The Microstructural Degradation of Ni-Based Superalloys with Segregation under the Super-Gravity Condition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoloff, N.F. Superalloys II: High-Temperature Materials for Aerospace and Industrial Power; Wiley-Interscience: New York, NY, USA, 1987; Volume 2. [Google Scholar]
- Caron, P.; Khan, T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 1999, 3, 513–523. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ross, E.W. Nickel-base alloys. In Superalloy II: High-Temperature Materials for Aerospace Industrial Power; Ross, Earl W: New York, NY, USA, 1987. [Google Scholar]
- Versnyder, F.I.; Shank, M. The development of columnar grain and single crystal high temperature materials through directional solidification. Mater. Sci. Eng. 1970, 6, 213–247. [Google Scholar] [CrossRef]
- Wagner, A.; Shollock, B.; McLean, M. Grain structure development in directional solidification of nickel-base superalloys. Mater. Sci. Eng. A 2004, 374, 270–279. [Google Scholar] [CrossRef]
- Zhou, Y. Formation of stray grains during directional solidification of a nickel-based superalloy. Scr. Mater. 2011, 65, 281–284. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Yu, J.; Zhou, Z.; Wang, B.; Tu, T.; Ren, X.; Deng, K.; Ren, Z. Microstructure and Mechanical Properties of Ni-based Superalloy K418 Produced by the Continuous Unidirectional Solidification Process. J. Mater. Eng. Perform. 2019, 28, 6483–6491. [Google Scholar] [CrossRef]
- Caron, P.; Khan, T. Improvement of Creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater. Sci. Eng. 1983, 61, 173–184. [Google Scholar] [CrossRef]
- Xuebing, H.; Yan, K.; Huihua, Z.; Yun, Z.; Zhuangqi, H. Influence of heat treatment on the microstructure of a unidirectional Ni-base superalloy. Mater. Lett. 1998, 36, 210–213. [Google Scholar] [CrossRef]
- Fuchs, G.E. Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng. A 2001, 300, 52–60. [Google Scholar] [CrossRef]
- Wilson, B.C.; Hickman, J.A.; Fuchs, G.E. The effect of solution heat treatment on a single-crystal Ni-based superalloy. JOM 2003, 55, 35–40. [Google Scholar] [CrossRef]
- Bu, H.; Chen, L.; Duan, Y. Effect of Solution Heat Treatment on the Porosity Growth of Nickel-Based P/M Superalloys. Metals 2022, 12, 1973. [Google Scholar] [CrossRef]
- Lu, H.; Yang, M.; Zhou, L.; Ma, Z.; Cui, B.; Yin, F.; Li, D. Effects of Heat Treatment on the Microstructure and Properties of a Cast Nickel-Based High-Cr Superalloy. Metals 2022, 12, 2176. [Google Scholar] [CrossRef]
- Ges, A.M.; Fornaro, O.; Palacio, H.A. Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions. Mater. Sci. Eng. A 2007, 458, 96–100. [Google Scholar] [CrossRef]
- Liu, J.L.; Jin, T.; Yu, J.J.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Effect of thermal exposure on stress rupture properties of a Re bearing Ni base single crystal superalloy. Mater. Sci. Eng. A 2010, 527, 890–897. [Google Scholar] [CrossRef]
- Baldan, R.; da Rocha, R.L.P.; Tomasiello, R.B.; Nunes, C.A.; da Silva Costa, A.M.; Barboza, M.J.R.; Coelho, G.C.; Rosenthal, R. Solutioning and Aging of MAR-M247 Nickel-Based Superalloy. J. Mater. Eng. Perform. 2013, 22, 2574–2579. [Google Scholar] [CrossRef]
- Sun, F.; Tong, J.; Feng, Q.; Zhang, J. Microstructural evolution and deformation features in gas turbine blades operated in-service. J. Alloys Compd. 2015, 618, 728–733. [Google Scholar] [CrossRef]
- Hanafi, N.H.M.; Amrin, A. Microstructural and Phase Analysis of Service-Exposed Ni-Cr Alloy Turbine Blade. Key Eng. Mater. 2015, 659, 340–344. [Google Scholar] [CrossRef]
- Ospennikova, O.G.; Orlov, M.R.; Kolodochkina, V.G.; Nazarkin, R.M. Structural changes and damage of single-crystal turbine blades during life tests of an aviation gas turbine engine. Russ. Metall. (Met.) 2015, 2015, 324–331. [Google Scholar] [CrossRef]
- Jinbin, C.; Jingyang, C.; Xidong, H.; Qing, L.; Chengbo, X. Quantitative Characterization and Assessment of Served René N5 Ni-based Single Crystal Industrial Gas Turbine Blade. Rare Met. Mater. Eng. 2020, 49, 2207–2212. [Google Scholar]
- Tong, J.; Ding, X.; Wang, M.; Yagi, K.; Zheng, Y.; Feng, Q. Assessment of service induced degradation of microstructure and properties in turbine blades made of GH4037 alloy. J. Alloys Compd. 2016, 657, 777–786. [Google Scholar] [CrossRef]
- Kolagar, A.M.; Tabrizi, N.; Cheraghzadeh, M.; Shahriari, M.S. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Stud. Eng. Fail. Anal. 2017, 8, 61–68. [Google Scholar] [CrossRef]
- Huang, W.-Q.; Yang, X.-G.; Li, S.-L. Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine. Rare Met. 2019, 38, 157–164. [Google Scholar] [CrossRef]
- Dubiel, B.; Czyrska-Filemonowicz, A. TEM analyses of microstructure evolution in ex-service single crystal CMSX-4 gas turbine blade. Solid State Phenom. 2012, 186, 139–142. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Jo, C.Y.; Kim, D.H.; Jin, T.; Hu, Z.Q. Influence of local chemical segregation on the γ′ directional coarsening behavior in single crystal superalloy CMSX-4. Mater. Charact. 2009, 60, 210–218. [Google Scholar] [CrossRef]
- Gong, L.; Chen, B.; Du, Z.; Zhang, M.; Liu, R.; Liu, K. Investigation of Solidification and Segregation Characteristics of Cast Ni-Base Superalloy K417G. J. Mater. Sci. Technol. 2018, 34, 541–550. [Google Scholar] [CrossRef]
- Hou, N.X.; Gou, W.X.; Wen, Z.X.; Yue, Z.F. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Mater. Sci. Eng. A 2008, 492, 413–418. [Google Scholar] [CrossRef]
- Poursaeidi, E.; Aieneravaie, M.; Mohammadi, M.R. Failure analysis of a second stage blade in a gas turbine engine. Eng. Fail. Anal. 2008, 15, 1111–1129. [Google Scholar] [CrossRef]
- Vakili-Tahami, F.; Adibeig, M.R. Investigating the possibility of replacing IN 738LC gas turbine blades with IN 718. J. Mech. Sci. Technol. 2015, 29, 4167–4178. [Google Scholar] [CrossRef]
- Kostyuk, A.; Frolov, V. Steam and Gas Turbines; Mir Pub: St. Petersburg, Russia, 1988. [Google Scholar]
- El-Magd, E.; Nicolini, G.; Farag, M. Effect of carbide precipitation on the creep behavior of Alloy 800HT in the Temperature Range 700° to 900°. Metall. Mater. Trans. A 1996, 27, 747–756. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, X.; Du, K.; Zhou, Y.; Jin, T.; Ye, H. Microstructure of Carbides at Grain Boundaries in Nickel Based Superalloys. J. Mater. Sci. Technol. 2012, 28, 1031–1038. [Google Scholar] [CrossRef]
- Kearsey, R.; Beddoes, J.C.; Jaansalu, K.M.; Thompson, W.T.; Au, P.J.S. The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems. Superalloys 2004, 2004, 801–810. [Google Scholar]
- Liu, X.G.; Wang, L.; Lou, L.H.; Zhang, J. Effect of Mo Addition on Microstructural Characteristics in a Re-containing Single Crystal Superalloy. J. Mater. Sci. Technol. 2015, 31, 143–147. [Google Scholar] [CrossRef]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and compositional design of Ni-based single crystalline superalloys―A review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Chen, J.; Huo, Q.; Chen, J.; Wu, Y.; Li, Q.; Xiao, C.; Hui, X. Tailoring the creep properties of second-generation Ni-based single crystal superalloys by composition optimization of Mo, W and Ti. Mater. Sci. Eng. A 2021, 799, 140163. [Google Scholar] [CrossRef]
Element | Al | Cr | Co | Ni | Mo | Ta | W | Hf |
---|---|---|---|---|---|---|---|---|
wt.% | 6.3 | 6.2 | 10.2 | Bal. | 1.7 | 5.5 | 4.2 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhou, H.; Li, X.; Wang, W.; Long, H.; Mao, S.; Zhang, Z.; Han, X. The Microstructural Degradation of Ni-Based Superalloys with Segregation under the Super-Gravity Condition. Metals 2023, 13, 416. https://doi.org/10.3390/met13020416
Yang G, Zhou H, Li X, Wang W, Long H, Mao S, Zhang Z, Han X. The Microstructural Degradation of Ni-Based Superalloys with Segregation under the Super-Gravity Condition. Metals. 2023; 13(2):416. https://doi.org/10.3390/met13020416
Chicago/Turabian StyleYang, Guo, Hui Zhou, Xueqiao Li, Wenshuai Wang, Haibo Long, Shengcheng Mao, Ze Zhang, and Xiaodong Han. 2023. "The Microstructural Degradation of Ni-Based Superalloys with Segregation under the Super-Gravity Condition" Metals 13, no. 2: 416. https://doi.org/10.3390/met13020416