The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake
Abstract
:1. Introduction
2. Supplements of Micronutrients and Other Bioactive Compounds
2.1. Carotenoids and Polyphenols
2.2. Vitamin D
2.3. Vitamins C, E and A
3. Supplements of Nutritional Elements
3.1. Creatine
3.2. Gelatin and Vitamin C/Collagen
3.3. Minerals
3.4. Omega-3 Fatty Acids
3.5. Anti-Inflammatory Supplements
4. Nutritional Elements and Specific Injuries
4.1. Rehabilitation of Muscle Injuries
4.2. Rehabilitation of Bone Injuries
4.3. Rehabilitation of Tendons and Ligaments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Öztürk, S.; Kılıç, D. What Is the Economic Burden of Sports Injuries? Eklem Hast. Cerrahisi 2013, 24, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.H. The Psychological Impact of Injury: Effects of Prior Sport and Exercise Involvement. Br. J. Sports Med. 2000, 34, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Santi, G.; Pietrantoni, L. Psychology of Sport Injury Rehabilitation: A Review of Models and Interventions. JHSE 2013, 8, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Feddermann-Demont, N.; Junge, A.; Edouard, P.; Branco, P.; Alonso, J.-M. Injuries in 13 International Athletics Championships between 2007–2012. Br. J. Sports Med. 2014, 48, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Edouard, P.; Feddermann-Demont, N.; Alonso, J.M.; Branco, P.; Junge, A. Sex Differences in Injury during Top-Level International Athletics Championships: Surveillance Data from 14 Championships between 2007 and 2014. Br. J. Sports Med. 2015, 49, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Quintero, K.J.; Resende, A.d.S.; Leite, G.S.F.; Lancha Junior, A.H. An Overview of Nutritional Strategies for Recovery Process in Sports-Related Muscle Injuries. Nutrire 2018, 43, 27. [Google Scholar] [CrossRef]
- Patel, D.S.; Roth, M.; Kapil, N. Stress Fractures: Diagnosis, Treatment, and Prevention. Am. Fam. Phys. 2011, 83, 39–46. [Google Scholar]
- Pierre, N.; Appriou, Z.; Gratas-Delamarche, A.; Derbré, F. From Physical Inactivity to Immobilization: Dissecting the Role of Oxidative Stress in Skeletal Muscle Insulin Resistance and Atrophy. Free Radic. Biol. Med. 2016, 98, 197–207. [Google Scholar] [CrossRef]
- Cesare, M.M.; Felice, F.; Santini, V.; Di Stefano, R. Antioxidants in Sport Sarcopenia. Nutrients 2020, 12, 2869. [Google Scholar] [CrossRef]
- Santilli, V. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177. [Google Scholar] [CrossRef]
- WHO. Rehabilitation. Available online: https://www.who.int/news-room/fact-sheets/detail/rehabilitation (accessed on 26 April 2022).
- Dhillon, R.J.; Hasni, S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, T.; Ekblom, B. The Use of Recovery Methods Post-exercise. J. Sports Sci. 2005, 23, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Zhang, L.; Zheng, X.; Zhang, X. Effects of Post-Exercise Recovery Methods on Exercise-Induced Hormones and Blood Fatigue Factors: A Systematic Review and Meta-Analysis. Ann. Palliat. Med. 2021, 10, 184–193. [Google Scholar] [CrossRef]
- Papadopoulou, S.K. Rehabilitation Nutrition for Injury Recovery of Athletes: The Role of Macronutrient Intake. Nutrients 2020, 12, 2449. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 2000. 8, β-Carotene and Other Carotenoids. Available online: https://www.ncbi.nlm.nih.gov/books/NBK225469/ (accessed on 7 February 2022).
- Hammond, B.R.; Renzi, L.M. Carotenoids1. Adv. Nutr. 2013, 4, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, M. Nutrition for Athletes. Available online: http://memorialhermann.org/services/specialties/ironman-sports-medicine-institute/sports-nutrition/sports-nutrition-for-athletes (accessed on 24 September 2021).
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, A.; Wright, H.; Slater, G.; Buckley, J. A Randomised Controlled Intervention Study Investigating the Efficacy of Carotenoid-Rich Fruits and Vegetables and Extra-Virgin Olive Oil on Attenuating Sarcopenic Symptomology in Overweight and Obese Older Adults during Energy Intake Restriction: Protocol Paper. BMC Geriatr. 2018, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Skarpańska-Stejnborn, A.; Basta, P.; Sadowska, J.; Pilaczyńska-Szcześniak, Ł. Effect of Supplementation with Chokeberry Juice on the Inflammatory Status and Markers of Iron Metabolism in Rowers. J. Int. Soc. Sports Nutr. 2014, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Gropper, S.A.S.; Smith, J.L.; Groff, J.L. Advanced Nutrition and Human Metabolism; Wadsworth Cengage Learning: Perth, Australia, 2009. [Google Scholar]
- Hunt, T.K.; Ehrlich, H.P.; Garcia, J.A.; Dunphy, J.E. Effect of Vitamin A on Reversing the Inhibitory Effect of Cortisone on Healing of Open Wounds in Animals and Man. Ann. Surg. 1969, 170, 633–641. [Google Scholar] [CrossRef]
- Reichrath, J.; Lehmann, B.; Carlberg, C.; Varani, J.; Zouboulis, C.C. Vitamins as Hormones. Horm Metab. Res. 2007, 39, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Kloubec, J.; Harris, C. Whole foods nutrition for enhanced injury prevention and healing. ACSM’s Health Fit. J. 2016, 20, 7–11. [Google Scholar] [CrossRef]
- Fukushima, H.; Koga, F. Impact of Sarcopenia in the Management of Urological Cancer Patients. Expert Rev. Anticancer Ther. 2017, 17, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C-Enriched Gelatin Supplementation before Intermittent Activity Augments Collagen Synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Zadeh-Ardabili, P.M.; Rad, S.K.; Rad, S.K.; Khazaài, H.; Sanusi, J.; Zadeh, M.-A.-R.H. Palm Vitamin E Reduces Locomotor Dysfunction and Morphological Changes Induced by Spinal Cord Injury and Protects against Oxidative Damage. Sci. Rep. 2017, 7, 14365. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, P.B.; Joseph, C.; Angioi, M. Effects of Vitamin D Supplementation on Upper and Lower Body Muscle Strength Levels in Healthy Individuals. A Systematic Review with Meta-Analysis. J. Sci. Med. Sport 2015, 18, 575–580. [Google Scholar] [CrossRef]
- Musumeci, G.; Mobasheri, A.; Trovato, F.M.; Szychlinska, M.A.; Imbesi, R.; Castrogiovanni, P. Post-Operative Rehabilitation and Nutrition in Osteoarthritis. F1000Research 2016, 3, 116. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015, 45, S93–S104. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.P.W.; Burke, D.G.; MacNeil, L.G.; Candow, D.G. Effect of Creatine Supplementation during Cast-Induced Immobilization on the Preservation of Muscle Mass, Strength, and Endurance. J. Strength Cond. Res. 2009, 23, 116–120. [Google Scholar] [CrossRef]
- Hespel, P.; Op’t Eijnde, B.; Van Leemputte, M.; Ursø, B.; Greenhaff, P.L.; Labarque, V.; Dymarkowski, S.; Van Hecke, P.; Richter, E.A. Oral Creatine Supplementation Facilitates the Rehabilitation of Disuse Atrophy and Alters the Expression of Muscle Myogenic Factors in Humans. J. Physiol. 2001, 536, 625–633. [Google Scholar] [CrossRef]
- Powers, S.K.; DeRuisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary Antioxidants and Exercise. J. Sports Sci. 2004, 22, 81–94. [Google Scholar] [CrossRef]
- Yavari, A.; Javadi, M.; Mirmiran, P.; Bahadoran, Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J. Sports Med. 2015, 6, e24898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of Curcumin Consumption on Human Chronic Diseases: A Narrative Review of the Most Recent Clinical Data. Phytother. Res. 2018, 32, 957–975. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.A.; Tripathi, C.D.; Agarwal, B.B.; Saluja, S. Efficacy of Turmeric (Curcumin) in Pain and Postoperative Fatigue after Laparoscopic Cholecystectomy: A Double-Blind, Randomized Placebo-Controlled Study. Surg. Endosc. 2011, 25, 3805–3810. [Google Scholar] [CrossRef]
- Malaguti, M.; Angeloni, C.; Hrelia, S. Polyphenols in Exercise Performance and Prevention of Exercise-Induced Muscle Damage. Oxid Med. Cell Longev. 2013, 2013, 825928. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.-Y.; Pang, K.-L. Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside. Nutrients 2017, 9, 1060. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Karpouzos, A.; Diamantis, E.; Farmaki, P.; Savvanis, S.; Troupis, T. Nutritional Aspects of Bone Health and Fracture Healing. J. Osteoporos. 2017, 2017, 4218472. [Google Scholar] [CrossRef] [Green Version]
- Girgis, C.M.; Clifton-Bligh, R.J.; Hamrick, M.W.; Holick, M.F.; Gunton, J.E. The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocr. Rev. 2013, 34, 33–83. [Google Scholar] [CrossRef] [Green Version]
- Braga, M.; Simmons, Z.; Norris, K.C.; Ferrini, M.G.; Artaza, J.N. Vitamin D Induces Myogenic Differentiation in Skeletal Muscle Derived Stem Cells. Endocr. Connect. 2017, 6, 139–150. [Google Scholar] [CrossRef]
- Romeu Montenegro, K.; Amarante Pufal, M.; Newsholme, P. Vitamin D Supplementation and Impact on Skeletal Muscle Function in Cell and Animal Models and an Aging Population: What Do We Know So Far? Nutrients 2021, 13, 1110. [Google Scholar] [CrossRef]
- Zhang, L.; Quan, M.; Cao, Z.-B. Effect of Vitamin D Supplementation on Upper and Lower Limb Muscle Strength and Muscle Power in Athletes: A Meta-Analysis. PLoS ONE 2019, 14, e0215826. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.-Y.; Bruyère, O. The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykkesfeldt, J.; Poulsen, H.E. Is Vitamin C Supplementation Beneficial? Lessons Learned from Randomised Controlled Trials. Br. J. Nutr. 2010, 103, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Belisle, S.E.; Leka, L.S.; Dallal, G.E.; Jacques, P.F.; Delgado-Lista, J.; Ordovas, J.M.; Meydani, S.N. Cytokine Response to Vitamin E Supplementation Is Dependent on Pre-Supplementation Cytokine Levels. Biofactors 2008, 33, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Barbul, A. Nutrition and Wound Healing. Plast Reconstr. Surg. 2006, 117, 42S–58S. [Google Scholar] [CrossRef] [PubMed]
- Stunes, A.K.; Syversen, U.; Berntsen, S.; Paulsen, G.; Stea, T.H.; Hetlelid, K.J.; Lohne-Seiler, H.; Mosti, M.P.; Bjørnsen, T.; Raastad, T.; et al. High Doses of Vitamin C plus E Reduce Strength Training-Induced Improvements in Areal Bone Mineral Density in Elderly Men. Eur. J. Appl. Physiol. 2017, 117, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Molnar, J.A.; Underdown, M.J.; Clark, W.A. Nutrition and Chronic Wounds. Adv. Wound Care (New Rochelle) 2014, 3, 663–681. [Google Scholar] [CrossRef]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine Supplementation with Specific View to Exercise/Sports Performance: An Update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Op ’t Eijnde, B.; Ursø, B.; Richter, E.A.; Greenhaff, P.L.; Hespel, P. Effect of Oral Creatine Supplementation on Human Muscle GLUT4 Protein Content after Immobilization. Diabetes 2001, 50, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, P.L.; Mahoney, E.T.; Cohn, K.A.; Sheradsky, L.F.; Green, B.A. Oral Creatine Supplementation Enhances Upper Extremity Work Capacity in Persons with Cervical-Level Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2002, 83, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Tyler, T.F.; Nicholas, S.J.; Hershman, E.B.; Glace, B.W.; Mullaney, M.J.; McHugh, M.P. The Effect of Creatine Supplementation on Strength Recovery after Anterior Cruciate Ligament (ACL) Reconstruction: A Randomized, Placebo-Controlled, Double-Blind Trial. Am. J. Sports Med. 2004, 32, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Burke, L.M.; Castell, L.M.; Casa, D.J.; Close, G.L.; Costa, R.J.S.; Desbrow, B.; Halson, S.L.; Lis, D.M.; Melin, A.K.; Peeling, P.; et al. International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.H. Dietary Supplements and Sports Performance: Minerals. J. Int. Soc. Sports Nutr. 2005, 2, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A.; Kelaiditi, E.; Jennings, A.; Steves, C.J.; Spector, T.D.; MacGregor, A. Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J. Bone Min. Res. 2016, 31, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Hinton, P.S. Iron and the Endurance Athlete. Appl. Physiol. Nutr. Metab. 2014, 39, 1012–1018. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Córdova Martínez, A.; Seco-Calvo, J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Vitamin and Mineral Supplementation and Exercise Performance; Human Nutrition Laboratory, Institute for Food Science and Nutrition, Swiss Federal Institute of Technology: Zürich, Switzerland, 2003. [Google Scholar]
- Polat, Y. Effects of Zinc Supplementation on Hematological Parameters of High Performance Athletes. AJPP 2011, 5, 1436–1440. [Google Scholar] [CrossRef] [Green Version]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron Homeostasis and Oxidative Stress: An Intimate Relationship. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Favara, G.; Magnano San Lio, R.; Evola, G.; Agodi, A.; Basile, G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019, 20, 1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Close, G.L.; Sale, C.; Baar, K.; Bermon, S. Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, R.; Sim, M.; Dawson, B.; Peeling, P. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med. 2020, 50, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Dharmaraj, S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef] [PubMed]
- Mickleborough, T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 83–96. [Google Scholar] [CrossRef]
- McGlory, C.; Calder, P.C.; Nunes, E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019, 6, 144. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Daily, J.W.; Yang, M.; Park, S. Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Med. Food 2016, 19, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Heaton, L.E.; Davis, J.K.; Rawson, E.S.; Nuccio, R.P.; Witard, O.C.; Stein, K.W.; Baar, K.; Carter, J.M.; Baker, L.B. Selected In-Season Nutritional Strategies to Enhance Recovery for Team Sport Athletes: A Practical Overview. Sports Med. 2017, 47, 2201–2218. [Google Scholar] [CrossRef]
- McGlory, C.; Galloway, S.D.R.; Hamilton, D.L.; McClintock, C.; Breen, L.; Dick, J.R.; Bell, J.G.; Tipton, K.D. Temporal Changes in Human Skeletal Muscle and Blood Lipid Composition with Fish Oil Supplementation. Prostaglandins Leukot Essent Fat. Acids 2014, 90, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C. The Role of Nutrients in Bone Health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006, 46, 621–628. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Function on Rehabilitation | References |
---|---|---|
Vitamin A |
| [22,23,24] |
Vitamin C |
| [25,26] |
Gelatin and vitamin C/collagen |
| [27] |
Vitamin E |
| [28] |
Vitamin D |
| [25,29] |
Carotenoids, Polyphenols and Flavonoids |
| [20,30] |
Creatine |
| [31,32,33] |
Minerals Manganese (Mn), Copper (Cu), Zinc (Zn), Iron (Fe), Selenium (Se) |
| [34,35] |
Anti-inflammatory supplements |
| [36,37,38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, S.K.; Mantzorou, M.; Kondyli-Sarika, F.; Alexandropoulou, I.; Papathanasiou, J.; Voulgaridou, G.; Nikolaidis, P.T. The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake. Sports 2022, 10, 84. https://doi.org/10.3390/sports10060084
Papadopoulou SK, Mantzorou M, Kondyli-Sarika F, Alexandropoulou I, Papathanasiou J, Voulgaridou G, Nikolaidis PT. The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake. Sports. 2022; 10(6):84. https://doi.org/10.3390/sports10060084
Chicago/Turabian StylePapadopoulou, Sousana K., Maria Mantzorou, Foivi Kondyli-Sarika, Ioanna Alexandropoulou, Jannis Papathanasiou, Gavriela Voulgaridou, and Pantelis T. Nikolaidis. 2022. "The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake" Sports 10, no. 6: 84. https://doi.org/10.3390/sports10060084
APA StylePapadopoulou, S. K., Mantzorou, M., Kondyli-Sarika, F., Alexandropoulou, I., Papathanasiou, J., Voulgaridou, G., & Nikolaidis, P. T. (2022). The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake. Sports, 10(6), 84. https://doi.org/10.3390/sports10060084