 1823. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. Health-Care-Associated Infections. Available online: https://www.hhs.gov/oidp/topics/health-care-associated-infections/index.html (accessed on 11 August 2023).
- Dortet, L.; Poirel, L.; Nordmann, P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerg. Infect. Dis. 2015, 21, 504–507. [Google Scholar] [CrossRef]
- Jamal, W.; Rotimi, V.O.; Albert, M.J.; Khodakhast, F.; Nordmann, P.; Poirel, L. High prevalence of VIM-4 and NDM-1 metallo-β-lactamase among carbapenem-resistant Enterobacteriaceae. J. Med. Microbiol. 2013, 62, 1239–1244. [Google Scholar] [CrossRef]
- Al Fadhli, A.; Jamal, W.; Rotimi, V.O. Molecular characterization of rectal isolates of carbapenemase-negative carbapenem-resistant enterobacteriales obtained from ICU patients in Kuwait by whole genome sequencing. J. Med. Microbiol. 2021, 70, 001409. [Google Scholar] [CrossRef]
- Doumith, M.; Day, M.; Ciesielczuk, H.; Hope, R.; Underwood, A.; Reynolds, R.; Wain, J.; Livermore, D.M.; Woodford, N. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 2015, 53, 160–166. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.D.; Gordon, D.M. Rapid and specific detection of the Escherichia coli sequence type 648 complex within phylogroup F. J. Clin. Microbiol. 2017, 55, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, S.; Olaniran, A.O. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int. J. Environ. Res. Public Health 2013, 11, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Al Benwan, K.; Al Sweih, N.; Rotimi, V.O. Etiology and antibiotic susceptibility patterns of community- and hospital-acquired urinary tract infections in a general hospital in Kuwait. Med. Princ. Pract. 2010, 19, 440–446. [Google Scholar] [CrossRef]
- Al Sweih, N.; Al Hashem, G.; Jamal, W.; Rotimi, V. National surveillance of antimicrobial susceptibility of CTX-M-positive and -negative clinical isolates of Escherichia coli from Kuwait government hospitals. J. Chemother. 2010, 22, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Sewify, M.; Nair, S.; Warsame, S.; Murad, M.; Alhubail, A.; Behbehani, K.; Al-Refaei, F.; Tiss, A. Prevalence of urinary tract infection and antimicrobial susceptibility among diabetic patients with controlled and uncontrolled glycemia in Kuwait. J. Diabetes Res. 2016, 2016, 6573215. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, W.; Dhar, R.; Nicolau, D.P. In vitro activity of newer and conventional antimicrobial agents, including fosfomycin and colistin, against selected Gram-negative bacilli in Kuwait. Pathogens 2018, 7, 75. [Google Scholar] [CrossRef]
- Available online: https://www.tdlpathology.com/specialties/medical-microbiology/new-high-dose-antibiotic-susceptibility-category/ (accessed on 15 October 2023).
- Torumkuney, D.; Behbehani, N.; Hasselt, J.; Hamouda, M.; Keles, N. Country data on AMR in Kuwait in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicines and clinical outcome. J. Antimicrob. Chemother. 2022, 77 (Suppl. S1), i77–i83. [Google Scholar] [CrossRef]
- Livermore, D.M. beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef]
- Caroff, N.; Espaze, E.; Bérard, I.; Richet, H.; Reynaud, A. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum beta-lactamase production. FEMS Microbiol. Lett. 1999, 173, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Poirel, L.; Nordmann, P. Rapid detection of extended-spectrum-β-lactamase-producing enterobacteriaceae from urine samples by use of the ESBL NDP test. J. Clin. Microbiol. 2014, 52, 3701–3706. [Google Scholar] [CrossRef]
- Dashti, A.A.; Vali, L.; Jadaon, M.M.; El-Shazly, S.; Amyes, S.G. The emergence of carbapenem resistance in ESBL-producing E. coli 025B-ST131 strain from community acquired infection in Kuwait. BMC Proc. 2011, 5, 027. [Google Scholar] [CrossRef]
- Al Fadhli, A.H.; Jamal, W.Y.; Rotimi, V.O. Prevalence of carbapenem-resistant Enterobacteriaceae and emergence of high rectal colonization rates of blaOXA-181-positive isolates in patients admitted to two major hospital intensive care units in Kuwait. PLoS ONE 2020, 15, e0241971. [Google Scholar] [CrossRef]
- Moghnia, O.H.; Rotimi, V.O.; Al-Sweih, N.A. Preponderance of blaKPC-carrying carbapenem-resistant enterobacterales among fecal isolates from community food handlers in Kuwait. Front. Microbiol. 2021, 12, 737828. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Cantón, R.; Akóva, M.; Carmeli, Y.; Giske, C.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.; Miriagou, V.; Naas, T.; Rossolini, G.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef]
- Falagas, M.E.; Tansarli, G.S.; Karageorgopoulos, D.E.; Vardakas, K.Z. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg. Infect. Dis. 2014, 20, 1170–1175. [Google Scholar] [CrossRef]
- Zowawi, H.M.; Sartor, A.L.; Balkhy, H.H.; Walsh, T.R.; Al Johani, S.M.; Aljindan, R.Y.; Alfaresi, M.; Ibrahim, E.; Al-Jardani, A.; Al-Abri, S.; et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM producers. Antimicrob. Agents Chemother. 2014, 58, 3085–3090. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P. Rapidec Carba NP Test for rapid detection of carbapenemase producers. J. Clin. Microbiol. 2015, 53, 3003–3008. [Google Scholar] [CrossRef]
- Chetri, S.; Bhowmik, D.; Paul, D.; Pandey, P.; Chanda, D.D.; Chakravarty, A.; Bora, D.; Bhattacharjee, A. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019, 19, 210. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Shannon, K.P.; French, G.L. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob. Agents Chemother. 1999, 43, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.-K.; Pan, Q.; Lo, W.-U.; Liu, X.; Law, C.O.K.; Chan, T.-F.; Ho, P.-L.; Lau, T.C.-K. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Sci. Rep. 2018, 8, 15248. [Google Scholar] [CrossRef] [PubMed]
- Cardonha, A.M.; Vieira, R.H.; Rodrigues, D.P.; Macrae, A.; Peirano, G.; Teophilo, G.N. Fecal pollution in water from storm sewers and adjacent seashores in Natal, Rio Grande do Norte, Brazil. Int. Microbiol. 2004, 7, 213–218. [Google Scholar]
- Oliveira, K.W.; Gomes, F.C.O.; Benko, G.; Pimenta, R.S.; Magalhaes, P.P.; Mendes, E.N.; Morais, P.B. Antimicrobial resistance profiles of diarrheagenic Escherichia coli strains isolated from bathing waters of the Lajeado reservoir in Tocantins, Brazil. Rev. Ambient. Água. 2012, 7, 30. [Google Scholar] [CrossRef]
- Ramírez Castillo, F.Y.; Avelar González, F.J.; Garneau, P.; Márquez Díaz, F.; Guerrero Barrera, A.L.; Harel, J. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico. Front. Microbiol. 2013, 4, 147. [Google Scholar] [CrossRef]
- Adefisoye, M.A.; Okoh, A.I. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiologyopen 2016, 5, 143–151. [Google Scholar] [CrossRef]
- Lau, S.H.; Kaufmann, M.E.; Livermore, D.M.; Woodford, N.; Willshaw, G.A.; Cheasty, T.; Stamper, K.; Reddy, S.; Cheesbrough, J.; Bolton, F.J.; et al. UK epidemic Escherichia coli strains A-E, with CTX-M-15 beta-lactamase, all belong to the international O25:H4-ST131 clone. J. Antimicrob. Chemother. 2008, 62, 1241–1244. [Google Scholar] [CrossRef]
- Pitout, J.D.; Gregson, D.B.; Campbell, L.; Laupland, K.B. Molecular characteristics of extended-spectrum-beta-lactamase-producing Escherichia coli isolates causing bacteremia in the Calgary Health Region from 2000 to 2007: Emergence of clone ST131 as a cause of community-acquired infections. Antimicrob. Agents Chemother. 2009, 53, 2846–2851. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Infect. Dis. 2010, 51, 286–294. [Google Scholar] [CrossRef]
- Dahbi, G.; Mora, A.; López, C.; Alonso, M.P.; Mamani, R.; Marzoa, J.; Coira, A.; García-Garrote, F.; Pita, J.M.; Velasco, D.; et al. Emergence of new variants of ST131 clonal group among extraintestinal pathogenic Escherichia coli producing extended-spectrum β-lactamases. Int. J. Antimicrob. Agents 2013, 42, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.B.; Søraas, A.V.; Arnesen, L.S.; Leegaard, T.M.; Sundsfjord, A.; Jenum, P.A. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS ONE 2017, 12, e0186576. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Herrera, A.; Mamani, R.; López, C.; Alonso, M.P.; Blanco, J.E.; Blanco, M.; Dahbi, G.; Garciía-Garrote, F.; Pita, J.M.; et al. Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl. Environ. Microbiol. 2010, 76, 6991–6997. [Google Scholar] [CrossRef]
- Jouini, A.; Klibi, A.; Elarbi, I.; Ben Chaabene, M.; Hamrouni, S.; Souiai, O.; Hanachi, M.; Ghram, A.; Maaroufi, A. First detection of human ST131-CTX-M-15-O25-B2 clone and high-risk clonal lineages of ESBL/pAmpC-producing E. coli isolates from diarrheic poultry in Tunisia. Antibiotics 2021, 10, 670. [Google Scholar] [CrossRef]
- Khoshbayan, A.; Golmoradi Zadeh, R.; Taati Moghadam, M.; Mirkalantari, S.; Darbandi, A. Molecular determination of O25b/ST131 clone type among extended spectrum β-lactamases production Escherichia coli recovering from urinary tract infection isolates. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 35. [Google Scholar] [CrossRef]
- Blanco, M.; Alonso, M.P.; Nicolas-Chanoine, M.-H.; Dahbi, G.; Mora, A.; Blanco, J.E.; López, C.; Cortés, P.; Llagostera, M.; Leflon-Guibout, V.; et al. Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): Dissemination of clone O25b:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2009, 63, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- De La Cadena, E.; Mojica, M.F.; Castillo, N.; Correa, A.; Appel, T.M.; García-Betancur, J.C.; Pallares, C.J.; Villegas, M.V. Genomic analysis of CTX-M-group-1-producing extraintestinal pathogenic E. coli (ExPEC) from patients with urinary tract infections (UTI) from Colombia. Antibiotics 2020, 9, 899. [Google Scholar] [CrossRef]
- Ranjan, A.; Scholz, J.; Semmler, T.; Wieler, L.H.; Ewers, C.; Müller, S.; Pickard, D.J.; Schierack, P.; Tedin, K.; Ahmed, N.; et al. ESBL-plasmid carriage in E. coli enhances in vitro bacterial competition fitness and serum resistance in some strains of pandemic sequence types without overall fitness cost. Gut Pathog. 2018, 10, 24. [Google Scholar] [CrossRef]
- Dashti, A.A.; Vali, L.; El-Shazly, S.; Jadaon, M.M. The characterization and antibiotic resistance profiles of clinical Escherichia coli O25b-B2-ST131 isolates in Kuwait. BMC Microbiol. 2014, 14, 214. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Sellera, F.P.; Moura, Q.; Gaspar, V.C.; Cerdeira, L.; Lincopan, N. International high-risk clonal lineages of CTX-M-producing Escherichia coli F-ST648 in free-roaming cats, South America. Infect. Genet. Evol. 2018, 66, 48–51. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Zurita, J. Escherichia coli hyperepidemic clone ST410-A harboring blaCTX-M-15 isolated from fresh vegetables in a municipal market in Quito-Ecuador. Int. J. Food Microbiol. 2018, 280, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zahra, R.; Javeed, S.; Malala, B.; Babenko, D.; Toleman, M.A. Analysis of Escherichia coli STs and resistance mechanisms in sewage from Islamabad, Pakistan indicates a difference in E. coli carriage types between South Asia and Europe. J. Antimicrob. Chemother. 2018, 73, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Otazo, J.; Gonzales-Siles, L.; Poma, V.; Bengtsson-Palme, J.; Thorell, K.; Flach, C.-F.; Iñiguez, V.; Sjöling, Å. Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE 2019, 14, e0210735. [Google Scholar] [CrossRef]
- Paulshus, E.; Thorell, K.; Guzman-Otazo, J.; Joffre, E.; Colque, P.; Kühn, I.; Möllby, R.; Sørum, H.; Sjöling, Å. Repeated isolation of extended-spectrtum-β-lactamase-positive Escherichia coli sequence types 648 and 131 from community wastewater indicates that sewage systems are important sources of emerging clones of antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, e00823-19. [Google Scholar] [CrossRef] [PubMed]
- Toner, E.; Adalja, A.; Gronvall, G.K.; Cicero, A.; Inglesby, T.V. Antimicrobial resistance is a global health emergency. Health Secur. 2015, 13, 153–155. [Google Scholar] [CrossRef]
- Council of Scientific and Industrial Research Organisation (CSIRO). Available online: https://www.csiro.au/en/news/all/news/2022/april/csiro-study-finds-antimicrobial-resistance-is-making-utis-more-deadly (accessed on 4 October 2022).
- Khan, S.N.; Khan, A.U. Breaking the spell: Combating multidrug-resistant ‘superbugs’. Front. Microbiol. 2016, 7, 174. [Google Scholar] [CrossRef]
- Parker, E.N.; Cain, B.N.; Hajian, B.; Ulrich, R.J.; Geddes, E.J.; Barkho, S.; Lee, H.Y.; Williams, J.D.; Raynor, M.; Caridha, D.; et al. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant Gram-negative infections. ACS Cent. Sci. 2022, 8, 1145–1158. [Google Scholar] [CrossRef]
- Shukla, R.; Lavore, F.; Maity, S.; Derks, M.G.N.; Jones, C.R.; Vermeulen, B.J.A.; Melcrová, A.; Morris, M.A.; Becker, L.M.; Wang, X.; et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 2022, 608, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. One Health Basics. CDC 24/7. Saving Lives, Protecting People, 28 September 2023. Available online: https://www.cdc.gov/onehealth/who-we-are/one-health-office-fact-sheet.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fonehealth%2Fmultimedia%2Ffactsheet.html (accessed on 15 October 2023).
- Fernando, D.M.; Tun, H.M.; Poole, J.; Patidar, R.; Li, R.; Mi, R.; Amarawansha, G.E.A.; Fernando, W.G.D.; Khafipour, E.; Farenhorst, A.; et al. Detection of antibiotic resistance genes in source and drinking water samples from a First Nations community in Canada. Appl. Environ. Microbiol. 2016, 82, 4767–4775. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agents | No. of Isolates with Indicated Resistance | ||
---|---|---|---|
Resistant (R) | Intermediate Resistance (IR) a | Susceptible (S) | |
Cefepime | 24 | 46 | 70 |
Cephalothin | 92 | 39 | 9 |
Ceftazidime | 29 | 38 | 73 |
Cefoxitin | 11 | 19 | 110 |
Cefotaxime | 77 | 42 | 21 |
Ceftriaxone | 27 | 15 | 98 |
Aztreonam | 24 | 17 | 99 |
Ertapenem | 3 | 1 | 136 |
Meropenem | 2 | 0 | 138 |
Imipenem | 11 | 0 | 129 |
Gentamicin | 5 | 2 | 133 |
Streptomycin | 48 | 30 | 62 |
Amikacin | 6 | 14 | 120 |
Amoxiclav | 63 | 18 | 59 |
Ampicillin/Sulbactam | 26 | 24 | 90 |
Piperacillin/Tazobactam | 20 | 55 | 65 |
Ampicillin | 85 | 22 | 33 |
Piperacillin | 88 | 30 | 22 |
Trimethoprim | 59 | 1 | 80 |
Co-Trimoxazole | 57 | 1 | 82 |
Tetracycline | 66 | 15 | 59 |
Ciprofloxacin | 22 | 24 | 94 |
Fosfomycin | 2 | 2 | 136 |
Azithromycin | 13 | 0 | 127 |
Chloramphenicol | 21 | 6 | 113 |
Sulfafurazole | 58 | 8 | 74 |
Polymyxin B b | 25 | NA | 115 |
Colistin b | 4 | NA | 136 |
Resistance to Antibiotic and Antibiotic Class | No. of Isolates |
---|---|
Resistance to no. of Antibiotic(s) | No. of Isolates |
0 | 2 |
1 | 2 |
2 | 2 |
3 | 8 |
4 | 6 |
5 | 8 |
6 | 10 |
7 | 8 |
8 | 8 |
9 | 8 |
10 | 7 |
11 | 8 |
12 | 12 |
13 | 12 |
14 | 10 |
15 | 12 |
16 | 5 |
17 | 5 |
18 | 3 |
19 | 1 |
20 | 1 |
22 | 1 |
23 | 1 |
Resistance to no. of antibiotic class(s) | No. of isolates |
0 | 2 |
1 | 3 |
2 | 5 |
3 | 12 |
4 | 13 |
5 | 15 |
6 | 15 |
7 | 13 |
8 | 17 |
9 | 18 |
10 | 15 |
11 | 7 |
12 | 3 |
13 | 1 |
14 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redha, M.A.; Al Sweih, N.; Albert, M.J. Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications. Microorganisms 2023, 11, 2610. https://doi.org/10.3390/microorganisms11102610
Redha MA, Al Sweih N, Albert MJ. Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications. Microorganisms. 2023; 11(10):2610. https://doi.org/10.3390/microorganisms11102610
Chicago/Turabian StyleRedha, Mahdi A., Noura Al Sweih, and M. John Albert. 2023. "Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications" Microorganisms 11, no. 10: 2610. https://doi.org/10.3390/microorganisms11102610