PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Materials and Growth Conditions
2.2. Virulence Assays
2.3. RNA Extraction
2.4. RNA-Sequencing Analysis
2.5. Biofilm Formation Assay
2.6. Swimming, Swarming, and Twitching Motility Assays
2.7. Chemotaxis Assay
2.8. H2O2 Tolerance Assay
2.9. Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)
2.10. Arithmatic Measurement of Experimental Data and Statistical Analysis
3. Results
3.1. The rr35 (PXO_RS20535) Gene Is Required for Virulence of Xoo
3.2. The rr35 (PXO_RS20535) Gene Is Highly Conserved in All Xanthomonas spp.
3.3. RNA-Sequencing Analysis Showed that RR35 Regulates Genes Involved in Biofilm Formation, Motility, and Tolerance against Oxidative Stress in Xoo
3.4. RR35 Mutant Strain Forms Much Less Biofilm than the Wild-Type Strain PXO99A
3.5. All Modes of Bacterial Motility Are Reduced in the RR35 Mutant Strain
3.6. Chemotaxis-Guided Movement Is Lacking in the RR35 Mutant Strain
3.7. The RR35 Strain Is Highly Sensitive to H2O2
3.8. Expression of Genes Involved in Biofilm Formation, Motility, and H2O2 Tolerance Was Reduced in the RR35 Mutant Strain
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Furutani, A.; Nakayama, T.; Ochiai, H.; Kaku, H.; Kubo, Y.; Tsuge, S. Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a-10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol. Lett. 2006, 259, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Salzberg, S.L.; Sommer, D.D.; Schatz, M.C.; Phillippy, A.M.; Rabinowicz, P.D.; Tsuge, S.; Furutani, A.; Ochiai, H.; Delcher, A.L.; Kelley, D.; et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genom. 2008, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mew, T.W. Xanthomonas oryzae pathovars on rice: Cause of bacterial blight and bacterial leaf streak. In Xanthomonas; Swings, J.G., Civerolo, E.L., Eds.; Chapman and Hall: London, UK, 1993; pp. 30–40. [Google Scholar]
- He, Y.-W.; Wu, J.; Cha, J.-S.; Zhang, L.-H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 2010, 10, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-Y.; Kim, J.-G.; Lee, B.-M.; Cho, J.-Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 2008, 31, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 2010, 12, 381–396. [Google Scholar] [CrossRef]
- Das, A.; Rangaraj, N.; Sonti, R.V. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol. Plant-Microbe Interact. 2009, 22, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.K.; Rajeshwari, R.; Sonti, R.V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete Xylanase. Mol. Plant-Microbe Interact. 2000, 13, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Ranjan, M.; Pradhan, B.B.; Chatterjee, S. Atypical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 2012, 25, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.-J.; Park, Y.-J.; Noh, T.-H.; Kim, Y.-T.; Kim, J.-G.; Song, E.-S.; Lee, D.-H.; Lee, B.-M. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microb. Pathog. 2008, 44, 473–483. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, N.; Mannaa, M.; Kim, H.; Park, J.; Jung, H.; Han, G.; Lee, H.-H.; Seo, Y.-S. Characterization of type VI secretion system in Xanthomonas oryzae pv. oryzae and its role in virulence to rice. Plant Pathol. J. 2020, 36, 289–296. [Google Scholar]
- Jha, G.; Rajeshwari, R.; Sonti, R.V. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 2007, 20, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.H.; Stock, A.M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 2001, 26, 369–376. [Google Scholar] [CrossRef]
- Tang, J.-L.; Liu, Y.-N.; Barber, C.E.; Dow, J.M.; Wootton, J.C.; Daniels, M.J. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol. Genet. Genom. 1991, 226, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Han, Z.-J.; Tao, J.; He, C. Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol. Plant-Microbe Interact. 2008, 21, 1128–1138. [Google Scholar] [CrossRef]
- Burdman, S.; Shen, Y.; Lee, S.-W.; Xue, Q.; Ronald, P. RaxH/RaxR: A two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol. Plant-Microbe Interact. 2004, 17, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Subramoni, S.; Pandey, A.; Priya, M.R.V.; Patel, H.K.; Sonti, R.V. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions. Mol. Plant Pathol. 2012, 13, 690–703. [Google Scholar] [CrossRef]
- Nguyen, M.-P.; Park, J.; Cho, M.-H.; Lee, S.-W. Role of DetR in defence is critical for virulence of 6 Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 2015, 17, 601–613. [Google Scholar] [CrossRef]
- Zhang, T.; Bae, D.; Wang, C. Listeria monocytogenes DNA glycosylase AdlP affects flagellar motility, biofilm formation, virulence, and stress responses. Appl. Environ. Microbiol. 2016, 82, 5144–5152. [Google Scholar] [CrossRef] [Green Version]
- Song, W.-Y.; Wang, G.-L.; Chen, L.-L.; Kim, H.-S.; Pi, L.-Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.-X.; Zhu, L.-H.; et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270, 1804–1806. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-W.; Jeong, K.-S.; Han, S.-W.; Lee, S.-E.; Phee, B.-K.; Hahn, T.-R.; Ronald, P.C. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J. Bacteriol. 2008, 190, 2183–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.-W.; Lee, M.-A.; Yoo, Y.; Cho, M.-H.; Lee, S.-W. Genome-wide screening to identify responsive regulators involved in the virulence of Xanthomonas oryzae pv. oryzae. Plant Pathol. J. 2019, 35, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, S.; Furutani, A.; Fukunaka, R.; Oku, T.; Tsuno, K.; Ochiai, H.; Inoue, Y.; Kaku, H.; Kubo, Y. Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J. Gen. Plant Pathol. 2002, 68, 363–371. [Google Scholar] [CrossRef]
- Kauffman, H.; Reddy, A.; Hsieh, S.P.Y.; Merca, S. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 1973, 57, 537–541. [Google Scholar]
- Pratt, L.A.; Kolter, R. Genetic analysis ofEscherichia colibiofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 1998, 30, 285–293. [Google Scholar] [CrossRef]
- Bae, N.; Park, H.-J.; Park, H.; Kim, M.; Han, S.-W. Deciphering the functions of the outer membrane porin OprBXo involved in virulence, motility, exopolysaccharide production, biofilm formation and stress tolerance in Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 2018, 19, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Wang, N.; Wu, M.; Tian, F.; Chen, H.; Yang, F.; Yuan, X.; Yang, C.-H.; He, C. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae. BMC Microbiol. 2016, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schweizer, H.P.; Choi, K.-H. Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production. Arch. Microbiol. 2010, 193, 227–234. [Google Scholar] [CrossRef]
- Mattick, J.S.A. Type IV pili and twitching motility. Annu. Rev. Microbiol. 2002, 56, 289–314. [Google Scholar] [CrossRef]
- Hess, J.; Oosawa, K.; Kaplan, N.; Simon, M. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 1988, 53, 79–87. [Google Scholar] [CrossRef]
- Borkovich, K.A.; Kaplan, N.; Hess, J.F.; Simon, M.I. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. USA 1989, 86, 1208–1212. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhuo, S.; Jing, X.; Yuan, Y.; Rensing, C.; Zeng, R.J. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer. Biosens. Bioelectron. 2019, 146, 111748. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yu, C.; Li, H.; Wu, X.; Li, B.; Chen, H.; Wu, M.; He, C. Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of Xanthomonas oryzae pv. oryzae. Microbiol. Res. 2015, 170, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.R.; Tian, F.; Yang, F.H.; Chen, H.M.; Yuan, X.C.; Yang, C.H.; Chen, Y.; Wang, Q.; He, C. Phosphodiesterase EdpX1 promotes virulence, exopolysaccharide production and biofilm formation in Xanthomonas oryzae pv. oryzae. Appl. Environ. Microbiol. 2018, 84, e01717–e01718. [Google Scholar] [CrossRef] [Green Version]
- Auh, C.K.; Murphy, T.M. Plasma membrane redox enzyme is involved in the synthesis of O2- and H2O2 by phytophthora elicitor-stimulated rose cells. Plant Physiol. 1995, 107, 1241–1247. [Google Scholar] [CrossRef] [Green Version]
- Mongkolsuk, S.; Loprasert, S.; Vattanaviboon, P.; Chanvanichayachai, C.; Chamnongpol, S.; Supsamran, N. Heterologous growth phase- and temperature-dependent expression and H2O2 toxicity protection of a superoxide-inducible monofunctional catalase gene from Xanthomonas oryzae pv. oryzae. J. Bacteriol. 1996, 178, 3578–3584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, J.; Wu, M.; Chen, H.; He, C. Roles of OxyRxoo, a transcriptional regulator of Xanthomonas oryzae pv. oryzae in regulation of detoxification of hydrogen peroxide. Acta Microbiol. Sin. 2009, 49, 874–879. [Google Scholar]
- Darzins, A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J. Bacteriol. 1993, 175, 5934–5944. [Google Scholar] [CrossRef] [Green Version]
- Darzins, A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: Sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol. 1994, 11, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.J.; West, J.T.; Engel, J.N. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J. Bacteriol. 2009, 192, 994–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.-H.; Huang, L.; Liu, G.-F.; Leng, M.; Lu, G. PilG and PilH antagonistically control flagellum-dependent and pili-dependent motility in the phytopathogen Xanthomonas campestris pv. campestris. BMC Microbiol. 2020, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, T.H.W. Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinns. Pflügers Arch. Ges. Physiol. 1883, 30, 95. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.; Lowenthal, A.C.; Harshey, R.M.; Ottemann, K.M. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol. 2010, 18, 494–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.-M.; Gamazo, C.; Penadés, J.R.; Lasa, I. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol. Microbiol. 2005, 58, 1322–1339. [Google Scholar] [CrossRef]
- Faruque, S.M.; Biswas, K.; Udden, S.M.N.; Ahmad, Q.S.; Sack, D.A.; Nair, G.B.; Mekalanos, J.J. Transmissibility of cholera: In vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA 2006, 103, 6350–6355. [Google Scholar] [CrossRef] [Green Version]
- Slater, H.; Alvarez-Morales, A.; Barber, C.E.; Daniels, M.J.; Dow, J.M. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 2002, 38, 986–1003. [Google Scholar] [CrossRef]
- Büttner, D.; Bonas, U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol. Rev. 2010, 34, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.; Brown, I.; Adams, S.; Knight, M.; Ainslie, A.; Mansfield, J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 2000, 23, 441–450. [Google Scholar] [CrossRef]
- Miller, R.A.; Britigan, B.E. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 1997, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dubbs, J.M.; Mongkolsuk, S. Peroxide-sensing transcriptional regulators in bacteria. J. Bacteriol. 2012, 194, 5495–5503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, J.; Oh, S.; Roe, J. Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3. Society 2002, 184, 5214–5222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, B.T.; Basler, M.; Mekalanos, J.J. Type 6 Secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 2013, 342, 250–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Martinez, C.E.; Christie, P.J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 2009, 73, 775–808. [Google Scholar] [CrossRef] [Green Version]
- Bernal, P.; Llamas, M.A.; Filloux, A. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 2017, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.-C.; Li, Y.-M.; Yang, X.; Zou, H.-F.; Zhu, X.-L.; Niu, X.-N.; Xu, L.-H.; Jiang, W.; Huang, S.; Tang, J.-L.; et al. Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola. Res. Microbiol. 2020, 171, 64–73. [Google Scholar] [CrossRef]
- Navarro-Garcia, F.; Ruiz-Perez, F.; Cataldi, Á.; Larzábal, M. Type VI secretion system in pathogenic Escherichia coli: Structure, role in virulence, and acquisition. Front. Microbiol. 2019, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
Gene ID | Log2 Fold Change | Gene Product a |
---|---|---|
Up-Regulated Genes | ||
PXO_RS06900 | 2.01 | Prepilin-type N-terminal cleavage/methylation domain-containing protein |
PXO_RS01045 | 2.01 | Hypothetical protein |
PXO_RS07555 | 2.02 | Hypothetical protein |
PXO_RS03845 | 2.05 | Hypothetical protein |
PXO_RS15405 | 2.05 | Hypothetical protein |
PXO_RS17195 | 2.11 | IS5 family transposase ISXo1 |
PXO_RS19940 | 2.17 | S46 family peptidase |
PXO_RS21615 | 2.20 | Adhesin |
PXO_RS21300 | 2.21 | Hypothetical protein |
PXO_RS06905 | 2.22 | Membrane protein |
PXO_RS14325 | 2.24 | Hypothetical protein |
PXO_RS23085 | 2.28 | Hypothetical protein |
PXO_RS17240 | 2.29 | DUF2946 domain-containing protein |
PXO_RS25705 | 2.29 | Hypothetical protein |
PXO_RS23540 | 2.29 | Hypothetical protein |
PXO_RS23950 | 2.34 | Hypothetical protein |
PXO_RS20635 | 2.48 | Methylisocitrate lyase |
PXO_RS16940 | 2.50 | DUF378 domain-containing protein |
PXO_RS06660 | 2.59 | MerC domain-containing protein |
PXO_RS25610 | 2.62 | Hypothetical protein |
PXO_RS05075 | 2.80 | Hemin uptake protein HemP |
PXO_RS19360 | 4.08 | C4-dicarboxylate transporter |
PXO_RS04930 | 4.63 | Hypothetical protein |
PXO_RS17235 | 10.53 | TonB-dependent receptor |
PXO_RS17230 | 11.71 | PepSY domain-containing protein |
Down-Regulated Genes | ||
PXO_RS20535 | −25.86 | Response regulator |
PXO_RS19530 | −3.86 | Arsenate reductase (glutaredoxin) |
PXO_RS02330 | −3.64 | Hypothetical protein |
PXO_RS27385 | −3.54 | DUF1905 domain-containing protein |
PXO_RS05470 | −3.48 | alkyl hydroperoxide reductase subunit F |
PXO_RS01535 | −3.48 | Acyl-CoA desaturase |
PXO_RS03225 | −3.36 | Hypothetical protein |
PXO_RS14005 | −3.06 | Hypothetical protein |
PXO_RS01530 | −2.99 | Ferredoxin reductase |
PXO_RS06115 | −2.98 | Arc family DNA-binding protein |
PXO_RS13385 | −2.68 | Acyl-CoA dehydrogenase |
PXO_RS24995 | −2.68 | IS5/IS1182 family transposase |
PXO_RS00965 | −2.67 | Type VI secretion system tip protein VgrG |
PXO_RS18385 | −2.65 | DNA transport competence protein |
PXO_RS02070 | −2.57 | FMN reductase |
PXO_RS26485 | −2.53 | Hypothetical protein |
PXO_RS02075 | −2.53 | DUF1852 domain-containing protein |
PXO_RS17835 | −2.46 | Holliday junction resolvase RuvX |
PXO_RS16000 | −2.45 | Fimbrial protein |
PXO_RS15525 | −2.43 | FAD-dependent monooxygenase |
PXO_RS21890 | −2.33 | Hypothetical protein |
PXO_RS13625 | −2.29 | Nucleotide exchange factor GrpE |
PXO_RS17855 | −2.27 | DNA-3-methyladenine glycosylase I |
PXO_RS23120 | −2.26 | 3-Dehydroquinate dehydratase |
PXO_RS09085 | −2.25 | Protease HtpX |
PXO_RS13400 | −2.24 | 5-Methyltetrahydrofolate--homocysteine methyltransferase |
PXO_RS10260 | −2.22 | Hypothetical protein |
PXO_RS27690 | −2.19 | IS5/IS1182 family transposase |
PXO_RS23860 | −2.18 | IS630 family transposase |
PXO_RS09410 | −2.14 | Cytochrome bd-I oxidase subunit CydX |
PXO_RS17955 | −2.14 | Cysteine desulfurase |
PXO_RS04055 | −2.11 | HslU--HslV peptidase proteolytic subunit |
PXO_RS08660 | −2.10 | LacI family DNA-binding transcriptional regulator |
PXO_RS02845 | −2.10 | Hypothetical protein |
PXO_RS02305 | −2.09 | Molecular chaperone GroEL |
PXO_RS17940 | −2.08 | Fe-S cluster assembly protein SufB |
PXO_RS08655 | −2.05 | Phosphoenolpyruvate--protein phosphotransferase |
PXO_RS17965 | −2.05 | Non-heme iron oxygenase ferredoxin subunit |
PXO_RS11120 | −2.01 | DNA-binding response regulator |
PXO_RS02770 | −2.01 | IS630 family transposase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antar, A.; Lee, M.-A.; Yoo, Y.; Cho, M.-H.; Lee, S.-W. PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae. Pathogens 2020, 9, 956. https://doi.org/10.3390/pathogens9110956
Antar A, Lee M-A, Yoo Y, Cho M-H, Lee S-W. PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae. Pathogens. 2020; 9(11):956. https://doi.org/10.3390/pathogens9110956
Chicago/Turabian StyleAntar, Abdulwahab, Mi-Ae Lee, Youngchul Yoo, Man-Ho Cho, and Sang-Won Lee. 2020. "PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae" Pathogens 9, no. 11: 956. https://doi.org/10.3390/pathogens9110956
APA StyleAntar, A., Lee, M. -A., Yoo, Y., Cho, M. -H., & Lee, S. -W. (2020). PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae. Pathogens, 9(11), 956. https://doi.org/10.3390/pathogens9110956