Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Measurements
2.4. Determination of Thresholds
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mezzani, A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. Ann. Am. Thorac. Soc. 2017, 14, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Madrid, B.; Pires, F.O.; Prestes, J.; César Leite Vieira, D.; Clark, T.; Tiozzo, E.; Lewis, J.E.; Grubert Campbell, C.S.; Gustavo Simões, H. Estimation of the Maximal Lactate Steady State Intensity by the Rating of Perceived Exertion. Percept. Mot. Ski. 2016, 122, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Eves, N.D.; Scott, J.M. Bench-to-Bedside Approaches for Personalized Exercise Therapy in Cancer. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 684–694. [Google Scholar] [CrossRef]
- Hofmann, P.; Tschakert, G. Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2010, 2011, 209302. [Google Scholar] [CrossRef] [PubMed]
- Moser, O.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Obermayer-Pietsch, B.; Koehler, G.; Hofmann, P. Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin. PLoS ONE 2015, 10, e0136489. [Google Scholar] [CrossRef]
- Caen, K.; Pogliaghi, S.; Lievens, M.; Vermeire, K.; Bourgois, J.G.; Boone, J. Ramp vs. step tests: Valid alternatives to determine the maximal lactate steady-state intensity? Eur. J. Appl. Physiol. 2021, 121, 1899–1907. [Google Scholar] [CrossRef]
- Loe, H.; Rognmo, Ø.; Saltin, B.; Wisløff, U. Aerobic Capacity Reference Data in 3816 Healthy Men and Women 20–90 Years. PLoS ONE 2013, 8, e64319. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Arena, R.; Kaminsky, L.A.; Myers, J. Reference Standards for Ventilatory Threshold Measured with Cardiopulmonary Exercise Testing: The Fitness Registry and the Importance of Exercise: A National Database. Chest 2020, 157, 1531–1537. [Google Scholar] [CrossRef]
- Birnbaumer, P.; Dostal, T.; Cipryan, L.; Hofmann, P. Pattern of the heart rate performance curve in maximal graded treadmill running from 1100 healthy 18–65 Years old men and women: The 4HAIE study. Front. Physiol. 2023, 14, 1178913. [Google Scholar] [CrossRef]
- Rosenblat, M.A.; Granata, C.; Thomas, S.G. Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 1329–1352. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Tang, Y.; Li, S.; Zou, Y. Effects of High-Intensity Interval Training and Moderate-Intensity Continuous Training on Cardiometabolic Risk Factors in Overweight and Obesity Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 11905. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Hua, B.; Zhang, F.; Zhou, W.; Deng, B. Effect of different intensity exercises intervention on cardiovascular functions and quality of life on patients with chronic heart failure: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e28554. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Mendes, M.; Da Silva, I.C.; Ramires, V.V.; Reichert, F.F.; Martins, R.C.; Tomasi, E. Calibration of raw accelerometer data to measure physical activity: A systematic review. Gait Posture 2018, 61, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.L.; Ferguson, S.; McCrorie, P.; Schipperijn, J.; Ellis, G.; Hunter, R.F. Considerations in Processing Accelerometry Data to Explore Physical Activity and Sedentary Time in Older Adults. J. Aging Phys. Act. 2020, 28, 623–633. [Google Scholar] [CrossRef]
- Ryan, D.J.; Wullems, J.A.; Stebbings, G.K.; Morse, C.I.; Stewart, C.E.; Onambele-Pearson, G.L. Reliability and validity of the international physical activity questionnaire compared to calibrated accelerometer cut-off points in the quantification of sedentary behaviour and physical activity in older adults. PLoS ONE 2018, 13, e0195712. [Google Scholar] [CrossRef]
- Diniz, T.A.; Rossi, F.E.; Rosa, C.S.d.C.; Mota, J.; Freitas-Junior, I.F. Moderate-to-Vigorous Physical Activity Among Postmenopausal Women: Discrepancies in Accelerometry-Based Cut-Points. J. Aging Phys. Act. 2017, 25, 20–26. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2019, 67, 12–24. [Google Scholar] [CrossRef]
- Darch, L.; Chalmers, S.; Causby, R.; Arnold, J. Effect of Running-Induced Fatigue on Tibial Acceleration and the Role of Lower Limb Muscle Strength, Power, and Endurance. Med. Sci. Sports Exerc. 2023, 55, 581–589. [Google Scholar] [CrossRef]
- Clarke, T.E.; Cooper, L.B.; Hamill, C.L.; Clark, D.E. The effect of varied stride rate upon shank deceleration in running. J. Sports Sci. 1985, 3, 41–49. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Besier, T.F.; Reid, D. The influence of running velocity on resultant tibial acceleration in runners. Sports Biomech. 2020, 19, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Apte, S.; Prigent, G.; Stöggl, T.; Martínez, A.; Snyder, C.; Gremeaux-Bader, V.; Aminian, K. Biomechanical Response of the Lower Extremity to Running-Induced Acute Fatigue: A Systematic Review. Front. Physiol. 2021, 12, 646042. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Mata, T.; Mercer, J.A. Is the Relationship Between Stride Length, Frequency, and Velocity Influenced by Running on a Treadmill or Overground? Int. J. Exerc. Sci. 2017, 10, 1067–1075. [Google Scholar] [PubMed]
- Schubert, A.G.; Kempf, J.; Heiderscheit, B.C. Influence of stride frequency and length on running mechanics: A systematic review. Sports Health 2014, 6, 210–217. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Williams, K.R. The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 1982, 14, 30–35. [Google Scholar] [CrossRef]
- Slawinski, J.S.; Billat, V.L. Difference in mechanical and energy cost between highly, well, and nontrained runners. Med. Sci. Sports Exerc. 2004, 36, 1440–1446. [Google Scholar] [CrossRef]
- Castro, A.; LaRoche, D.P.; Fraga, C.H.W.; Gonçalves, M. Relationship between running intensity, muscle activation, and stride kinematics during an incremental protocol. Sci. Sports 2013, 28, e85–e92. [Google Scholar] [CrossRef]
- Mascher, K.; Laller, S.; Wieser, M. Development of smart shin guards for soccer performance analysis based on MEMS accelerometers, machine learning, and GNSS. CEUR Workshop Proc. 2021, 2880, 5. [Google Scholar]
- Higgins, J.P. Smartphone Applications for Patients’ Health and Fitness. Am. J. Med. 2016, 129, 11–19. [Google Scholar] [CrossRef]
- Conconi, F.; Grazzi, G.; Casoni, I.; Guglielmini, C.; Borsetto, C.; Ballarin, E.; Mazzoni, G.; Patracchini, M.; Manfredini, F. The Conconi test: Methodology after 12 years of application. Int. J. Sports Med. 1996, 17, 509–519. [Google Scholar] [CrossRef]
- Lenhard, W. Computation of Effect Sizes. Available online: http://www.psychometrica.de/effect_size.html (accessed on 8 August 2023).
- Hofmann, P.; Pokan, R.; von Duvillard, S.P.; Seibert, F.J.; Zweiker, R.; Schmid, P. Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med. Sci. Sports Exerc. 1997, 29, 762–768. [Google Scholar] [CrossRef]
- Hay, J.G. Cycle Rate, Length, and Speed of Progression in Human Locomotion. J. Appl. Biomech. 2002, 18, 257–270. [Google Scholar] [CrossRef]
- Goto, Y.; Ogawa, T.; Kakehata, G.; Sazuka, N.; Okubo, A.; Wakita, Y.; Iso, S.; Kanosue, K. Spatiotemporal inflection points in human running: Effects of training level and athletic modality. PLoS ONE 2021, 16, e0258709. [Google Scholar] [CrossRef]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef]
- Iannetta, D.; Keir, D.A.; Fontana, F.Y.; Inglis, E.C.; Mattu, A.T.; Paterson, D.H.; Pogliaghi, S.; Murias, J.M. Evaluating the Accuracy of Using Fixed Ranges of METs to Categorize Exertional Intensity in a Heterogeneous Group of Healthy Individuals: Implications for Cardiorespiratory Fitness and Health Outcomes. Sports Med. 2021, 51, 2411–2421. [Google Scholar] [CrossRef]
- Birnbaumer, P.; Dietz, P.; Watson, E.D.; Mukoma, G.; Müller, A.; Sattler, M.C.; Jaunig, J.; van Poppel, M.N.M.; Hofmann, P. Absolute Accelerometer-Based Intensity Prescription Compared to Physiological Variables in Pregnant and Nonpregnant Women. Int. J. Environ. Res. Public Health 2020, 17, 5651. [Google Scholar] [CrossRef]
- Rosenberger, M.E.; Haskell, W.L.; Albinali, F.; Mota, S.; Nawyn, J.; Intille, S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med. Sci. Sports Exerc. 2013, 45, 964–975. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Birnbaumer, P.; Traninger, H.; Borenich, A.; Falgenhauer, M.; Modre-Osprian, R.; Harpf, H.; Hofmann, P. Heart Rate Performance Curve Is Dependent on Age, Sex, and Performance. Front. Public Health 2020, 8, 98. [Google Scholar] [CrossRef]
- Gil-Rey, E.; Maldonado-Martín, S.; Gorostiaga, E.M. Individualized Accelerometer Activity Cut-Points for the Measurement of Relative Physical Activity Intensity Levels. Res. Q. Exerc. Sport 2019, 90, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Gil-Rey, E.; Maldonado-Martín, S.; Palacios-Samper, N.; Gorostiaga, E.M. Objectively measured absolute and relative physical activity intensity levels in postmenopausal women. Eur. J. Sport Sci. 2019, 19, 539–548. [Google Scholar] [CrossRef] [PubMed]
Ventilatory Thresholds | Accelerometer Thresholds | |||||
---|---|---|---|---|---|---|
Variables | VT1 | VT2 | ACT1L | ACT1R | ACT2L | ACT2R |
VO2 (L/min) | 2.06 ±0.28 | 2.89 ±0.5 | 2.13 * ±0.3 | 2.15 * ±0.3 | 2.86 ±0.5 | 2.87 ±0.5 |
Heart rate (bpm) | 143.4 ±14.3 | 170.8 ±10.0 | 141.4 ±14.0 | 141.6 ±14.6 | 167.0 * ±10.9 | 166.8 * ±11.7 |
VE (L/min) | 55.2 ±8.4 | 79.24 ±12.2 | 56.9 ±8.5 | 58.6 * ±9.2 | 79.1 ±11.7 | 79.5 ±13.2 |
Threshold | VT (km/h) | ACT Left Leg (km/h) | ACT Right Leg (km/h) | |
---|---|---|---|---|
all | T1 | 7.82 ± 0.39 | 7.71 ± 0.35 * | 7.79 ± 0.33 * |
T2 | 10.9 ± 0.9 | 10.6 ± 0.7 * | 10.7 ± 0.8 * | |
female | T1 | 7.5 ± 0.25 | 7.45 ± 0.31 | 7.52 ± 0.26 |
T2 | 10.12 ± 0.71 | 9.92 ± 0.57 | 10.09 ± 0.63 | |
male | T1 | 8.01 ± 0.33 | 7.86 ± 0.29 * | 7.91 ± 0.28 * |
T2 | 11.35 ± 0.58 | 11.02 ± 0.44 * | 11.05 ± 0.62 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schützenhöfer, M.; Birnbaumer, P.; Hofmann, P. Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise. Sports 2023, 11, 171. https://doi.org/10.3390/sports11090171
Schützenhöfer M, Birnbaumer P, Hofmann P. Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise. Sports. 2023; 11(9):171. https://doi.org/10.3390/sports11090171
Chicago/Turabian StyleSchützenhöfer, Matthias, Philipp Birnbaumer, and Peter Hofmann. 2023. "Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise" Sports 11, no. 9: 171. https://doi.org/10.3390/sports11090171
APA StyleSchützenhöfer, M., Birnbaumer, P., & Hofmann, P. (2023). Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise. Sports, 11(9), 171. https://doi.org/10.3390/sports11090171