Next Article in Journal
A Hierarchical Multiscale Modeling Investigation on the Behavior of Microtextured Regions in Ti-6242 α/β Processing
Previous Article in Journal
Analysis of the Influence of Segmented Rollers on Slab Bulge Deformation
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle

Manufacturing and Evaluation of Multi-Material Axial-Bearing Washers by Tailored Forming

Institute of Forming Technology and Machines, Leibniz University Hannover, 30823 Garbsen, Germany
Institute of Machine Design and Tribology, Leibniz University Hannover, 30167 Hanover, Germany
Institute of Materials Science, Leibniz University Hannover, 30823 Garbsen, Germany
Author to whom correspondence should be addressed.
Metals 2019, 9(2), 232;
Received: 21 December 2018 / Revised: 7 February 2019 / Accepted: 9 February 2019 / Published: 15 February 2019
PDF [9627 KB, uploaded 15 February 2019]


Components subject to rolling contact fatigue, such as gears and rolling bearings, are among the fundamental machine elements in mechanical and vehicle engineering. Rolling bearings are generally not designed to be fatigue-resistant, as the necessary oversizing is not technically and economically marketable. In order to improve the load-bearing capacity, resource efficiency and application possibilities of rolling bearings and other possible multi-material solid components, a new process chain was developed at Leibniz University Hannover as a part of the Collaborative Research Centre 1153 “Tailored Forming”. Semi-finished products, already joined before the forming process, are used here to allow a further optimisation of joint quality by forming and finishing. In this paper, a plasma-powder-deposition welding process is presented, which enables precise material deposition and control of the welding depth. For this study, bearing washers (serving as rolling bearing raceways) of a cylindrical roller thrust bearing, similar to type 81212 with a multi-layer structure, were manufactured. A previously non-weldable high-performance material, steel AISI 5140, was used as the cladding layer. Depending on the degree of forming, grain-refinement within the welded material was achieved by thermo-mechanical treatment of the joining zone during the forming process. This grain-refinements lead to an improvement of the mechanical properties and thus, to a higher lifetime for washers of an axial cylindrical roller bearing, which were examined as an exemplary component on a fatigue test bench. To evaluate the bearing washers, the results of the bearing tests were compared with industrial bearings and deposition welded axial-bearing washers without subsequent forming. In addition, the bearing washers were analysed micro-tribologically and by scanning acoustic microscopy both after welding and after the forming process. Nano-scratch tests were carried out on the bearing washers to analyse the layer properties. Together with the results of additional microscopic images of the surface and cross-sections, the causes of failure due to fatigue and wear were identified. View Full-Text
Keywords: tailored forming; hybrid bearing; deposition welding tailored forming; hybrid bearing; deposition welding

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Behrens, B.-A.; Chugreev, A.; Matthias, T.; Poll, G.; Pape, F.; Coors, T.; Hassel, T.; Maier, H.J.; Mildebrath, M. Manufacturing and Evaluation of Multi-Material Axial-Bearing Washers by Tailored Forming. Metals 2019, 9, 232.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top