Optimization of Thick 22MnB5 Sheet Steel Part Performance through Laser Tempering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Production and Heat Treatment
2.3. Uniaxial Tensile Tests
2.4. Essential Work of Fracture Test
3. Results and Discussion
3.1. Heat Treatment Results
3.1.1. In-Die Bainite Formation
3.1.2. Laser Tempering
3.2. Mechanical Performance
3.2.1. Tensile Properties
3.2.2. Essential Work of Fracture
4. Conclusions
- It is possible to obtain soft zones or microstructural tailoring on thick 22MnB5 sheet.
- Four variants of microstructures were analyzed, together with the process in which they can be generated. These different microstructures offer different and interesting compromises in terms of their anti-intrusion performance, fracture toughness and process window.
- The fully martensitic samples presented UTS levels (1500 MPa) on a par with thin sheet, confirming that the material can be satisfactorily quenched.
- Ferritic-Pearlitic structures present the highest value in terms of the fracture toughness of the studied microstructures.
- The Tempered Martensite, generated through laser tempering, offered a very attractive combination of properties, presenting a fracture toughness on a par with the in-die Bainite, but much higher monotonic strength and, therefore, anti-intrusion performance.
- In general terms, both Bainitic and Laser-Tempered Martensite structures offer the potential to be applied in microstructural tailoring.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bian, J.; Mohrbacher, H.; Zhang, J.; Zhao, Y.; Lu, H.; Dong, H. Application potential of high performance steels for weight reduction and efficiency increase in commercial vehicles. Adv. Manuf. 2015, 3, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D. Microstructural and mechanical study of press hardening of thick boron steel sheet. J. Phys. Conf. Ser. 2017, 896, 012085. [Google Scholar] [CrossRef] [Green Version]
- Nagathan, A.; Penter, L. Chapter 7: Hot stamping. In Sheet Metal Forming—Processes and Applications; Altan, T., Tekkaya, A., Eds.; ASM International: Novelty, OH, USA, 2012; pp. 153–163. [Google Scholar]
- Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K. Local laser heat treatment of steel sheets. Phys. Procedia 2015, 78, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Artola, O. Characterization of Press Hardened 36MnB5 during Rapid Heating Laser Tempering. Master’s Thesis, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Frómeta, D.; Parareda, S.; Pujante, J.; Corón, D.; Galcerán, L.; Casellas, D. Influence of laser tempering on fracture toughness of press hardened steels- correlation with component crash performance. In Proceedings of the 8th CHS2 Conference: Hot Sheet Metal Forming of High-Performance Steel, Barcelona, Spain, 30 May–2 June 2022. [Google Scholar]
- Frómeta, D.; Lara, A.; Molas, S.; Casellas, D.; Rehrl, J.; Suppan, C.; Larour, P.; Calvo, J. On the correlation between fracture toughness and crash resistance of advanced high strength steels. Eng. Fract. Mech. 2015, 205, 319–332. [Google Scholar] [CrossRef]
- Cotterell, B.; Reddel, J.K. The essential work of plane stress ductile fracture. Int. J. Fract. 1977, 13, 267–277. [Google Scholar] [CrossRef]
- Frómeta, D.; Parareda, S.; Lara, A.; Casellas, D. Fracture toughness evaluation of thick press hardened 22MnB5 sheets for high crash performance applications in trucks. In Proceedings of the 7th CHS2 Conference: Hot Sheet Metal Forming of High-Performance Steel, Luleå, Sweden, 2–5 June 2019. [Google Scholar]
- Karbasian, H.; Tekkaya, A. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Martinez, A.B.; Gamez-Perez, J.; Sanchez-Soto, M.; Velasco, J.I.; Santana, O.O.; Maspoch, M.L. The Essential Work of Fracture (EWF) method—Analyzing the Post-Yielding Fracture Mechanics of polymers. Eng. Fail. Anal. 2009, 16, 2604–2617. [Google Scholar] [CrossRef]
- Golling, S.; Frómeta, D.; Casellas, D.; Jonsén, P. Influence of microstructure on the fracture toughness of hot stamped boron steel. Mat. Sci. Eng. A 2019, 743, 529–539. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Al | B | |
---|---|---|---|---|---|---|
22MnB5 | 0.2–0.25 | 0.15–0.35 | 1.1–1.4 | 0.15–0.30 | 0.02–0.06 | 0.02–0.04 |
Sample | 0.215 | 0.27 | 1.19 | 0.119 | 0.03 | 0.02 |
Austenitization | Quench | Post-Treatment | |
---|---|---|---|
Ferrite-Pearlite | n. a. | n. a. | n. a. |
Martensite | 690 s at 930 °C | Water-cooled die | None |
Tempered Martensite | 690 s at 930 °C | Water-cooled die | Laser tempering |
Bainite | 690 s at 930 °C | Heated tool | None |
Yield Strength, σys [MPa] | Ultimate Tensile Strength, σUTS [MPa] | Uniform Elongation, Ag [%] | Elongation at Fracture, A25 [%] | |
---|---|---|---|---|
Ferrite-Pearlite | 404 | 594 | 14.2 | 33.7 |
Martensite | 1160 | 1523 | 4.8 | 18.4 |
Laser-Tempered Martensite | 872 | 920 | 4.6 | 19.1 |
Bainite 200 °C | 533 | 796 | 8.2 | 21.6 |
we [kJ/m2] | βwp [MJ/m3] | |
---|---|---|
Ferrite-Pearlite | 212 ± 19 | 30 ± 1 |
Martensite | 38 ± 12 | 12 ± 1 |
Laser-Tempered Martensite | 130 ± 22 | 30 ± 2 |
Bainite 200 °C | 124 ± 32 | 17 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Llamas, E.; Pujante, J.; Frómeta, D.; Corón, D.; Galceran, L.; Golling, S.; Seijas, C.; Casellas, D. Optimization of Thick 22MnB5 Sheet Steel Part Performance through Laser Tempering. Metals 2023, 13, 396. https://doi.org/10.3390/met13020396
Garcia-Llamas E, Pujante J, Frómeta D, Corón D, Galceran L, Golling S, Seijas C, Casellas D. Optimization of Thick 22MnB5 Sheet Steel Part Performance through Laser Tempering. Metals. 2023; 13(2):396. https://doi.org/10.3390/met13020396
Chicago/Turabian StyleGarcia-Llamas, Eduard, Jaume Pujante, David Frómeta, David Corón, Laura Galceran, Stefan Golling, Carlos Seijas, and Daniel Casellas. 2023. "Optimization of Thick 22MnB5 Sheet Steel Part Performance through Laser Tempering" Metals 13, no. 2: 396. https://doi.org/10.3390/met13020396