Active Components of 16 Essential Oils and Their Fumigation Effects on Galleria mellonella (Lepidoptera: Pyralidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. EOs and Pure Compounds
2.3. Fumigation Toxicity Bioassays of GWM Eggs
2.4. Fumigation Toxicity Bioassay of 5th Instar Larvae
2.5. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis of EOs
2.6. Fumigation Toxicity Bioassays of EO Components
2.7. Determination of the LC50 for 5th Instar Larvae
2.8. Statistical Analysis
3. Results
3.1. Fumigation Activity
3.2. Chemical Composition of EOs
3.3. Fumigation Activity of EO Components on Eggs and Larvae
3.4. Fumigant Toxicity of EOs and Main Components on Fifth Instar Larvae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Vaage, N.S. Pollinators and global food security: The need for holistic global stewardship. Food Ethics 2016, 1, 75–91. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, M.; Evison, S.E.F.; Gill, R.J.; Graystock, P. The threat of pesticide and disease co-exposure to managed and wild bee larvae. Int. J. Parasitol. Parasites Wildl. 2022, 17, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Kwadha, C.A.; Ong’amo, G.O.; Ndegwa, P.N.; Raina, S.K.; Fombong, A.T. The biology and control of the greater wax moth, Galleria mellonella. Insects 2017, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R.; Kaushik, H.D. Enemies of honeybees and their management—A review. Agric. Rev. 2004, 25, 189–200. [Google Scholar]
- Ellis, J.D.; Graham, J.R.; Mortensen, A. Standard methods for wax moth research. J. Apicult Res. 2013, 52, 1–17. [Google Scholar] [CrossRef]
- Nielsen, R.A.; Brister, C. Greater wax moth: Behavior of larvae. Ann. Entomol. Soc. Am. 1979, 72, 811–815. [Google Scholar] [CrossRef]
- Rosenkranz P, Aumeier P, Ziegelmann B, Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, 96–119. [CrossRef]
- Sousa, A.H.; Faroni, L.R.D.; Pimentel, M.A.G.; Guedes, R.N.C. Developmental and population growth rates of phosphine-resistant and susceptible populations of stored-product insect pests. J. Stored Prod. Res. 2009, 45, 241–246. [Google Scholar] [CrossRef]
- Feng, S.; Opit, G.; Deng, W.; Stejskal, V.; Li, Z. A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation. Gigascience 2022, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Hajira Parveen, K.M. Insect infestation in stored animal products. J. Stored Prod. Res. 2005, 41, 1–30. [Google Scholar] [CrossRef]
- Bogdanov, S.; Kilchenmann, V.; Seiler, K.; Pfefferli, H.; Frey, T.; Roux, B.; Wenk, P.; Noser, J. Residues of para-dichlorobenzene in honey and beeswax. J. Apicult Res. 2004, 43, 14–16. [Google Scholar] [CrossRef]
- Tananaki, C.; Thrasyvoulou, A.; Karazafiris, E.; Zotou, A. Contamination of honey by chemicals applied to protect honeybee combs from wax moth (Galleria mellonela L.). Food Addit. Contam. 2006, 23, 159–163. [Google Scholar] [CrossRef]
- Shimanuki, H.; Knox, D. Bee health and international trade. Rev. Sci. Tech. 1997, 16, 172. [Google Scholar] [CrossRef]
- Donahaye, E.J. Current status of non-residual control methods against stored product pests. Crop Prot. 2000, 19, 571–576. [Google Scholar] [CrossRef]
- Robu, V.; Covaci, G.; Popescu, I.M. The use of essential oils in organic farming. Res. J. Agric. Sci. 2015, 47, 134. [Google Scholar]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Zaitoun, S.T. The effect of different Mediterranean plant extracts on the development of the great wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) and their toxicity to worker honeybees Apis mellifera L. (Hymenoptera: Apidae) under laboratory conditions. J. Food Agric. Environ. 2007, 5, 289–294. [Google Scholar]
- Elmubarak, S.M.E. The Effect of Water Extract of Neem and Camphor Leaves on the Last Instar of the Greater Wax Moth Galleria mellonella L. (Lepidoptera: Pyralidae). Ph.D. Dissertation, Faculty of Agriculture University of Khartoum, Khartoum North, Sudan, 2007. [Google Scholar]
- Elbehery, H.; El-Wahab, T.E.A.; Dimetry, N.Z. Management of the greater wax moth Galleria mellonella with neem Azal-T/S, in the laboratory and under semi-field conditions. J. Apicult Res. 2016, 60, 69–76. [Google Scholar] [CrossRef]
- Mossa, A.T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Hole, B.D.; Bell, C.H.; Mills, K.A.; Goodship, G. The toxicity of phosphine to all developmental stages of thirteen species of stored product beetles. J. Stored Prod. Res. 1976, 12, 235–244. [Google Scholar] [CrossRef]
- Fiocco, D.; Fiorentino, D.; Frabboni, L.; Benvenuti, S.; Orlandini, G.; Pellati, F.; Gallone, A. Lavender and peppermint essential oils as effective mushroom tyrosinase inhibitors: A basic study. Flavour. Fragr. J. 2011, 26, 441–446. [Google Scholar] [CrossRef]
- Pavela, R.; Vrchotova, N.; Triska, J. Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2009, 105, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Han, H.; Xie, Y.; Li, B.; Zhang, Z.; Zhang, D. Toxicity, behavioral effects, and chitin structural chemistry of reticulitermes flaviceps exposed to Cymbopogon citratus EO and its major constituent citral. Insects 2022, 13, 812. [Google Scholar] [CrossRef]
- Zhang, W.J.; Liu, C.; Yang, R.J.; Zheng, T.T.; Zhao, M.M.; Ma, L.; Yan, L. Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC. J. Zhejiang Univ. Sci. B 2019, 20, 563–575. [Google Scholar] [CrossRef]
- Hlebová, M.; Foltinová, D.; Vešelényiová, D.; Medo, J.; Šramková, Z.; Tančinová, D.; Mrkvová, M.; Hleba, L. The vapor phase of selected essential oils and their antifungal activity in vitro and in situ against Penicillium commune, a common contaminant of cheese. Foods 2022, 11, 3517. [Google Scholar] [CrossRef]
- Radušienė, J.; Karpavičienė, B.; Marksa, M.; Ivanauskas, L.; Raudonė, L. Distribution patterns of essential oil terpenes in native and invasive solidago species and their comparative assessment. Plants 2022, 11, 1159. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Baz, M.M.; Selim, A.M.; Radwan, I.T.; Alkhaibari, A.M.; Gattan, H.S.; Alruhaili, M.H.; Alasmari, S.M.; Gad, M.E. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci. Rep. 2024, 14, 19660. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, C.; Murugan, K. Mosquitocidal effect of Euphorbia heterophylla Linn against the Bancroftian filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). Int. J. Integr. Biol. 2008, 4, 34–39. [Google Scholar]
- Fikru, S.; Tolossa, K.; Lindemann, P.; Bucar, F.; Asres, K. Larvicidal, ovicidal, and repellent activities of Leucas stachydiformis (Hochst. ex Benth.) Briq essential oil against Anopheles arabiensis. J. Trop. Med. 2024, 2024, 1051086. [Google Scholar] [CrossRef]
- Vilvest, J.; Milton, M.C.J.; Yagoo, A. Evaluating the effectiveness of Pisonia alba leaf extracts in managing Aedes aegypti and Culex quinquefasciatus populations via larvicidal, pupicidal and ovicidal actions. Acta Parasitol. 2024, 69, 260–266. [Google Scholar] [CrossRef]
- Saraç, A.; Tunç, I. Toxicity of essential oil vapours to stored-product insects. J. Plant Dis. Prot. 1995, 102, 69–74. [Google Scholar]
- Gong, X.; Ren, Y. Larvicidal and ovicidal activity of carvacrol, p-cymene, and γ-terpinene from Origanum vulgare essential oil against the cotton bollworm, Helicoverpa armigera (Hübner). Environ. Sci. Pollut. Res. Int. 2020, 27, 18708–18716. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Vaseeharan, B.; Alyahya, S.A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Maggi, F. Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the old-world bollworm, Helicoverpa armigera. Ecotox Environ. Safe 2018, 148, 781–786. [Google Scholar] [CrossRef]
- Pushpanathan, T.; Jebanesan, A.; Govindarajan, M. Larvicidal, ovicidal and repellent activities of Cymbopogan citratus Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop. Biomed. 2006, 23, 208–212. [Google Scholar]
- Owayss, A.A.; Abd-Elgayed, A.A. Potential efficacy of certain plant volatile oils and chemicals against greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralide). Bull. Ent Soc. Egypt. Econ. Ser. 2007, 33, 67–75. [Google Scholar]
- Freitas, J.P.; De Jesus, I.L.R.; Chaves, J.K.O.; Gijsen, I.S.; Campos, D.R.; Baptista, D.P.; Ferreira, T.P.; Alves, M.C.C.; Coumendouros, K.; Cid, Y.P.; et al. Efficacy and residual effect of Illicium verum (star anise) and Pelargonium graveolens (rose geranium) essential oil on cat fleas Ctenocephalides felis felis. Rev. Bras. Parasitol. Vet. 2021, 30, e009321. [Google Scholar] [CrossRef]
- Wakabayashi, K.A.; De Melo, N.I.; Aguiar, D.P.; de Oliveira, P.F.; Groppo, M.; da Silva Filho, A.A.; Rodrigues, V.; Cunha, W.R.; Tavares, D.C.; Magalhães, L.G.; et al. Anthelmintic effects of the essential oil of fennel (Foeniculum vulgare Mill., Apiaceae) against Schistosoma mansoni. Chem. Biodivers. 2015, 12, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res. 2004, 18, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.J.; Dória, G.A.; Maia, R.T.; Nunes, R.S.; Carvalho, G.A.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef]
- Ojha, P.K.; Poudel, D.K.; Dangol, S.; Rokaya, A.; Timsina, S.; Satyal, P.; Setzer, W.N. Volatile constituent analysis of wintergreen essential oil and comparison with synthetic methyl salicylate for authentication. Plants 2022, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Ahmad, S.; Khan, M.K.; Hosny, K.M.; Bukhary, D.M.; Iqbal, H.; Murshid, S.S.; Halwani, A.A.; Alissa, M.; Menaa, F. Fabrication and characterizations of pharmaceutical emulgel co-loaded with naproxen-eugenol for improved analgesic and anti-Inflammatory effects. Gels 2022, 8, 608. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Pruss, A.; Masiuk, H.; Mnichowska-Polanowska, M.; Kaczmarek, M.; Giedrys-Kalemba, S.; Sienkiewicz, M. The effect of fennel essential oil and trans-anethole on antibacterial activity of mupirocin against Staphylococcus aureus isolated from asymptomatic carriers. Postep. Dermatol. I Alergol. 2019, 36, 308–314. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia-Pac. Entomol. 2014, 17, 287–293. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, C.J.; Lee, J.Y.; Kim, I.S.; Kin, S. Development and validation of a gas chromatography method for the determination of β-caryophyllene in clove extract and its application. Sci. Rep. 2021, 11, 13853. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef]
- Yeom, H.J.; Kang, J.S.; Kim, G.H.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J. Agric. Food Chem. 2012, 60, 7194–7203. [Google Scholar] [CrossRef] [PubMed]
- Li, S.G.; Zhou, B.G.; Li, M.Y.; Liu, S.; Hua, R.M.; Lin, H.F. Chemical composition of Illicium verum fruit extract and its bioactivity against the peach–potato aphid, Myzus persicae (Sulzer). Arthropod-Plant Interact. 2017, 11, 203–212. [Google Scholar] [CrossRef]
- Tak, J.H.; Jovel, E.; Isman, M.B. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J. Pest. Sci. 2016, 89, 183–193. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.; Sabier, M.; Zhang, T.; Deng, J.; Song, X.; Liao, Z.; Li, Q.; Yang, S.; Cao, Y.; et al. Trans-anethole is a potent toxic fumigant that partially inhibits rusty grain beetle (Cryptolestes ferrugineus) acetylcholinesterase activity. Ind. Crop Prod. 2021, 161, 113207. [Google Scholar] [CrossRef]
- Kostić, I.; Lazarević, J.; Šešlija-Jovanović, D.; Kostić, M.; Marković, T.; Milanović, S. Potential of essential oils from anise, dill and fennel seeds for the gypsy moth control. Plants 2008, 10, 2194. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.I.; Kubo, I. Potentiation of fungicidal activities of trans-anethole against Saccharomyces cerevisiae under hypoxic conditions. J. Biosci. Bioeng. 2004, 98, 490–492. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef]
- Medeiros, M.A.A.; Alves, M.S.; Santos, B.; Silva, E.V.A.; Araújo, F.S.M.; Bezerra, M.M.S.L.; Silva, P.O.A.; Rêgo, V.G.S.; Pessôa, H.L.F.; Oliveira-Filho, A.A. Evaluation of the antibacterial activity of trans-anethole against Enterococcus cloacae and Enterococcus faecalis strains of food origin. Braz. J. Biol. 2023, 83, e269245. [Google Scholar] [CrossRef]
- Bonvehí, S.; Coll, F.V.; Martínez, J.A.R. Residues of essential oils in honey after treatments to control Varroa destructor. J. Essent. Oil Res. 2015, 28, 22–28. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Palma, E.; Marrelli, M.; Conforti, F.; Musolino, V.; Carresi, C.; Lupia, C.; Ceniti, C.; Tilocca, B.; et al. Essential oils for a sustainable control of honeybee varroosis. Vet. Sci. 2023, 10, 308. [Google Scholar] [CrossRef]
- Dwivedy, A.K.; Kumar, M.; Upadhyay, N.; Prakash, B.; Dubey, N.K. Plant essential oils against food borne fungi and mycotoxins. Curr. Opin. Food Sci. 2016, 11, 16–21. [Google Scholar] [CrossRef]
Essential Oil | Family | Scientific Name | Extracted Plant Part |
---|---|---|---|
Wintergreen | Aquifoliaceae | Ilex purpurea | leaf |
Star anise | Magnoliaceae | Illicium verum | seed |
Clove | Myrtaceae | Syzygium aromaticum | flower bud |
Tea tree | Myrtaceae | Melaleuca alternifolia | leaf |
Schizonepeta | Lamiaceae | Nepeta cataria | leaf |
Perilla | Lamiaceae | Perilla frutescens | leaf |
Cinnamon | Lauraceae | Cinnamomum cassia | leaf, bark |
Citronella | Poaceae | Cymbopogon citratus | leaf |
Eucalyptus | Myrtaceae | Eucalyptus globulus | leaf |
Peppermint | Lamiaceae | Mentha piperita | leaf |
Arborvitae | Cupressaceae | Platycladus orientalis | leaf |
Artemisia | Asteraceae | Artemisia argyi | stem, leaf |
Pepper | Rutaceae | Zanthoxylum bungeanum | seed |
Neem | Meliaceae | Melia azedarach | seed |
Camphor | Lauraceae | Camphora parthenoxylon | wood |
Oregano | Lamiaceae | Origanum vulgare | leaf |
EOs | No. | RIexp | RIlit | Chemical Compounds | Relative Content (%) |
---|---|---|---|---|---|
Wintergreen | 1 | 1196 | 1195 | Methyl salicylate | 93.26 ± 0.38 |
Star anise | 1 | 936 | 938 | α-Pinene | 1.19 ± 0.01 |
2 | 1032 | 1031 | Limonene | 1.44 ± 0.02 | |
3 | 1102 | 1101 | Linalool | 1.12 ± 0.01 | |
4 | 1204 | 1202 | Estragole | 1.41 ± 0.01 | |
5 | 1259 | 1259 | cis-Anethole | 0.66 ± 0.02 | |
6 | 1295 | 1289 | trans-Anethole | 87.75 ± 0.47 | |
Clove | 1 | 1056 | 1062 | γ-Terpinene | 0.51 ± 0.02 |
2 | 1177 | 1175 | Terpinen-4-ol | 0.63 ± 0.01 | |
3 | 1193 | 1195 | Methyl salicylate | 0.75 ± 0.02 | |
4 | 1359 | 1360 | Eugenol | 77.75 ± 0.21 | |
5 | 1422 | 1419 | Caryophyllene | 8.35 ± 0.1 | |
6 | 1457 | 1452 | Humulene | 2.25 ± 0.04 |
EOCs | Time (h) | LC50 (95% CI) a (μL/L) | LC90 (95% CI) a (μL/L) | Slope ± SE b | χ2 c | p-Value |
---|---|---|---|---|---|---|
Wintergreen oil | 24 | 51.07 (41.98–61.40) | 139.51 (107.69–210.26) | 2.94 ± 0.30 | 43.19 | <0.001 |
48 | 39.60 (32.74–46.72) | 92.06 (75.29–122.93) | 3.50 ± 0.32 | 48.64 | <0.001 | |
Star anise oil | 24 | 64.61 (49.46–86.40) | 246.85 (157.97–619.46) | 2.02 ± 0.29 | 47.08 | <0.001 |
48 | 42.18 (33.07–53.78) | 107.98 (82–174.60) | 3.22 ± 0.34 | 65.49 | <0.001 | |
Clove oil | 24 | 91.30 (71.70–128.25) | 405.29 (239.78–1182.32) | 1.98 ± 0.30 | 30.09 | <0.001 |
48 | 29.24 (21.53–36.63) | 86.25 (66.53—129.99) | 2.73 ± 0.30 | 53.34 | <0.001 | |
Methyl salicylate | 24 | 42.68 (35.45–50.79) | 125.36 (97.11–185.88) | 2.74 ± 0.36 | 6.21 | <0.001 |
48 | 32.87 (26.56–39.30) | 98.11 (76.80–143.44) | 2.70 ± 0.37 | 4.87 | <0.001 | |
trans-Anethole | 24 | 45.29 (29.59–63.66) | 702.381 (349.47–2794.64) | 1.08 ± 0.19 | 28.84 | <0.001 |
48 | 25.22 (19.21–31.07) | 64.68 (50.46–96.92) | 3.13 ± 0.41 | 33.71 | <0.001 | |
Eugenol | 24 | 249.08 (173.59–455.34) | 2023.33 (904.44–9394.68) | 1.41 ± 0.23 | 16.75 | <0.001 |
48 | 36.41 (28.16–45.16) | 204.83 (149.01–327.29) | 1.71 ± 0.20 | 29.59 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.-L.; Huang, Z.-C.; Chen, L.; Chen, D.-Y.; Zhao, D.-X.; Zeng, Z.-J. Active Components of 16 Essential Oils and Their Fumigation Effects on Galleria mellonella (Lepidoptera: Pyralidae). Insects 2024, 15, 977. https://doi.org/10.3390/insects15120977
Su X-L, Huang Z-C, Chen L, Chen D-Y, Zhao D-X, Zeng Z-J. Active Components of 16 Essential Oils and Their Fumigation Effects on Galleria mellonella (Lepidoptera: Pyralidae). Insects. 2024; 15(12):977. https://doi.org/10.3390/insects15120977
Chicago/Turabian StyleSu, Xiao-Ling, Zhi-Chu Huang, Lin Chen, Dao-Yin Chen, Dong-Xu Zhao, and Zhi-Jiang Zeng. 2024. "Active Components of 16 Essential Oils and Their Fumigation Effects on Galleria mellonella (Lepidoptera: Pyralidae)" Insects 15, no. 12: 977. https://doi.org/10.3390/insects15120977
APA StyleSu, X.-L., Huang, Z.-C., Chen, L., Chen, D.-Y., Zhao, D.-X., & Zeng, Z.-J. (2024). Active Components of 16 Essential Oils and Their Fumigation Effects on Galleria mellonella (Lepidoptera: Pyralidae). Insects, 15(12), 977. https://doi.org/10.3390/insects15120977