Studies on Lygus pratensis’ (Hemiptera: Miridae) Flight Ability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Insects
2.2. Test Instruments and Materials
2.3. Tethered Flight Test
2.4. L. pratensis’ Flight Ability at Different Temperatures
2.5. L. pratensis’ Flight Ability under Different Relative Humidities
2.6. L. pratensis’ Flight Ability at Different Ages
2.7. L. pratensis’ Flight Ability in Relation to Sex and Mating
2.8. Data Analysis
3. Results
3.1. The Effect of Temperature on Flight Ability
3.2. Effect of Relative Humidity on Flight Ability
3.3. The Influence of Age on Flight Ability
3.4. The Effect of Sex and Mating on Flight Ability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Li, H.Q.; Ali, A.; Li, H.B.; Liu, J.; Yang, Y.Z.; Lu, Y.H. Effects of temperature and humidity on immature development of Lygus pratensis (L.) (Hemiptera: Miridae). J. Asia-Pac. Entomol. 2015, 18, 139–143. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, Y.X.; Yao, C.C.; Gou, C.Q.; Feng, H.Z. Electrophysiological and Behavioral Responses of Lygus pratensis to Plant Volatiles and Regulation of Brassica campestris Trapping Belt on L. pratensis in Cotton Fields. Cotton Sci. 2023, 35, 128–137. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, R.F.; Liu, H.Y.; Zhang, Y.; Yao, J. Control Indices for Lygus pratensis (Heteroptera: Miridae) in Cotton Plantations in Kashgar, Xinjiang. Chin. J. Appl. Entomol. 2016, 53, 1146–1152. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, K.M.; Li, H.B.; Liu, J.; Ding, R.F.; Wang, F.; Ahtam, U.; Li, H.Q.; Wang, D.M.; Chen, X.X. Effects of transgenic bt+ cpti cotton on field abundance of non-target pests and predators in Xinjiang, China. J. Integr. Agric. 2012, 11, 1493–1499. [Google Scholar] [CrossRef]
- Lu, Y.H.; Liang, G.M. Research Advance on the Succession of Insect Pest Complex in Bt Crop Ecosystem. Plant Prot. 2016, 42, 7–11. [Google Scholar] [CrossRef]
- Cao, N.; Leng, L.Y.; Liu, D.C.; Feng, H.Z. Study on the Host Plants and Diet Selection of Lygus pratensis. China Cotton 2017, 44, 27–29. [Google Scholar] [CrossRef]
- Zhao, J.P. Study on the Biological Characteristics and Population Dynamics after Diapause in Lygus pratensis (L.). Master’s Thesis, Tarim University, Alar, China, 2021. [Google Scholar] [CrossRef]
- Zhang, R.F.; Wang, W.; Liu, H.Y.; Yao, J. Seasonal Succession Patterns of Host Species and their Host Feeding in the Cotton Region of Lygus pratensis. Xinjiang Acad. Agric. Sci. 2022, 59, 707–715. [Google Scholar] [CrossRef]
- Varis, A.; Holopainen, J. Biology of the Plant Bugs (Hemiptera: Miridae). Entomol. Fenn. 2002, 13, 194. [Google Scholar] [CrossRef]
- Johnson, C.G. Migration and Dispersal of Insects by Flight; Methuen Publishing: London, UK, 1969. [Google Scholar] [CrossRef]
- Glick, P.A. The Distribution of Insects, Spiders, and Mites in the Air; Government Printing Office: Washington, DC, USA, 1939; pp. 12–16. [CrossRef]
- Carrière, Y.; Ellsworth, P.C.; Dutilleul, P.; Ellers-Kirk, C.; Barkley, V.; Antilla, L. A GIS-based approach for areawide pest management: The scales of Lygus hesperus movements to cotton from alfalfa, weeds, and cotton. Entomol. Exp. Appl. 2006, 118, 203–210. [Google Scholar] [CrossRef]
- Stewart, S.D.; Gaylor, M.J. Effects of age, sex, and reproductive status on flight by the tarnished plant bug (Heteroptera: Miridae). Environ. Entomol. 1994, 23, 80–84. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Naranjo, S.E.; Williams III, L.H. Tethered and untethered flight by Lygus hesperus and Lygus lineolaris (Heteroptera: Miridae). Environ. Entomol. 2004, 33, 1389–1400. [Google Scholar] [CrossRef]
- Lu, Y.H. Studies on Ecological Adaptability of the Mirids. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2008. [Google Scholar]
- Campos, W.G.; Schoereder, J.H.; Sperber, C.F. Does the Age of the Host Plant Modulate Migratory Activity of Plutella xylostella. Entomol. Sci. 2004, 7, 323–329. [Google Scholar] [CrossRef]
- Hocking, B. The intrinsic range and speed of flight of insects. Trans. R. Entomol. Soc. Lond. 1953, 104, 225–345. [Google Scholar]
- Cui, J.X.; Fang, J.; Hou, J.P.; Wang, X.L.; Yao, G.F.; Zhang, S.P.; Wu, S.Y.; Ma, J.M.; Zuo, X.G.; Wang, J.Y. Flight Visualizating Technique of Tethered Insect with it’s Application in Related Studies. J. Henan Inst. Sci. Technol. (Nat. Sci. Ed.) 2016, 44, 27–31. [Google Scholar] [CrossRef]
- Liu, S.; Lv, Z.Y.; Gao, H.H.; Zhai, Y.F.; Liu, Q.; Yang, P.Y.; LI, P.; Zheng, L.; Li, Q.; Yu, Y. Research Advances on Flight Capacity of Insect. J. Environ. Entomol. 2018, 40, 995–1002. [Google Scholar] [CrossRef]
- Hashiyama, A.; Nomura, M.; Kurihara, J.; Toyoshima, G. Laboratory evaluation of the flight ability of female Autographa nigrisigna (Lepidoptera: Noctuidae), measured by actograph and flight mill. J. Econ. Entomol. 2013, 106, 690–694. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Guo, Y. Flight potential of Lygus lucorum (Meyer-Dür)(Heteroptera: Miridae). Environ. Entomol. 2007, 36, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.S.; Villacide, J.; Fernández Ajó, A.A.; Martinson, S.J.; Corley, J.C. Sirex noctilio flight behavior: Toward improving current monitoring techniques. Entomol. Exp. Appl. 2014, 152, 135–140. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, Z.T. Research Advances on Migratory Insects. Chin. Bull. Entomol. 1999, 4, 239–243. [Google Scholar]
- Prange, H.D. Evaporative Cooling in Insects. J. Insect Physiol. 1996, 42, 493–499. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Huang, K.; Li, G.B. The Effect of Relative Humidity on Flight Activity of Adult Oriental Armyworm. Acta Phytophylacica Sin. 1995, 2, 134–138. [Google Scholar] [CrossRef]
- Zhang, X.F. A preliminary report on the study of individual developmental processes in Lygus pratensis. Shaanxi J. Agric. Sci. 2014, 60, 43–44. [Google Scholar]
- Yao, C.C.; Zheng, Y.X.; Gou, C.Q.; Feng, H.Z. Effects of short-term high temperature exposure on the survival and fecundity of Lygus pratensis. China Cotton 2023, 50, 6–12. [Google Scholar] [CrossRef]
- Li, Y.; Yang, A.; Feng, L.K.; Wang, P.L. Effect of Different Temperatures on the Development and Reproduction of Lygus pratensis. Plant Prot. 2015, 41, 59–62. [Google Scholar] [CrossRef]
- Bai, S.X.; Zhao, J.P.; Gou, C.Q.; Yao, C.C.; Feng, H.Z. Effects of farmland lands cape pattern on adult population dynamics of Lygus pratensis in Aral Reclamation Area of Xinjiang. Cotton Sci. 2022, 34, 523–532. [Google Scholar] [CrossRef]
- Ding, J.T.; Adili, S.; Zhu, H.F.; Yu, F.; Alimasi, A.; Luo, L. Flight capacity of adults of the ber fruit fly, Carpomya vesuviana (Diptera: Tephritidae). Acta Entomol. Sin. 2014, 57, 1315–1320. [Google Scholar] [CrossRef]
- Ge, S.S.; He, L.M.; Wei, H.E.; Yan, R.; Wyckhuys, K.A.; Wu, K.M. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 2021, 20, 707–714. [Google Scholar] [CrossRef]
- Su, C.F.; Liu, A.P.; Gao, S.J.; Xu, L.B.; Xie, B.R.; Wang, H.P. Influence of Temperature and Humidity on Flight Capacity of Agrypon flexorius Thunberg. Chin. J. Biol. Control 2014, 30, 612–617. [Google Scholar] [CrossRef]
- Cui, J.; Li, S.; Spurgeon, D.W.; Jia, W.; Lu, Y.; Gouge, D.H. Flight Capacity of Sitophilus zeamais Motschulsky1 in Relation to Gender and Temperature. Southwest. Entomol. 2016, 41, 667–674. [Google Scholar] [CrossRef]
- Guo, J.L.; Li, X.K.; Shen, X.J.; Wang, M.L.; Wu, K.M. Flight performance of Mamestra brassicae (Lepidoptera: Noctuidae) under different biotic and abiotic conditions. J. Insect Sci. 2020, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.H.; WeiI, M.C.; Yuan, G.J.; Cui, J.X.; Gong, D.F. Flight behavior of the sycamore lace bug, Corythucha ciliata, in relation to temperature, age, and sex. J. Integr. Agric. 2019, 18, 2330–2337. [Google Scholar] [CrossRef]
- Guo, J.L.; Fu, X.W.; Zhao, X.C.; Wu, K.M. Preliminary study on the flight capacity of Agrotis segetum (Lepidoptera: Noctuidae). J. Environ. Entomol. 2016, 38, 888–895. [Google Scholar] [CrossRef]
- Sun, B.B.; Jiang, X.F.; Zhang, L.; Stanley, D.W.; Luo, L.Z.; Long, W. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis Medinalis (GuenỂe) (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 2013, 82, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Tan, Y.; Fu, X.T.; Han, H.B.; Chang, J.; Pang, B.P. Effect of host plants on development, reproduction, and digestive enzyme activity of Lygus pratensis. Pratacultural Sci. 2018, 35, 1975–1984. [Google Scholar] [CrossRef]
- Sun, C.W. Flying Ability and its Influencing Factors of Dastarcus helophoroides Adults. Master’s Thesis, Shandong Agricultural University, Taian, China, 2019. [Google Scholar]
- Shrestha, G.; Wiman, N.G.; Rondon, S.I. Flight potential of western tarnished plant bug (Hemiptera: Miridae). J. Econ. Entomol. 2022, 115, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Antolínez, C.A.; Chandler, M.; Hoyle, V.; Fuchs, M.; Rivera, M.J. Differential Flight Capacity of Spissistilus festinus (Hemiptera: Membracidae) by Sex and Age. J. Insect Behav. 2023, 36, 347–357. [Google Scholar] [CrossRef]
- Rovnyak, A.M.; Burks, C.S.; Gassmann, A.J.; Sappington, T.W. Interrelation of mating, flight, and fecundity in navel orangeworm females. Entomol. Exp. Appl. 2018, 166, 304–315. [Google Scholar] [CrossRef]
- Cui, X.X.; Ma, Z.H.; Xiong, R.C.; Li, Z.X.; Yao, Y.S. A study on the flight ability of Euzophera pyriella Yang. J. Environ. Entomol. 2020, 42, 1223–1229. [Google Scholar] [CrossRef]
- Wang, W.; Yin, J.; Cao, Y.Z.; Li, K.B. The effect of feeding and mating on the development of flight muscle in Agrotis ypsilon. Chin. J. Appl. Entomol. 2013, 50, 1573–1585. [Google Scholar] [CrossRef]
- Fahrner, S.J.; Lelito, J.P.; Blaedow, K.; Heimpel, G.E.; Aukema, B.H. Factors affecting the flight capacity of Tetrastichus planipennisi (Hymenoptera: Eulophidae), a classical biological control agent of Agrilus planipennis (Coleoptera: Buprestidae). Environ. Entomol. 2014, 43, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Kees, A.M.; Hefty, A.R.; Venette, R.C.; Seybold, S.J.; Aukema, B.H. Flight capacity of the walnut twig beetle (Coleoptera: Dcolytidae) on a laboratory flight mill. Environ. Entomol. 2017, 46, 633–641. [Google Scholar] [CrossRef]
- Tran, A.K.; Kees, A.M.; Hutchison, W.D.; Aukema, B.H.; Rao, S.; Rogers, M.A.; Asplen, M.K. Comparing Drosophila suzukii flight behavior using free-flight and tethered flight assays. Entomol. Exp. Appl. 2022, 170, 973–981. [Google Scholar] [CrossRef]
- Taylor, R.A.J.; Bauer, L.S.; Poland, T.M.; Windell, K.N. Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 2010, 23, 128–148. [Google Scholar] [CrossRef]
- Minter, M.; Pearson, A.; Lim, K.S.; Wilson, K.; Chapman, J.W.; Jones, C.M. The tethered flight technique as a tool for studying life- history strat- egies associated with migration in insects. Ecol. Entomol. 2018, 43, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, S.E. Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned. Ann. Entomol. Soc. Am. 2019, 112, 182–199. [Google Scholar] [CrossRef]
Temperature (°C) | Total Flight Distance (km) | LgX | Total Flight Time (h) | LgX | Average Flying Speed (km h−1) | LgX |
---|---|---|---|---|---|---|
16 | 7.35 ± 1.31 d | 0.867 | 3.98 ± 0.64 bc | 0.600 | 1.79 ± 0.15 c | 0.252 |
20 | 15.67 ± 2.20 ab | 1.195 | 5.86 ± 0.79 ab | 0.768 | 2.78 ± 0.26 ab | 0.444 |
24 | 18.63 ± 1.89 a | 1.270 | 6.84 ± 0.60 a | 0.835 | 2.84 ± 0.27 a | 0.453 |
28 | 13.14 ± 1.94 bc | 1.118 | 4.86 ± 0.63 bc | 0.687 | 2.75 ± 0.20 ab | 0.439 |
32 | 8.62 ± 1.30 cd | 0.936 | 4.04 ± 0.68 bc | 0.606 | 2.53 ± 0.26 ab | 0.402 |
36 | 5.30 ± 1.03 d | 0.724 | 2.905 ± 0.523 c | 0.463 | 2.085 ± 0.213 bc | 0.319 |
Relative Humidity (%) | Total Flight Distance (km) | LgX | Total Flight Time (h) | LgX | Average Flying Speed (km h−1) | LgX |
---|---|---|---|---|---|---|
30 | 5.25 ± 1.03 d | 0.720 | 2.26 ± 0.33 c | 0.355 | 2.13 ± 0.27 a | 0.328 |
45 | 10.46 ± 1.57 c | 1.020 | 4.23 ± 0.54 b | 0.627 | 2.45 ± 0.23 a | 0.389 |
60 | 15.75 ± 2.17 ab | 1.197 | 5.79 ± 0.73 ab | 0.763 | 2.76 ± 0.25 a | 0.441 |
75 | 18.63 ± 1.89 a | 1.270 | 6.84 ± 0.60 a | 0.835 | 2.84 ± 0.27 a | 0.453 |
90 | 11.14 ± 1.69 bc | 1.047 | 4.22 ± 0.52 b | 0.625 | 2.54 ± 0.21 a | 0.404 |
Day of Age (d) | Flight Probability (%) | Total Flight Distance (km) | Total Flight Time (h) | Average Flying Speed (km h−1) |
---|---|---|---|---|
1 | 30.95 | 3.97 ± 0.68 d | 2.10 ± 0.41 d | 2.28 ± 0.17 c |
5 | 64.29 | 9.62 ± 1.42 b | 4.32 ± 0.54 bc | 2.19 ± 0.11 c |
10 | 71.43 | 18.63 ± 1.89 a | 6.84 ± 0.60 a | 2.84 ± 0.16 ab |
15 | 69.05 | 17.32 ± 2.06 a | 5.45 ± 0.73 ab | 3.36 ± 0.18 a |
20 | 57.14 | 14.79 ± 1.87 a | 4.68 ± 0.58 bc | 3.19 ± 0.16 a |
25 | 40.47 | 8.65 ± 1.21 bc | 3.32 ± 0.48 cd | 2.60 ± 0.18 bc |
30 | 38.09 | 4.54 ± 0.85 cd | 2.14 ± 0.36 d | 2.22 ± 0.18 c |
Mating Status | Sex | Day of Age (d) | Total Flight Distance (km) | Total Flight Time (h) | Average Flying Speed (km h−1) |
---|---|---|---|---|---|
Mated | Female | 7 | 19.54 ± 2.09 a | 6.95 ± 0.70 a | 2.94 ± 0.20 a |
Male | 7 | 10.17 ± 1.50 b | 4.50 ± 0.62 b | 2.52 ± 0.23 a | |
Unmated | Female | 7 | 15.86 ± 1.96 a | 6.13 ± 0.74 a | 2.68 ± 0.20 a |
Male | 7 | 12.92 ± 1.72 a | 4.88 ± 0.54 a | 2.56 ± 0.21 a |
Sex | Mating Status | Day of Age (d) | Total Flight Distance (km) | Total Flight Time (h) | Average Flying Speed (km h−1) |
---|---|---|---|---|---|
Female | Mated | 7 | 19.54 ± 2.09 a | 6.95 ± 0.70 a | 2.94 ± 0.20 a |
Unmated | 7 | 15.86 ± 1.96 a | 6.13 ± 0.74 a | 2.68 ± 0.20 a | |
Male | Mated | 7 | 10.17 ± 1.50 a | 4.50 ± 0.62 a | 2.52 ± 0.23 a |
Unmated | 7 | 12.92 ± 1.72 a | 4.88 ± 0.54 a | 2.56 ± 0.21 a |
Sex | Day of Age (d) | Forewing Area (mm2) | Hindwing Area (mm2) | Weight (mg) | Body Length (mm) |
---|---|---|---|---|---|
Female | 10 | 5.70 ± 0.22 a | 5.86 ± 0.40 a | 8.09 ± 0.13 a | 5.25 ± 0.07 a |
Male | 10 | 5.89 ± 0.44 a | 5.71 ± 0.33 a | 5.62 ± 0.13 b | 4.71 ± 0.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Li, P.; Li, T.; Wang, K.; Gou, C.; Feng, H. Studies on Lygus pratensis’ (Hemiptera: Miridae) Flight Ability. Insects 2024, 15, 762. https://doi.org/10.3390/insects15100762
Zheng Y, Li P, Li T, Wang K, Gou C, Feng H. Studies on Lygus pratensis’ (Hemiptera: Miridae) Flight Ability. Insects. 2024; 15(10):762. https://doi.org/10.3390/insects15100762
Chicago/Turabian StyleZheng, Yixiang, Pengfei Li, Tailong Li, Kunyan Wang, Changqing Gou, and Hongzu Feng. 2024. "Studies on Lygus pratensis’ (Hemiptera: Miridae) Flight Ability" Insects 15, no. 10: 762. https://doi.org/10.3390/insects15100762
APA StyleZheng, Y., Li, P., Li, T., Wang, K., Gou, C., & Feng, H. (2024). Studies on Lygus pratensis’ (Hemiptera: Miridae) Flight Ability. Insects, 15(10), 762. https://doi.org/10.3390/insects15100762