Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanical Testing
2.3. Microstructural Observations and Analysis
2.4. Measurement of Hydrogen Accumulated in the Sample
3. Results and Discussion
3.1. Effect of Microstructures on the Resistance to Delayed Fracture
3.1.1. Effect of Grain Refinement
3.1.2. Dual Phase Structure
Effect of Retained Austenite
Effect of Ferrite
3.1.3. Effect of Surface Decarburization
3.2. Effect of Microalloys on the Resistance to Delayed Fracture
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- JFE Steel. Available online: https://www.jfe-steel.co.jp/release/2020/12/201223.html (accessed on 11 June 2023).
- Arcelor Mittel. Available online: https://automotive.arcelormittal.com/products/flat/PHS/usibor_ductibor (accessed on 11 June 2023).
- Nakazawa, Y.; Yoshida, T.; Niwa, T.; Kawachi, T.; Nakata, M.; Uenishi, A.; Hiwatashi, S. Development of Future Automobile Design Concept, NSafe™-AutoConcept. Nippon Steel Tech. Rep. 2019, 412, 2–6. Available online: https://www.nipponsteel.com/en/tech/report/pdf/122-02.pdf (accessed on 11 June 2023).
- Oriani, R.A.; Josephic, P.H. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 1974, 22, 1065–1074. [Google Scholar] [CrossRef]
- Gerberich, W.W.; Oriani, R.A.; Lji, M.J.; Chen, X.; Foecke, T. The necessity of both plasticity and brittleness in the fracture thresholds of iron. Philos. Mag. A 1991, 63, 363–376. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 1994, 176, 191–202. [Google Scholar] [CrossRef]
- Sofronis, P.; Birnbaum, H.K. Mechanics of the hydrogen-dislocation-inpurity interactions. J. Mech. Phys. Solids 1995, 43, 49–90. [Google Scholar] [CrossRef]
- Nagao, A.; Dadfarnia, M.; Somerday, B.P.; Sofronis, P.; Ritchie, R.O. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids 2018, 112, 403–430. Available online: https://www2.lbl.gov/ritchie/Library/PDF/2018_Nagao_H_Enchanced_Plasticity.pdf (accessed on 11 June 2023). [CrossRef]
- Lynch, S.P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localized-slip process. Acta Metall. 1988, 36, 2639–2661. [Google Scholar] [CrossRef]
- Nagumo, M. Hydrogen related failure of steels—A new aspect. Mater. Sci. Technol. 2004, 8, 940–950. [Google Scholar] [CrossRef]
- Robertson, I.M.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen Embrittlement Understood. Metall. Mater. Trans. A 2015, 46A, 2323–2341. Available online: https://link.springer.com/article/10.1007/s11661-015-2836-1 (accessed on 11 June 2023). [CrossRef] [Green Version]
- Fuchigami, H.; Minami, H.; Nagumo, M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Philos. Mag. Lett. 2006, 86, 21–29. [Google Scholar] [CrossRef]
- Takazawa, K.; Wada, Y.; Ishigaki, R.; Kayano, R. Effects of Grain Size on Hydrogen Environment Embrittlement of High Strength Low Alloy Steel in 45 MPa Gaseous Hydrogen. J. Jpn. Inst. Met. 2010, 74, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Cho, L.; Bradley, P.E.; Lauria, D.S.; Connolly, M.J.; Seo, E.J.; Findley, K.O.; Speer, J.G.; Golem, L.; Slifka, A.J. Effects of hydrogen pressure and prior austenite grain size on the hydrogen embrittlement characteristics of a press-hardened martensitic steel. Int. J. Hydrogen Energy 2021, 46, 24425–24439. [Google Scholar] [CrossRef]
- Speer, J.; Matlock, D.K.; De Cooman, B.C.; Schroth, J.G. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003, 51, 2611. [Google Scholar] [CrossRef]
- Seo, E.J.; Cho, L.; Charles, B.; De Cooman, B.C. Application of Quenching and Partitioning (Q&P) Processing to Press Hardening Steel. Metall. Mater. Trans. A 2014, 45A, 4022–4037. [Google Scholar]
- Han, X.H.; Zhong, Y.Y.; Tan, S.L.; Ding, Y.N.; Chen, J. Microstructure and performance evaluations on Q&P hot stamping parts of several UHSS sheet metals. Sci. China Technol. Sci. 2017, 60, 1692–1701. [Google Scholar]
- Han, X.; Zhong, Y.; Xin, P. Research on one-step quenching and partitioning treatment and its application in hot stamping process. Proc. Inst. Mech. Eng. Part B J Eng. Manuf. 2015, 84, 163–182. [Google Scholar] [CrossRef]
- Nishimura, R.; Tanaka, Y.; Miyagi, T.; Ogawa, M.; Otsuka, K.; Nakazawa, Y. Development of Forming Methods for Functional Improvement of Car Body Structural Parts. Nippon. Steel Tech. Rep. 2019, 122, 13–19. Available online: https://www.nipponsteel.com/en/tech/report/pdf/122-04.pdf (accessed on 11 June 2023).
- Bian, J.; Mohrbacher, H.; Zhan, S.; Lu, H.; Wang, W.; Zhang, Y.; Wang, L. Impact of Nb Microalloying on the Hydrogen Embrittlement of Press Hardening Steel. In Proceedings of the 5th International Conference Hot Sheet Metal Forming of High Performance Steel, Toronto, ON, Canada, 31 May–3 June 2015; pp. 65–74. [Google Scholar]
- Zhang, S.; Huang, Y.; Sun, B.; Liao, Q.; Lu, H.; Jian, B.; Mohrbacher, H.; Zhang, W.; Guo, A.; Zhang, Y. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels. Mater. Sci. Eng. A 2015, 626, 136–143. [Google Scholar] [CrossRef]
- Okayasu, M.; Sato, M.; Ishida, D.; Senuma, T. The effect of precipitations (NbC and carbide) in Fe-C-MnxNb steels on hydrogen embrittlement characteristics. Mater. Sci. Eng. A 2020, 791, 139598. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, W.; Zhao, X.; Zhang, Y.; Zhao, X. The potential significance of microalloying with Nb in enhancing the resistance to hydrogen-induced delayed fracture of 1300-MPa-grade high-strength bolt steel. Eng. Fail. Anal. 2022, 135, 106144. [Google Scholar] [CrossRef]
- Taniguchi, S.; Kameya, M.; Kobayashi, Y.; Ito, K.; Yamasaki, S. Hydrogen Trapping and Precipitation of Alloy Carbides in Molybdenum Added Steels and Vanadium Added Steels. Tetsu-to-Hagané 2023, 109, 438–449. [Google Scholar] [CrossRef]
- Kimura, Y.; Moronaga, T.; Inoue, T. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel. ISIJ Int. 2022, 62, 377–388. [Google Scholar] [CrossRef]
- Yoo, J.; Jo, M.C.; Kim, S.; Kim, S.-H.; Oh, J.; Sohn, S.S.; Lee, S. Effects of solid solution and grain-boundary segregation of Mo on hydrogen embrittlement in 32MnB5 hot-stamping steels. Acta Mater. 2021, 207, 116661. [Google Scholar] [CrossRef]
- Jo, M.C.; Yoo, J.; Kim, S.; Kim, S.; Oh, J.; Bian, J.; Sohn, S.S.; Lee, S. Effects of Nb and Mo alloying on resistance to hydrogen embrittlement in 1.9 GPa-grade hot-stamping steels. Mater. Sci. Eng. A 2020, 789, 139656. [Google Scholar] [CrossRef]
- Yamazaki, S.; Kubota, M.; Tarui, T. Evaluation Method for Delayed Fracture Susceptibility of Steels and Development of High Tensile Strength Steels with High Delayed Fracture Resistance. Nippon. Steel Tech. Rep. 1999, 80, 50–55. Available online: https://www.nipponsteel.com/en/tech/report/nsc/pdf/8011.pdf (accessed on 11 June 2023).
- Cho, L.; Seo, E.J.; Sulistiyo, D.H.; Jo, K.R.; Kim, S.W.; Oh, J.K.; Cho, Y.R.; De Cooman, B.C. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Mater. Sci. Eng. A 2018, 735, 448–455. [Google Scholar] [CrossRef]
- Chen, W.-J.; Gao, P.-F.; Wang, S.; Lu, H.-Z.; Zhao, Z.-Z. Effect of vanadium on hydrogen embrittlement susceptibility of high-strength hot-stamped steel. J. Iron Steel Res. Int. 2021, 28, 211–222. [Google Scholar]
- Wei, F.G.; Tsuzaki, K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall. Mater. Trans. A 2006, 37, 331–353. [Google Scholar] [CrossRef]
- Wei, F.G.; Hara, T.; Tsuzaki, K. High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag. 2004, 84, 1735–1751. [Google Scholar] [CrossRef]
- Tokizawa, T.; Yamamoto, K.; Takemoto, Y.; Senuma, T. Development of 2000 MPa Class Hot Stamped Steel Components with Good Toughness and High Resistance against Delayed Fracture. In Proceedings of the 4th International Conference Hot Sheet Metal Forming of High Performance Steel, Lulea, Sweden, 9–12 June 2013; pp. 473–479. [Google Scholar]
- Mohrbacher, H. Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying. Metals 2018, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, X.; Qiao, B.; Zhang, Y.; Miao, N.; Liu, L.; Ding, H.; Cai, M. New Insights to Understand the Influence of Nb/Mo on Hydrogen Embrittlement Resistance of Warm-Rolled Medium-Mn Steels. J. Mater. Eng. Perform. 2022, 31, 3228–3233. [Google Scholar] [CrossRef]
- Mohrbacher, H.; Senuma, T. Alloy Optimization for Reducing Delayed Fracture Sensitivity of 2000 MPa Press Hardening Steel. Metals 2020, 10, 853. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, L.; Liu, S.; Peng, Z.; Cheng, Y.F.; Huang, F.; Liu, J. Synergistic effects of Nb and Mo on hydrogen-induced cracking of pipeline steels: A combined experimental and numerical study. J. Mater. Sci. Technol. 2023, 158, 156–170. [Google Scholar] [CrossRef]
- Yoo, J.; Jo, M.C.; Bian, J.; Sohn, S.S.; Lee, S. Effects of Nb or (Nb + Mo) alloying on Charpy impact, bending, and delayed fracture properties in 1.9-GPa-grade press hardening steels. Mater. Charact. 2021, 176, 111133. [Google Scholar] [CrossRef]
- Tateyama, S.; Ishio, R.; Hayashi, K.; Sue, T.; Takemoto, Y.; Senuma, T. Microstructures and Mechanical Properties of V and/or Nb Bearing Ultrahigh Strength Hot Stamped Steel Components. Tetsu-to-Hagané 2014, 100, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hui, W.; Zhao, X.; Zhang, Y.; Zhao, X. Hydrogen-induced delayed fracture behaviour of V + Nb-microalloyed high-strength bolt steel with internal and environmental hydrogen. Corros. Sci. 2022, 209, 110710. [Google Scholar] [CrossRef]
- Gui, L.; Zhao, Y.; Feng, Y.; Ma, M.; Lu, H.; Tan, K.; Chiu, P.-H.; Guo, A.; Bian, J.; Yang, J.-R.; et al. Study on the improving effect of Nb-V microalloying on the hydrogen induced delayed fracture property of 22MnB5 press hardened steel. Mater. Des. 2023, 227, 111763. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Wan, J.; Liu, W. Effect of Nb–Ti multi-microalloying on the hydrogen trapping efficiency and hydrogen embrittlement susceptibility of hot-stamped boron steel. Mater. Sci. Eng. A 2020, 772, 138788. [Google Scholar] [CrossRef]
- Yoo, J.; Jo, M.C.; Kim, S.; Oh, J.; Bian, J.; Sohn, S.S.; Lee, S. Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb + Mo)-alloyed ultra-high-strength hot-stamping steels. Mater. Sci. Eng. A 2020, 22, 139763. [Google Scholar] [CrossRef]
- Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater. 2010, 58, 6393–6403. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hidaka, K.; Morioka, K.; Sue, T.; Takemoto, Y.; Senuma, T. Microstractural Control for Improving Productivity and Mechanical Properties of Hot-Stamped Products. Jpn. Soc. Technol. Plast. 2013, 54, 137–142. [Google Scholar] [CrossRef]
- Watanabe, J.; Takai, K.; Nagumo, M. Improvement of Delayed Fracture Strength of High Strength Steels by Intergranular Ferrite Precipitation. Tetsu-to-Hagané 1996, 82, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Lee, Y.H.; Lee, D.L.; Park, K.-T.; Lee, C.S. Effect of Intergranular Ferrite on Hydrogen Delayed Fracture Resistance of Ultrahigh Strength Boron-added Steel. ISIJ Int. 2007, 47, 913–919. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, T.; Motomura, Y.; Era, H.; Tsuchiyama, T.; Shobu, K.; Hasebe, M.; Ohtani, H. Effect of Alloying Elements on Grain Boundary Segregation of Boron and Carbon in α-Iron. Tetsu-to-Hagané 2023, 109, 158–166. [Google Scholar] [CrossRef]
- Geng, W.-T.; Freeman, A.J.; Olson, G.B. Influence of alloying additions on grain boundary cohesion of transition metals: First-principles determination and its phenomenological extension. Phys. Rev. B 2001, 63, 165415. [Google Scholar] [CrossRef]
- Lejcek, P. Grain Boundary Segregation in Metals; Springer Series in Materials Science: Berlin/Heidelberg, Germany, 2010; pp. 173–183. [Google Scholar]
- Ito, K.; Tanaka, Y.; Tsutsui, K.; Omura, T. Effect of Mo addition on hydrogen segregation at α-Fe grain boundaries: A first-principles investigation of the mechanism by which Mo addition improves hydrogen embrittlement resistance in high-strength steels. Comput. Mater. Sci. 2023, 218, 111951. [Google Scholar] [CrossRef]
- Nie, Y.; Hui, W.; Fu, W.; Weng, Y. Effect of Boron on Delayed Fracture Resistance of Medium-Carbon High Strength Spring Steel. J. Iron Steel Res. Int. 2007, 14, 53–57. Available online: https://link.springer.com/article/10.1016/S1006-706X%2807%2960090-9 (accessed on 11 June 2023). [CrossRef]
- Li, H.; Cheng, X.Y.; Shen, H.P.; Su, L.C.; Zhang, S.Y. Effect of Boron Microalloying Element on Susceptibility to Hydrogen Embrittlement in High Strength Mooring Chain Steel. In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1211–1218. Available online: https://link.springer.com/chapter/10.1007/978-3-319-48767-0_151 (accessed on 11 June 2023).
- Komazaki, S.; Watanabe, S.; Misawa, T. Influence of Phosphorus and Boron on Hydrogen Embrittlement Susceptibility of High Strength Low Alloy Steel. ISIJ Int. 2003, 43, 1851–1857. [Google Scholar] [CrossRef]
- Fudanoki, F.; Sumitomo, H. Effect of Grain Size and Boron on Resistance to Secondary Working Embrittlement of High-purity Ferritic Stainless Cold-rolled Steel Sheet. Tetsu-to-Hagané 1998, 84, 804–810. Available online: https://www.jstage.jst.go.jp/article/tetsutohagane1955/84/11/84_11_804/_pdf (accessed on 11 June 2023). [CrossRef] [Green Version]
- Yamaguchi, M. First-Principles Calculations of the Grain-Boundary Cohesive Energy. J. Jpn. Inst. Met. 2008, 72, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Kulkov, S.S.; Bakulin, A.V.; Kulkova, S.E. Effect of boron on the hydrogen-induced grain boundary embrittlement in α-Fe. Int. J. Hydrog. Energy 2023, 43, 1909–1925. [Google Scholar] [CrossRef]
- Kimura, A.; Kimura, H. Effect of Carbon on the Hydrogen Induced Grain Boundary Fracture in Iron. J. Jpn. Inst. Met. 1983, 47, 807–813. Available online: https://www.jstage.jst.go.jp/article/jinstmet1952/47/10/47_10_807/_pdf (accessed on 11 June 2023). [CrossRef] [Green Version]
Steel | C | Si | Mn | Nb | Mo | Cr | Ti | B | N |
---|---|---|---|---|---|---|---|---|---|
A | 0.22 | 0.1 | 1.2 | 0 | 0 | 0.15 | 0.01 | 0.002 | |
B | 0.31 | 0.98 | 2.5 | 0.02 | 0 | 0 | 0.01 | 0.002 | 0.0010 |
C | 0.35 | 0.1 | 1.2 | 0 | 0 | 0 | 0.01 | 0.002 | 0.0006 |
Nb1 | 0.32 | 0.1 | 2.5 | 0 | 0 | 0 | 0.01 | 0.002 | 0.0005 |
Nb2 | 0.32 | 0.1 | 2.5 | 0.025 | 0 | 0 | 0.01 | 0.002 | 0.0005 |
Nb3 | 0.32 | 0.1 | 2.5 | 0.05 | 0 | 0 | 0.01 | 0.002 | 0.0006 |
Nb4 | 0.32 | 0.1 | 2.5 | 0.075 | 0 | 0 | 0.01 | 0.002 | 0.0007 |
Mo1 | 0.32 | 0.1 | 1.2 | 0 | 0 | 0 | 0.01 | 0.002 | 0.0020 |
Mo2 | 0.33 | 0.1 | 1.2 | 0 | 0.15 | 0 | 0.01 | 0.002 | 0.0022 |
Mo3 | 0.33 | 0.1 | 1.2 | 0 | 0.3 | 0 | 0.01 | 0.002 | 0.0021 |
Mo4 | 0.33 | 0.1 | 1.2 | 0 | 0.5 | 0 | 0.01 | 0.002 | 0.002 |
B0 | 0.32 | 0.1 | 2.5 | 0.05 | 0 | 0 | 0.01 | 0 | 0.001 |
NM | 0.32 | 0.1 | 1.2 | 0.05 | 0.5 | 0 | 0.01 | 0.002 | 0.001 |
Prior Austenite Grain Size (μm) | 6.88 | 16.45 | 55.75 |
Accumulated Total Hydrogen Content (mass ppm) | 7.00 | 5.82 | 5.50 |
Hydrogen Content per Unit Grain Boundary Area (mass ppm/m2) | 48.7 | 83.6 | 387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senuma, T.; Okayasu, M.; Mohrbacher, H. Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets. Metals 2023, 13, 1368. https://doi.org/10.3390/met13081368
Senuma T, Okayasu M, Mohrbacher H. Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets. Metals. 2023; 13(8):1368. https://doi.org/10.3390/met13081368
Chicago/Turabian StyleSenuma, Takehide, Mitsuhiro Okayasu, and Hardy Mohrbacher. 2023. "Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets" Metals 13, no. 8: 1368. https://doi.org/10.3390/met13081368