Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- -
- Studies on golf swing biomechanics;
- -
- Population: all ages, both sexes, all golf skills (recreational, elite, and professional);
- -
- Articles in indexed scientific journals; in case of doubt, the website www.scimagojr.com was used to check;
- -
- Articles available in English only.
- -
- Articles on other sports (golf only cited as an example but without any specific analysis);
- -
- Master or PhD thesis manuscripts;
- -
- Description and evaluation of commercial devices for golf or equipment testing;
- -
- Analysis of putting;
- -
- Re-conditioning or physical rehabilitation programs without quantitative data on the golf swing;
- -
- Neurologic aspect of the swing;
- -
- Injury studies without reported biomechanical parameters;
- -
- Muscular activation by EMG;
- -
- Articles with only the abstract available and articles not in English;
- -
- Articles without any kinematics results.
- -
- X-factor;
- -
- Crunch factor;
- -
- Swing plane and club head trajectory;
- -
- Kinematic sequence;
- -
- Segmental and joint angular kinematics.
2.2. Presentation of the Results
3. Results and Discussion
3.1. Publication Selection
3.2. Common Parameters
3.2.1. Phases
- -
- The address when the golfer is facing the ball, static and preparing for movement.
- -
- The backswing when the golfer initiates his movement bringing the club up and back.
- -
- The downswing when the golfer accelerates the club forward and downward until it hits the ball.
- -
- The follow-through starts just after the ball impacts the club and aims to stop the movement, that is, decelerating the club.
- -
- Take away, corresponding to the initiation of the swing movement.
- -
- Mid-backswing, defined when the club is horizontal during the backswing.
- -
- Late-backswing, defined when the club is vertical during the backswing.
- -
- Top of backswing, defined as the instant when the clubhead speed starts to be oriented downward and frontward.
- -
- Early downswing, defined when the club is vertical during the downswing.
- -
- Mid-downswing, defined when the club is horizontal during the downswing.
- -
- Ball contact or impact, defined when the clubhead hits the ball.
- -
- Mid-follow-through, defined as when the club is horizontal during follow-through.
- -
- Finish, defined as the end of the movement, generally with the club up and back.
3.2.2. Laterality
- -
- Lead side or dominant side, which is closest to the target. For a right-handed golfer, the lead side is the left side, and vice versa.
- -
- Trail side or non-dominant side is the farthest side from the target, that is, the right side for right-handed golfers.
3.3. Experimental Setup
3.3.1. Rationale
3.3.2. Cohort
3.3.3. Club
3.3.4. Performance
3.3.5. Kinematic Measurement Technologies
3.3.6. Recommendations
3.4. X-Factor
3.4.1. Rationale
3.4.2. Commentary on the Results
3.4.3. Methodological Recommendations
- -
- The plane of projection was not crucial;
- -
- The segment used to compute the X-factor is essential.
- -
- The landmarks that were used (particularly to distinguish whether the landmarks belonged to the torso or shoulders).
- -
- The plane of projection (which were mainly horizontal plane or swing plane)
3.4.4. Typical Values
3.5. Crunch Factor
3.5.1. Rationale
3.5.2. Commentary on the Results
3.5.3. Methodological Recommendations
3.5.4. Typical Values
3.6. Swing Plane and Clubhead Trajectory
3.6.1. Rationale
3.6.2. Commentary on the Results
3.6.3. Methodological Recommendations
3.7. Kinematic Sequence
3.7.1. Rationale
3.7.2. Commentary on the Results
3.7.3. Methodological Recommendations
3.8. Joint Angular Kinematics
3.8.1. Rationale
3.8.2. Commentary on the Results
Ankle
Knees
Hips
Torso
Neck
Shoulder
Elbow
Wrist
3.8.3. Methodological Recommendations
3.8.4. Typical Values
Ankle
Knees
Hips
Torso
Neck
Shoulder
Elbow
Wrist
4. Conclusions and Perspectives
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Farrally, M.R.; Cochran, A.J.; Crews, D.J.; Hurdzan, M.J.; Price, R.J.; Snow, J.T.; Thomas, P.R. Golf science research at the beginning of the twenty-first century. J. Sports Sci. 2003, 21, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.D.; Daines, L.; Archibald, D.; Hawkes, R.A.; Schiphorst, C.; Kelly, P.; Grant, L.; Mutrie, N. The relationships between golf and health: A scoping review. Br. J. Sports Med. 2017, 51, 12–19. [Google Scholar] [CrossRef]
- McHardy, A.; Pollard, H.; Luo, K. Golf injuries: A review of the literature. Sports Med. 2006, 36, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Perron, C.; Rouillon, O.; Edouard, P. Epidemiological study on injuries and risk factors for injuries in the amateur golfer French high-level. Ann. Phys. Rehabil. Med. 2016, 59, e20. [Google Scholar] [CrossRef]
- Bourgain, M.; Sauret, C.; Marsan, T.; Perez, M.J.; Rouillon, O.; Thoreux, P.; Rouch, P. Influence of the projection plane and the marker choice on the X-factor computation of the golf swing X-factor: A case study. Comput. Methods Biomech. Biomed. Eng. 2020, 23, S45–S46. [Google Scholar] [CrossRef]
- Brown, S.J.; Selbie, W.S.; Wallace, E.S. The X-Factor: An evaluation of common methods used to analyse major inter-segment kinematics during the golf swing. J. Sports Sci. 2013, 31, 1156–1163. [Google Scholar] [CrossRef]
- Kwon, Y.-H.; Han, K.H.; Como, C.; Lee, S.; Singhal, K. Validity of the X-factor computation methods and relationship between the X-factor parameters and clubhead velocity in skilled golfers. Sports Biomech. 2013, 12, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Marsan, T.; Thoreux, P.; Bourgain, M.; Rouillon, O.; Rouch, P.; Sauret, C. Biomechanical analysis of the golf swing: Methodological effect of angular velocity component on the identification of the kinematic sequence. Acta Bioeng. Biomech. 2019, 21, 115–120. [Google Scholar] [CrossRef]
- Gluck, G.S.; Bendo, J.A.; Spivak, J.M. The lumbar spine and low back pain in golf: A literature review of swing biomechanics and injury prevention. Spine J. 2008, 8, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.M.H. Lower back pain in golfers: A review of the literature. J. Chiropr. Med. 2005, 4, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Hawkins, A.; Grant-Beuttler, M.; Beuttler, R.; Lee, S.-P. Risk Factors Associated with Low Back Pain in Golfers: A Systematic Review and Meta-analysis. Sports Health 2018, 10, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.L.; Epari, D.R.; Lorenzetti, S.; Sayers, M.; Boutellier, U.; Taylor, W.R. Risk Factors for Knee Injury in Golf: A Systematic Review. Sports Med. 2017, 47, 2621–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouzias, I.C.; Hendra, J.; Stodelle, J.; Limpisvasti, O. Golf Injuries: Epidemiology, Pathophysiology, and Treatment. J. Am. Acad. Orthop. Surg. 2018, 26, 116–123. [Google Scholar] [CrossRef]
- Marta, S.; Silva, L.; Castro, M.A.; Pezarat-Correia, P.; Cabri, J. Electromyography variables during the golf swing: A literature review. J. Electromyogr. Kinesiol. 2012, 22, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Lubans, D.; Callister, R. A review of strength and conditioning programs designed to improve fitness in golfers. J. Sci. Med. Sport 2010, 12, e116. [Google Scholar] [CrossRef]
- Parziale, J.R. Golf in the United States: An Evolution of Accessibility. PM R J. 2014, 6, 825–827. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; the PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Neal, R.; Lumsden, R.; Holland, M.; Mason, B. Body segment sequencing and timing in golf. Int. J. Sports Sci. Coach. 2008, 2, 25–36. [Google Scholar] [CrossRef]
- Neal, R.J.; Lumsden, R.G.; Holland, M.; Mason, B. Segment Interactions: Sequencing and Timing in the Downswing. In Science and Golf V: Proceedings of the World Scientific Congress of Golf (V); World Scientic Congress of Golf Trust: Sioux Falls, SD, USA, 2008. [Google Scholar]
- Cheetham, P.; Rose, G.A.; Hinrichs, R.; Neal, R.; Mottram, R.E.; Hurrion, P.; Vint, P. Comparison of Kinematic Sequence Parameters between Amateur and Professional Golfers. In Science and Golf V: Proceedings of the World Scientific Congress of Golf; World Scientic Congress of Golf Trust: Sioux Falls, SD, USA, 2008; pp. 30–36. [Google Scholar]
- McLean, J. Widen the gap. Golf. Mag. 1992, 34, 49–53. [Google Scholar]
- Ball, K.; Best, R. Centre of pressure patterns in the golf swing: Individual-based analysis. Sports Biomech. 2012, 11, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Bourgain, M.; Hybois, S.; Thoreux, P.; Rouillon, O.; Rouch, P.; Sauret, C. Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing. J. Biomech. 2018, 75, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Bourgain, M. Analyse Biomécanique du Swing de Golf. Ph.D. Thesis, Arts et Métiers ParisTech, Paris, France, 2018. [Google Scholar]
- Zhang, X.; Shan, G. Where do golf driver swings go wrong? Factors influencing driver swing consistency. Scand. J. Med. Sci. Sports 2014, 24, 749–757. [Google Scholar] [CrossRef]
- Sim, T.; Choi, A.; Lee, S.; Mun, J.H. How to quantify the transition phase during golf swing performance: Torsional load affects low back complaints during the transition phase. J. Sports Sci. 2017, 35, 2051–2059. [Google Scholar] [CrossRef]
- Tepavac, D.; Field-Fote, E.C. Vector Coding: A Technique for Quantification of Intersegmental Coupling in Multicyclic Behaviors. J. Appl. Biomech. 2001, 17, 259–270. [Google Scholar] [CrossRef]
- Egret, C.; Dujardin, F.; Weber, J.; Chollet, D. 3-D kinematic analysis of the golf swings of expert and experienced golfers. J. Hum. Mov. Stud. 2004, 47, 193–204. [Google Scholar]
- Horan, S.A.; Evans, K.; Morris, N.R.; Kavanagh, J.J. Thorax and pelvis kinematics during the downswing of male and female skilled golfers. J. Biomech. 2010, 43, 1456–1462. [Google Scholar] [CrossRef]
- Choi, A.; Joo, S.-B.; Oh, E.; Mun, J.H. Kinematic evaluation of movement smoothness in golf: Relationship between the normalized jerk cost of body joints and the clubhead. BioMedical Eng. Online 2014, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Tinmark, F.; Hellström, J.; Halvorsen, K.; Thorstensson, A. Elite golfers’ kinematic sequence in full-swing and partialswing shots. Sports Biomech. 2010, 9, 236–244. [Google Scholar] [CrossRef]
- Joyce, C.; Burnett, A.; Ball, K. Methodological considerations for the 3D measurement of the X-factor and lower trunk movement in golf. Sports Biomech. 2010, 9, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Stancin, S.; Tomazic, S. Early improper motion detection in golf swings using wearable motion sensors: The first approach. Sensors 2013, 13, 7505–7521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teu, K.K.; Kim, W.; Fuss, F.K.; Tan, J. The analysis of golf swing as a kinematic chain using dual Euler angle algorithm. J. Biomech. 2006, 39, 1227–1238. [Google Scholar] [CrossRef]
- Tsunoda, M.; Bours, R.C.H.; Hasegawa, H. Three-Dimensional Motion Analysis and Inverse Dynamic Modelling of the Human Golf Swing. SAE Trans. 2004. Available online: https://saemobilus.sae.org/content/2004-01-2163/ (accessed on 14 February 2019).
- Chu, Y.; Sell, T.C.; Lephart, S.M. The relationship between biomechanical variables and driving performance during the golf swing. J. Sports Sci. 2010, 28, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.J.; Nevill, A.M.; Monk, S.A.; Otto, S.R.; Selbie, W.S.; Wallace, E.S. Determination of the swing technique characteristics and performance outcome relationship in golf driving for low handicap female golfers. J. Sports Sci. 2011, 29, 1483–1491. [Google Scholar] [CrossRef]
- Blenkinsop, G.M.; Liang, Y.; Gallimore, N.J.; Hiley, M.J. The effect of uphill and downhill slopes on weight transfer, alignment, and shot outcome in golf. J. Appl. Biomech. 2018, 34, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Leach, R.J.; Forrester, S.E.; Mears, A.C.; Roberts, J.R. How valid and accurate are measurements of golf impact parameters obtained using commercially available radar and stereoscopic optical launch monitors? Measurement 2017, 112, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Fradkin, A.J.; Sherman, C.A.; Finch, C.F. How well does club head speed correlate with golf handicaps? J. Sci. Med. Sport 2004, 7, 465–472. [Google Scholar] [CrossRef]
- Bulbulian, R.; Ball, K.A.; Seaman, D.R. The short golf backswing: Effects on performance and spinal health implications. J. Manip. Physiol. Ther. 2001, 24, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.J.; Keogh, J.W.L.; Hume, P.A.; Maulder, P.S.; Nortje, J.; Marnewick, M. The effect of biological movement variability on the performance of the golf swing in high- and low-handicapped players. Res. Q. Exerc. Sport 2009, 80, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.; Mills, P.; Alderson, J.; Elliott, B. The influence of club-head kinematics on early ball flight characteristics in the golf drive. Sports Biomech. 2013, 12, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Horan, S.A.; Kavanagh, J.J. The control of upper body segment speed and velocity during the golf swing. Sports Biomech. 2012, 11, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egret, C.I.; Nicolle, B.; Dujardin, F.H.; Weber, J.; Chollet, D. Kinematic analysis of the golf swing in men and women experienced golfers. Int. J. Sports Med. 2006, 27, 463–467. [Google Scholar] [CrossRef]
- Zheng, N.; Barrentine, S.W.; Fleisig, C.S.; Andrews, J.R. Kinematic analysis of swing in pro and amateur golfers. Int. J. Sports Med. 2008, 29, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Derrick, T.R.; van den Bogert, A.J.; Cereatti, A.; Dumas, R.; Fantozzi, S.; Leardini, A. ISB recommendations on the reporting of intersegmental forces and moments during human motion analysis. J. Biomech. 2020, 99, 109533. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.D.; Makhsous, M.; van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Wu, G.; Cavanagh, P.R. ISB recommandations for standardization in the reporting of kinematic data. J. Biomech. 1995, 28, 1257–1261. [Google Scholar] [CrossRef]
- Camomilla, V.; Dumas, R.; Cappozzo, A. Human movement analysis: The soft tissue artefact issue. J. Biomech. 2017, 62, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheetham, P. Simple Model of Pelvis-Thorax Kinematic Sequence. 2009. Available online: http://www.amm3d.com/support/articles/simple-model-of-pelvis-thorax-kinematic-sequence/ (accessed on 1 October 2014).
- Cheetham, P.J.; Martin, P.E.; Mottram, R.E.; Laurent, B.F.S. The Importance of Stretching the X-Factor in the Downswing of Golf: The X-Factor Stretch. 2001. Available online: www.amm3d.com (accessed on 14 February 2019).
- Bourgain, M.; Sauret, C.; Rouch, P.; Thoreux, P.; Rouillon, O. Evaluation of the Spine Axial Rotation Capacity of Golfers and its Distribution. J. Hum. Kinet. 2016, 5, S1–S77. [Google Scholar] [CrossRef]
- Evans, K.; Horan, S.A.; Neal, R.J.; Barrett, R.S.; Mills, P.M. Repeatability of three-dimensional thorax and pelvis kinematics in the golf swing measured using a field-based motion capture system. Sports Biomech. 2012, 11, 262–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdinands, R.E.D.; Kersting, U.G.; Marshall, R.N. A twenty-segment kinematics and kinetics model for analysing golf swing mechanics. Sports Technol. 2013, 6, 184–201. [Google Scholar] [CrossRef]
- Joyce, C.; Burnett, A.; Cochrane, J.; Reyes, A. A preliminary investigation of trunk and wrist kinematics when using drivers with different shaft properties. Sports Biomech. 2016, 15, 61–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.; Lephart, S.; Tsai, Y.-S.; Sell, T.; Smoliga, J.; Jolly, J. The role of upper torso and pelvis rotation in driving performance during the golf swing. J. Sports Sci. 2008, 26, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Roberts, J.R.; Wallace, E.S.; Kong, P.; Forrester, S.E. Comparison of two- and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J. Appl. Biomech. 2016, 32, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Dale, R.B.; Brumitt, J. Spine biomechanics associated with the shortened, modern one-plane golf swing. Sports Biomech. 2016, 15, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Henry, E.; Berglund, K.; Millar, L.; Locke, F. Immediate effects of a dynamic rotation-specific warm-up on X-factor and X-factor stretch in the amateur golfer. Int. J. Sports Phys. Ther. 2015, 10, 998–1006. [Google Scholar]
- Meister, D.W.; Ladd, A.L.; Butler, E.E.; Zhao, B.; Rogers, A.P.; Ray, C.J.; Rose, J. Rotational biomechanics of the elite golf swing: Benchmarks for amateurs. J. Appl. Biomech. 2011, 27, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, K.M.; Roh, E.Y.; Mahtani, G.; Meister, D.W.; Ladd, A.L.; Rose, J. Golf swing rotational velocity: The essential follow-through. Ann. Rehabil. Med. 2018, 42, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorbie, G.G.; Gu, Y.; Baker, J.S.; Ugbolue, U.C. Analysis of the X-Factor and X-Factor stretch during the completion of a golf practice session in low-handicap golfers. Int. J. Sports Sci. Coach. 2018, 13, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Sorbie, G.G.; Low, C.; Richardson, A.K. Effect of a 6-week yoga intervention on swing mechanics during the golf swing: A feasibility study. Int. J. Perform. Anal. Sport 2019, 19, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Lamb, P.F.; Pataky, T.C. The role of pelvis-thorax coupling in controlling within-golf club swing speed. J. Sports Sci. 2018, 36, 2164–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, Z.I.; Oliver, J.L.; Lloyd, R.S.; Neil, R.; Bull, M. The Golf Movement Screen Is Related to Spine Control and X-Factor of the Golf Swing in Low Handicap Golfers. J. Strength Cond. Res. 2018, 35, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, H.; Morgan, D.A.; Banks, S.A. Golf and Low Back Injury: Defining the Crunch Factor; American Academy of Orthopaedic Surgeons: Sun Valley, ID, USA, 1996. [Google Scholar]
- Costi, J.J.; Stokes, I.A.; Gardner-Morse, M.G.; Iatridis, J.C. Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions. Spine 2008, 33, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.W.; McGill, S.M. The role of axial torque in disc herniation. Clin. Biomech. 2010, 25, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.H.; Grimshaw, P.N. The crunch factor’s role in golf-related low back pain. Spine J. Off. J. N. Am. Spine Soc. 2014, 14, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Joyce, C.; Chivers, P.; Sato, K.; Burnett, A. Multi-segment trunk models used to investigate the crunch factor in golf and their relationship with selected swing and launch parameters. J. Sports Sci. 2016, 34, 1970–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, D.M.; Horton, J.F.; Paley, R.D. Trunk motion of male professional golfers using two different golf clubs. J. Appl. Biomech. 2002, 18, 366–373. [Google Scholar] [CrossRef]
- Joyce, C. The most important “factor” in producing clubhead speed in golf. Hum. Mov. Sci. 2017, 55, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Inoue, N.; Orías, A.A.E. Biomechanics of Intervertebral Disk Degeneration. Orthop. Clin. N. Am. 2011, 42, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Whatley, B.R.; Wen, X. Intervertebral disc (IVD): Structure, degeneration, repair and regeneration. Mater. Sci. Eng. C 2012, 32, 61–77. [Google Scholar] [CrossRef]
- Gallagher, S.; Marras, W.S.; Litsky, A.S.; Burr, D. Torso flexion loads and the fatigue failure of human lumbosacral motion segments. Spine 2005, 30, 2265–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, D.; Horton, J. Comparison of spine motion in elite golfers with and without low back pain. J. Sports Sci. 2002, 20, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-H.; Como, C.S.; Singhal, K.; Lee, S.; Han, K.H. Assessment of planarity of the golf swing based on the functional swing plane of the clubhead and motion planes of the body points. Sports Biomech. 2012, 11, 127–148. [Google Scholar] [CrossRef] [PubMed]
- White, R. On the efficiency of the golf swing. Am. J. Phys. 2006, 74, 1088–1094. [Google Scholar] [CrossRef]
- Sprigings, E.J.; Mackenzie, S.J. Examining the delayed release in the golf swing using computer simulation. Sports Eng. 2002, 5, 23–32. [Google Scholar] [CrossRef]
- Sprigings, E.J.; Neal, R.J. An insight into the importance of wrist torque in driving the golfball: A simulation study. J. Appl. Biomech. 2000, 16, 356–366. [Google Scholar] [CrossRef]
- MacKenzie, S.J. Club position relative to the golfer’s swing plane meaningfully affects swing dynamics. Sports Biomech. 2012, 11, 149–164. [Google Scholar] [CrossRef]
- Coleman, S.G.S.; Rankin, A.J. A three-dimensional examination of the planar nature of the golf swing. J. Sports Sci. 2005, 23, 227–234. [Google Scholar] [CrossRef]
- Lee, C.; Park, S. Estimation of Unmeasured Golf Swing of Arm Based on the Swing Dynamics. Int. J. Precis. Eng. Manuf. 2018, 19, 745–751. [Google Scholar] [CrossRef]
- Coleman, S.; Anderson, D. An examination of the planar nature of golf club motion in the swings of experienced players. J. Sports Sci. 2007, 25, 739–748. [Google Scholar] [CrossRef]
- Morrison, A.; McGrath, D.; Wallace, E.S. The relationship between the golf swing plane and ball impact characteristics using trajectory ellipse fitting. J. Sports Sci. 2018, 36, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.; McGrath, D.; Wallace, E.S. Analysis of the delivery plane in the golf swing using principal components. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2018, 232, 295–304. [Google Scholar] [CrossRef]
- Nesbit, S.M. A three dimensional kinematic and kinetic study of the golf swing. J. Sports Sci. Med. 2005, 4, 499–519. [Google Scholar] [PubMed]
- Morrison, A.; McGrath, D.; Wallace, E. Changes in Club Head Trajectory and Planarity throughout the Golf Swing. Procedia Eng. 2014, 72, 144–149. [Google Scholar] [CrossRef]
- Nesbit, S.M.; McGinnis, R. Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers. J. Sports Sci. Med. 2009, 8, 235–246. [Google Scholar] [PubMed]
- McGinnis, R.S.; Nesbit, S. Golf club deflection characteristics as a function of the swing hub path. Open Sports Sci. J. 2010, 3, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Sim, T.-Y.; Seung-eel, O.H.; Bae, J.-H.; Lee, S.-S.; Mun, J.H. The Effect of Swing Plane Area with Respect to Swing Velocity in Golf Swing. In World Congress on Medical Physics and Biomedical Engineering 2006; Springer: Berlin/Heidelberg, Germany, 2007; pp. 2905–2908. [Google Scholar] [CrossRef]
- Da, H.; Tk, C.; Em, R. A three-dimensional, six-segment chain analysis of forceful overarm throwing. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2001, 11, 95–112. [Google Scholar] [CrossRef]
- Fradet, L.; Botcazou, M.; Durocher, C.; Cretual, A.; Multon, F.; Prioux, J.; Delamarche, P. Do handball throws always exhibit a proximal-to-distal segmental sequence? J. Sports Sci. 2004, 22, 439–447. [Google Scholar] [CrossRef]
- Van den Tillaar, R.; Ettema, G. Is there a proximal-to-distal sequence in overarm throwing in team handball? J. Sports Sci. 2009, 27, 949–955. [Google Scholar] [CrossRef]
- Van den Tillaar, R.; Ettema, G. A three-dimensional analysis of overarm throwing in experienced handball players. J. Appl. Biomech. 2007, 23, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Whiting, W.C.; Gregor, R.J.; Halushka, M. Body Segment and Release Parameter Contributions to New-Rules Javelin Throwing. Int. J. Sport Biomech. 1991, 7, 111–124. [Google Scholar] [CrossRef]
- Anderson, B.C.; Wright, I.C.; Stefanyshyn, D.J. Segmental Sequencing of Kinetic Energy in the Golf Swing. In The Engineering of Sport 6; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Vena, A.; Budney, D.; Forest, T.; Carey, J.P. Three-dimensional kinematic analysis of the golf swing using instantaneous screw axis theory, Part 2: Golf swing kinematic sequence. Sports Eng. 2011, 13, 125–133. [Google Scholar] [CrossRef]
- Vena, A.; Budney, D.; Forest, T.; Carey, J.P. Three-dimensional kinematic analysis of the golf swing using instantaneous screw axis theory, part 1: Methodology and verification. Sports Eng. 2011, 13, 105–123. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Sprigings, E.J. A three-dimensional forward dynamics model of the golf swing. Sports Eng. 2009, 11, 165–175. [Google Scholar] [CrossRef]
- Blache, Y.; Dumas, R.; Lundberg, A.; Begon, M. Main component of soft tissue artifact of the upper-limbs with respect to different functional, daily life and sports movements. J. Biomech. 2017, 62, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.W.; O’Connor, J.J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 1999, 32, 129–134. [Google Scholar] [CrossRef]
- Fohanno, V.; Begon, M.; Lacouture, P.; Colloud, F. Estimating joint kinematics of a whole body chain model with closed-loop constraints. Multibody Syst. Dyn. 2014, 31, 433–449. [Google Scholar] [CrossRef]
- Mahadas, S.; Mahadas, K.; Hung, G.K. Biomechanics of the golf swing using OpenSim. Comput. Biol. Med. 2019, 105, 39–45. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef]
- Choi, A.; Sim, T.; Mun, J.H. Quasi-stiffness of the knee joint in flexion and extension during the golf swing. J. Sports Sci. 2015, 33, 1682–1691. [Google Scholar] [CrossRef]
- Murakami, K.; Hamai, S.; Okazaki, K.; Ikebe, S.; Shimoto, T.; Hara, D.; Mizu-uchi, H.; Higaki, H.; Iwamoto, Y. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee 2016, 23, 221–226. [Google Scholar] [CrossRef]
- Somjarod, M.; Tanawat, V.; Weerawat, L. The analysis of knee joint movement during golf swing in professional and amateur golfers. World Acad. Sci. Eng. Technol. 2011, 77, 525–528. [Google Scholar]
- Kim, T.-G.; So, W.-Y. Effectiveness of a lateral heel wedge for improving the knee position of the target side during the golf swing of golf players with a low or high handicap. Sci. Sports 2017, 32, 165–167. [Google Scholar] [CrossRef]
- Kim, Y.H.; Purevsuren, T.; Khuyagbaatar, B.; Kim, K. P 022-Loading characteristics of anterior cruciate ligament in target-side knee during golf swing. Gait Posture 2018, 65, 269–270. [Google Scholar] [CrossRef]
- Ishimaru, M.; Shiraishi, Y.; Ikebe, S.; Higaki, H.; Hino, K.; Onishi, Y.; Miura, H. Three-dimensional motion analysis of the patellar component in total knee arthroplasty by the image matching method using image correlations. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2014, 32, 619–626. [Google Scholar] [CrossRef]
- Kim, S.-B.; You, J.H.; Kwon, O.-Y.; Yi, C.-H. Lumbopelvic kinematic characteristics of golfers with limited hip rotation. Am. J. Sports Med. 2015, 43, 113–120. [Google Scholar] [CrossRef]
- Purevsuren, T.; Kwon, M.S.; Park, W.M.; Kim, K.; Jang, S.H.; Lim, Y.-T.; Kim, Y.H. Fatigue injury risk in anterior cruciate ligament of target side knee during golf swing. J. Biomech. 2017, 53, 9–14. [Google Scholar] [CrossRef]
- Alderslade, V.; Crous, L.C.; Louw, Q.A. Correlation between passive and dynamic range of rotation in lead and trail hips during a golf swing. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2015, 37, 15–28. [Google Scholar]
- Choi, A.; Lee, I.-K.; Choi, M.-T.; Mun, J.H. Inter-joint coordination between hips and trunk during downswings: Effects on the clubhead speed. J. Sports Sci. 2016, 34, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Gulgin, H.; Armstrong, C.; Gribble, P. Weight-bearing hip rotation range of motion in female golfers. N. Am. J. Sports Phys. Ther. 2010, 5, 55–62. [Google Scholar]
- Gulgin, H.; Armstrong, C.; Gribble, P. Hip rotational velocities during the full golf swing. J. Sports Sci. Med. 2009, 8, 296–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, M.P.; Yontz, N.; Chaudhari, A.M. Lower extremity work is associated with club head velocity during the golf swing in experienced golfers. Int. J. Sports Med. 2014, 35, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Mun, F.; Suh, S.W.; Park, H.-J.; Choi, A. Kinematic relationship between rotation of lumbar spine and hip joints during golf swing in professional golfers. BioMedical Eng. Online 2015, 14, 41. [Google Scholar] [CrossRef] [Green Version]
- Lejkowski, P.M.; Poulsen, E. Elimination of intermittent chronic low back pain in a recreational golfer following improvement of hip range of motion impairments. J. Bodyw. Mov. Ther. 2013, 17, 448–452. [Google Scholar] [CrossRef]
- Kim, S.E.; Koh, Y.-C.; Cho, J.-H.; Lee, S.Y.; Lee, H.-D.; Lee, S.-C. Biomechanical effects of ball position on address position variables of elite golfers. J. Sports Sci. Med. 2018, 17, 589–598. [Google Scholar]
- Cole, M.H.; Grimshaw, P.N. The Biomechanics of the Modern Golf Swing: Implications for Lower Back Injuries. Sports Med. 2016, 46, 339–351. [Google Scholar] [CrossRef]
- Sinclair, J.; Currigan, G.; Fewtrell, D.J.; Taylor, P.J. Biomechanical correlates of club-head velocity during the golf swing. Int. J. Perform. Anal. Sport 2014, 14, 54–63. [Google Scholar] [CrossRef]
- Okuda, I.; Gribble, P.; Armstrong, C. Trunk rotation and weight transfer patterns between skilled and low skilled golfers. J. Sports Sci. Med. 2010, 9, 127–133. [Google Scholar]
- Joyce, C.; Burnett, A.; Cochrane, J.; Ball, K. Three-dimensional trunk kinematics in golf: Between-club differences and relationships to clubhead speed. Sports Biomech. 2013, 12, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Beak, S.-H.; Choi, A.; Choi, S.-W.; Oh, S.E.; Mun, J.H.; Yang, H.; Sim, T.; Song, H.-R. Upper torso and pelvis linear velocity during the downswing of elite golfers. Biomed. Eng. Online 2013, 12, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, N.; Barrentine, S.W.; Fleisig, C.S.; Andrews, J.R. Swing kinematics for male and female pro golfers. Int. J. Sports Med. 2008, 29, 965–970. [Google Scholar] [CrossRef]
- Horan, S.A.; Evans, K.; Morris, N.R.; Kavanagh, J.J. Swing kinematics of male and female skilled golfers following prolonged putting practice. J. Sports Sci. 2014, 32, 810–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, T.; Yoo, H.; Choi, A.; Lee, K.Y.; Choi, M.-T.; Lee, S.; Mun, J.H. Analysis of Pelvis-Thorax Coordination Patterns of Professional and Amateur Golfers during Golf Swing. J. Mot. Behav. 2017, 49, 668–674. [Google Scholar] [CrossRef]
- Teu, K.K.; Fuss, F.K.; Kim, W.; Tan, J. Analysis of Left Hand Segmental Rotations during Golf Swing, Advances in Bioengineering, BED. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE, Anaheim, CA, USA, 13–19 November 2004; pp. 179–180. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20444461144&partnerID=40&md5=a729b38cefaa8063e8c4d36bb206587a (accessed on 14 February 2019).
- Healy, A.; Moran, K.A.; Dickson, J.; Hurley, C.; Smeaton, A.F.; O’Connor, N.E.; Kelly, P.; Haahr, M.; Chockalingam, N. Analysis of the 5 iron golf swing when hitting for maximum distance. J. Sports Sci. 2011, 29, 1079–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, K.; Banks, S.; Morgan, D.; Sugaya, H. Shoulder motions during the golf swing in male amateur golfers. J. Orthop. Sports Phys. Ther. 2003, 33, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Egret, C.I.; Vincent, O.; Weber, J.; Dujardin, F.H.; Chollet, D. Analysis of 3D kinematics concerning three different clubs in golf swing. Int. J. Sports Med. 2003, 24, 465–469. [Google Scholar] [CrossRef]
- Betzler, N.F.; Monk, S.A.; Wallace, E.S.; Otto, S.R. Effects of golf shaft stiffness on strain, clubhead presentation and wrist kinematics. Sports Biomech. 2012, 11, 223–238. [Google Scholar] [CrossRef]
- Fedorcik, G.G.; Queen, R.M.; Abbey, A.N.; Moorman, C.T.; Ruch, D.S. Differences in wrist mechanics during the golf swing based on golf handicap. J. Sci. Med. Sport 2012, 15, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Hoshino, Y.; Kobayashi, Y.; Kazahaya, M. Skill Analysis of the Wrist Turn in a Golf Swing to Utilize Shaft Elasticity. In Impact of Technology on Sport II; CRC Press: Boca Raton, FL, USA, 2008; pp. 259–264. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-61849172964&partnerID=40&md5=ba8df49b3d5650ce1224550e605413e3 (accessed on 14 February 2019).
- Carson, H.J.; Richards, J.; Mazuquin, B. Examining the influence of grip type on wrist and club head kinematics during the golf swing: Benefits of a local co-ordinate system. Eur. J. Sport Sci. 2018, 19, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Todd, S.D.; Wiles, J.D.; Coleman, D.A.; Brown, M.B. Partial swing golf shots: Scaled from full swing or independent technique? Sports Biomech. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Mears, A.C.; Roberts, J.R.; Forrester, S.E. Matching golfers’ movement patterns during a golf swing. Appl. Sci. 2018, 8, 2452. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tian, Q.; Zhang, G.; Zheng, F.; Lv, C.; Wang, J. Research on hybrid information recognition algorithm and quality of golf swing. Comput. Electr. Eng. 2018, 69, 907–919. [Google Scholar] [CrossRef]
- König, R.; Johansson, U.; Riveiro, M.; Brattberg, P. Modeling Golf Player Skill Using Machine Learning. In International Cross-Domain Conference for Machine Learning and Knowledge Extraction; 10410 LNCS; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
Club | Gender | Recreational Golfers (h > 5) (s) | Highly Skilled Amateurs (h < 5) (s) | Professional Golfers (s) |
---|---|---|---|---|
Driver | Male | 0.25 ± 0.02 [30] | 0.31 ± 0.04 [31] | 0.31 ± 0.04 [32] |
Female | 0.39 ± 0.08 [31] | |||
Iron | Male | 0.31 ± 0.03 [33] | 0.28 ± 0.03 [33] | |
Female | 0.36 ± 0.06 [33] |
Recreational Golfers | Highly Skilled Amateurs | Professional Golfers | ||
---|---|---|---|---|
Men | Iron | 33.8 ± 2.5 m/s [43] | 37.65 ± 1.04 m/s [44] a | |
Driver | [33 *–53 *] m/s [42] | [55 *–57 *] m/s [42] 45.4 ± 3.6 m/s [45] | 50.1 ± 2.1 m/s [46] | |
Women | Iron | |||
Driver | 37.7 ± 3.8 [47] b | 32 ± 1 [48] |
2D Angle: Horizontal Plane (°) | 2D Angle: Swing Plane (°) | 3D Angle (°) | ||
---|---|---|---|---|
Recreational golfers | Torso–pelvis | 28 * ± 13 * [6] | 28 * ± 13 * [6] | |
Shoulders–pelvis | 57.1 ± 11.2 [7] | 57.7 ± 10.5 [7] | 54.4 ± 10.3 [7] | |
Professional golfers | 48 [55] a |
Publication | Methodology (Parameter1·Parameter2) | Values | ||
---|---|---|---|---|
Parameter1 | Parameter2 | Driver | Iron | |
Cole et al. [73] | Axial torso rotation | Lateral bending angle | 1.5 rad2·s−1 | |
Joyce et al. [76] | Lateral bending (upper torso) | Axial rotation velocity | 3.0 ± 0.8 rad2·s−1 | 3.0 ± 0.5 rad2·s−1 |
Lateral bending (lower torso) | Axial rotation velocity | 0.5 ± 0.2 rad2·s−1 | 0.5 ± 0.1 rad2·s−1 | |
Lindsay et al. [75] | Axial rotation velocity | Side bending angle | with low-back pain: 82.4 ± 21.9 rad·s−1 | |
without low-back pain: 87.7 ± 28.4 rad·s−1 | ||||
Ferdinands et al. [58] | Pelvic tilt velocity | Pelvic axial velocity | 8 *rad2·s−2 | |
Thoracic lateral bending | Pelvic axial velocity | 5 *rad2·s−2 | ||
Thoracic flexion | Pelvic axial velocity | 12 *rad2·s−2 | ||
Joyce et al. [74] | Torso lateral bending | Torso axial rotation | 2.9 ± 0.6 rad2·s−1 | |
Lower torso lateral bending | Lower torso axial rotation | 0.3 ± 0.2 rad2·s−1 |
Knees [112] | Leading Side | Trail Side |
---|---|---|
Internal/external rotation (°) | 18 * | 25 * |
Adduction/abduction (°) | Not given | Not given |
Flexion/extension (°) | 15 * | 8 * |
Antero-posterior translation (mm) | 5 | 4 |
Medio-lateral translation | Not provided | Not provided |
Hips [117] | Leading Side | Trail Side |
---|---|---|
Internal/external rotation (°) | 50 * | 40 * |
Adduction/abduction (°) | 45 * | 40 * |
Flexion/extension (°) | 30 * | 45 * |
Torso [25] | Values |
---|---|
Axial rotation (°) | 129 |
Lateral bending (°) | 28 |
Flexion/extension (°) | 33 |
Shoulder [25] | Leading Side | Trail Side |
---|---|---|
Clavicle protraction (°) | 27 | 38 |
Clavicle elevation (°) | 25 | 6 |
Shoulder elevation (°) | 100 | 13 |
Humeral flexion (°) | 42 | 34 |
Humeral axial rotation (°) | 64 | 125 |
Elbow [25] | Leading Side | Trail Side |
---|---|---|
Elbow flexion (°) | 26 | 95 |
Pronosupination (°) | 153 | 71 |
Wrist [25] | Leading Side | Trail Side |
---|---|---|
Flexion | 38 | 86 |
Deviation | 90 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgain, M.; Rouch, P.; Rouillon, O.; Thoreux, P.; Sauret, C. Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics. Sports 2022, 10, 91. https://doi.org/10.3390/sports10060091
Bourgain M, Rouch P, Rouillon O, Thoreux P, Sauret C. Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics. Sports. 2022; 10(6):91. https://doi.org/10.3390/sports10060091
Chicago/Turabian StyleBourgain, Maxime, Philippe Rouch, Olivier Rouillon, Patricia Thoreux, and Christophe Sauret. 2022. "Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics" Sports 10, no. 6: 91. https://doi.org/10.3390/sports10060091
APA StyleBourgain, M., Rouch, P., Rouillon, O., Thoreux, P., & Sauret, C. (2022). Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics. Sports, 10(6), 91. https://doi.org/10.3390/sports10060091