Red Supergiants, Yellow Hypergiants, and Post-RSG Evolution
Abstract
:1. Introduction
2. Context—The Red Supergiant Problem
- Systematic underestimation of progenitor mass due to improper extinction correction.
- Red supergiants greater than have another terminal state besides II-P CCSNe.
3. The Milky Way Hypergiants and Post-RSG Evolution
4. IRC +10420 and Var A in M33—Clues to Post-RSG Evolution
5. YSGs and Post-RSG Candidates in M31 and M33
5.1. Spectral Types and Luminosity Classification
5.2. Photometric Evidence of Mass Loss
5.3. The Post-RSG Candidates, the HR Diagram and Comparison with Evolutionary Models
6. Mass-Loss in the Yellow and Red Supergiants
6.1. Mass-Loss Mechanisms and High Mass-Loss Events
7. Related Work
Funding
Conflicts of Interest
Abbreviations
2MASS | Two-Micron All Sky Survey |
BSG | Blue Supergiant |
CCSNe | Core-collapse supernovae |
CMD | Color-magnitude diagram |
CS | Circumstellar [ejecta] |
HRD | Hertzsprung-Russell diagram |
HST | Hubble Space Telescope |
IR | Infrared |
IRAC | Infrared Array Camera (Spitzer) |
IRAS | Infrared Astronomical Satellite |
LBV | Luminous Blue Variable |
LGGS | Local Group Galaxy Survey |
LMC | Large Magellanic Cloud |
MIRAC | Mid-Infrared Array Camera (MMT) |
PSF | Point spread function |
RSG | Red Supergiant |
SED | Spectral energy distribution |
SN[e] | Supernova[e] |
STIS | Space Telescope Imaging Spectrograph (HST) |
WISE | Wide-field Infrared Survey Explorer |
WR | Wolf-Rayet |
YSG | Yellow Supergiant |
ZAMS | Zero-age main-sequence |
References
- Humphreys, R.M.; Davidson, K. Studies of luminous stars in nearby galaxies. III—Comments on the evolution of the most massive stars in the Milky Way and the Large Magellanic Cloud. Astrophys. J. 1979, 232, 409–420. [Google Scholar] [CrossRef]
- Gehrz, R.D.; Woolf, N.J. Mass Loss from M Stars. Astrophys. J. 1971, 165, 285. [Google Scholar] [CrossRef]
- Mauron, N.; Josselin, E. The mass-loss rates of red supergiants and the de Jager prescription. Astron. Astrophys. 2011, 526, A156. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, R.M.; Davidson, K.; Grammer, S.; Kneeland, N.; Martin, J.C.; Weis, K.; Burggraf, B. Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-red Supergiant Evolution. Astrophys. J. 2013, 773, 46. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Izzard, R.G.; Tout, C.A. The effect of massive binaries on stellar populations and supernova progenitors. Mon. Not. R. Astron. Soc. 2008, 384, 1109–1118. [Google Scholar] [CrossRef]
- Smartt, S.J.; Eldridge, J.J.; Crockett, R.M.; Maund, J.R. The death of massive stars—I. Observational constraints on the progenitors of Type II-P supernovae. Mon. Not. R. Astron. Soc. 2009, 395, 1409–1437. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Leaman, J.; Chornock, R.; Filippenko, A.V.; Poznanski, D.; Ganeshalingam, M.; Wang, X.; Modjaz, M.; Jha, S.; Foley, R.J.; et al. Nearby supernova rates from the Lick Observatory Supernova Search—II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 2011, 412, 1441–1472. [Google Scholar] [CrossRef]
- Levesque, E.M.; Massey, P.; Olsen, K.A.G.; Plez, B.; Josselin, E.; Maeder, A.; Meynet, G. The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought. Astrophys. J. 2005, 628, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Levesque, E.M.; Massey, P.; Olsen, K.A.G.; Plez, B.; Meynet, G.; Maeder, A. The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity. Astrophys. J. 2006, 645, 1102–1117. [Google Scholar] [CrossRef] [Green Version]
- Massey, P.; Silva, D.R.; Levesque, E.M.; Plez, B.; Olsen, K.A.G.; Clayton, G.C.; Meynet, G.; Maeder, A. Red Supergiants in the Andromeda Galaxy (M31). Astrophys. J. 2009, 703, 420–440. [Google Scholar] [CrossRef]
- Drout, M.R.; Massey, P.; Meynet, G. The Yellow and Red Supergiants of M33. Astrophys. J. 2012, 750, 97. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.S.; Humphreys, R.M.; Jones, T.J. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution. Astrophys. J. 2016, 825, 50. [Google Scholar] [CrossRef] [Green Version]
- Meynet, G.; Maeder, A. Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity. Astron. Astrophys. 2003, 404, 975–990. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.; Li, W.; Filippenko, A.V.; Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 2011, 412, 1522–1538. [Google Scholar] [CrossRef] [Green Version]
- Walmswell, J.J.; Eldridge, J.J. Circumstellar dust as a solution to the red supergiant supernova progenitor problem. Mon. Not. R. Astron. Soc. 2012, 419, 2054–2062. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, J.T.; Cioni, M.R.L.; Zijlstra, A.A.; Loup, C. An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron. Astrophys. 2005, 438, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Danchi, W.C.; Bester, M.; Degiacomi, C.G.; Greenhill, L.J.; Townes, C.H. Characteristics of dust shells around 13 late-type stars. Astron. J. 1994, 107, 1469–1513. [Google Scholar] [CrossRef]
- Eggleton, P.P. The evolution of low mass stars. Mon. Not. R. Astron. Soc. 1971, 151, 351. [Google Scholar] [CrossRef] [Green Version]
- Stancliffe, R.J.; Eldridge, J.J. Modelling the binary progenitor of Supernova 1993J. Mon. Not. R. Astron. Soc. 2009, 396, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- De Jager, C.; Nieuwenhuijzen, H.; van der Hucht, K.A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. 1988, 72, 259–289. [Google Scholar]
- Vink, J.S.; de Koter, A.; Lamers, H.J.G.L.M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 2001, 369, 574–588. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Tout, C.A. The progenitors of core-collapse supernovae. Mon. Not. R. Astron. Soc. 2004, 353, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Beasor, E.R.; Davies, B. The evolution of red supergiants to supernova in NGC 2100. Mon. Not. R. Astron. Soc. 2016, 463, 1269–1283. [Google Scholar] [CrossRef]
- Ivezic, Z.; Nenkova, M.; Elitzur, M. DUSTY: Radiation Transport in a Dusty Environment; Astrophysics Source Code Library: Houghton, MI, USA, 1999. [Google Scholar]
- Kilpatrick, C.D.; Foley, R.J. The dusty progenitor star of the Type II supernova 2017eaw. Mon. Not. R. Astron. Soc. 2018, 481, 2536–2547. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Supernova Interaction with a Circumstellar Medium. In Supernovae and Gamma-Ray Bursters; Weiler, K., Ed.; Springer: Berlin, Germany, 2003; Volume 598, pp. 171–194. [Google Scholar] [CrossRef] [Green Version]
- Dwarkadas, V.V.; Gruszko, J. What are published X-ray light curves telling us about young supernova expansion? Mon. Not. R. Astron. Soc. 2012, 419, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. PASA 2015, 32, e016. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S.; Beacom, J.F.; Kistler, M.D.; Prieto, J.L.; Stanek, K.Z.; Thompson, T.A.; Yüksel, H. A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae. Astrophys. J. 2008, 684, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- Ugliano, M.; Janka, H.T.; Marek, A.; Arcones, A. Progenitor-explosion Connection and Remnant Birth Masses for Neutrino-driven Supernovae of Iron-core Progenitors. Astrophys. J. 2012, 757, 69. [Google Scholar] [CrossRef]
- Pejcha, O.; Thompson, T.A. The Landscape of the Neutrino Mechanism of Core-collapse Supernovae: Neutron Star and Black Hole Mass Functions, Explosion Energies, and Nickel Yields. Astrophys. J. 2015, 801, 90. [Google Scholar] [CrossRef]
- Gerke, J.R.; Kochanek, C.S.; Stanek, K.Z. The search for failed supernovae with the Large Binocular Telescope: first candidates. Mon. Not. R. Astron. Soc. 2015, 450, 3289–3305. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Heger, A. Long Gamma-Ray Transients from Collapsars. Astrophys. J. 2012, 752, 32. [Google Scholar] [CrossRef] [Green Version]
- Lovegrove, E.; Woosley, S.E. Very Low Energy Supernovae from Neutrino Mass Loss. Astrophys. J. 2013, 769, 109. [Google Scholar] [CrossRef] [Green Version]
- Piro, A.L. Taking the “Un” out of “Unnovae”. Astrophys. J. 2013, 768, L14. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.M.; Kochanek, C.S.; Gerke, J.R.; Stanek, K.Z.; Dai, X. The search for failed supernovae with the Large Binocular Telescope: Confirmation of a disappearing star. Mon. Not. R. Astron. Soc. 2017, 468, 4968–4981. [Google Scholar] [CrossRef]
- Humphreys, R.M. Comments on the Progenitor of NGC 6946-BH1. Res. Notes Am. Astron. Soc. 2019, 3, 164. [Google Scholar] [CrossRef]
- De Jager, C.; Nieuwenhuijzen, H. (Eds.) Instabilities in Evolved Super- and Hypergiants; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Lobel, A.; Dupree, A.K.; Stefanik, R.P.; Torres, G.; Israelian, G.; Morrison, N.; de Jager, C.; Nieuwenhuijzen, H.; Ilyin, I.; Musaev, F. High-Resolution Spectroscopy of the Yellow Hypergiant ρ Cassiopeiae from 1993 through the Outburst of 2000–2001. Astrophys. J. 2003, 583, 923–954. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. The hypergiant HR 8752 evolving through the yellow evolutionary void. Astron. Astrophys. 2012, 546, A105. [Google Scholar] [CrossRef] [Green Version]
- Lobel, A.; de Jager, C.; Nieuwenhuijzen, H.; van Genderen, A.M.; Oudmaijer, R. Yellow Hypergiants: A Comparative Study of HR 5171A, Rho Cas, and HR 8752. EAS Publ. Ser. 2015, 71, 279–280. [Google Scholar] [CrossRef]
- Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; van Genderen, A.M.; Nazé, Y.; Smith, N.; Spang, A.; Smoker, J.V.; Dessart, L.; et al. The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase. Astron. Astrophys. 2014, 563, A71. [Google Scholar] [CrossRef] [Green Version]
- De Jager, C. The yellow hypergiants. Astron. Astrophys. 1998, 8, 145–180. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Strecker, D.W.; Murdock, T.L.; Low, F.J. IRC+10420—Another Eta Carinae? Astrophys. J. 1973, 179, L49. [Google Scholar] [CrossRef]
- Giguere, P.T.; Woolf, N.J.; Webber, J.C. IRC +10 420—A hot supergiant maser. Astrophys. J. 1976, 207, L195–L198. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Smith, N.; Davidson, K.; Jones, T.J.; Gehrz, R.T.; Mason, C.G.; Hayward, T.L.; Houck, J.R.; Krautter, J. HST and Infrared Images of the Circumstellar Environment of the Cool Hypergiant IRC + 10420. Astron. J. 1997, 114, 2778. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K.; Smith, N. Crossing the Yellow Void: Spatially Resolved Spectroscopy of the Post-Red Supergiant IRC +10420 and Its Circumstellar Ejecta. Astron. J. 2002, 124, 1026–1044. [Google Scholar] [CrossRef]
- Oudmaijer, R.D.; Groenewegen, M.A.T.; Matthews, H.E.; Blommaert, J.A.D.L.; Sahu, K.C. The spectral energy distribution and mass-loss history of IRC+10420. Mon. Not. R. Astron. Soc. 1996, 280, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.J.; Humphreys, R.M.; Gehrz, R.D.; Lawrence, G.F.; Zickgraf, F.J.; Moseley, H.; Casey, S.; Glaccum, W.J.; Koch, C.J.; Pina, R.; et al. IRC +10420—A cool hypergiant near the top of the H-R diagram. Astrophys. J. 1993, 411, 323–335. [Google Scholar] [CrossRef]
- Oudmaijer, R.D. High resolution spectroscopy of the post-red supergiant IRC+10420. I. The data. Astron. Astrophys. 1998, 129, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Klochkova, V.G.; Chentsov, E.L.; Miroshnichenko, A.S.; Panchuk, V.E.; Yushkin, M.V. High-resolution optical spectroscopy of the yellow hypergiant V1302 Aql (=IRC+10420) in 2001–2014. Mon. Not. R. Astron. Soc. 2016, 459, 4183–4190. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, C.; Humphreys, R.M.; Jones, T.J.; Davidson, K. The Morphology of IRC+10420’s Circumstellar Ejecta. Astron. J. 2010, 140, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, D.P.; Jones, T.J.; Packham, C.; Lopez-Rodriguez, E. Probing Hypergiant Mass Loss with Adaptive Optics Imaging and Polarimetry in the Infrared: MMT-Pol and LMIRCam Observations of IRC +10420 and VY Canis Majoris. Astron. J. 2015, 150, 15. [Google Scholar] [CrossRef]
- De Wit, W.J.; Oudmaijer, R.D.; Fujiyoshi, T.; Hoare, M.G.; Honda, M.; Kataza, H.; Miyata, T.; Okamoto, Y.K.; Onaka, T.; Sako, S.; et al. A Red Supergiant Nebula at 25 μm: Arcsecond-Scale Mass-Loss Asymmetries of μ Cephei. Astrophys. J. 2008, 685, L75. [Google Scholar] [CrossRef]
- Shenoy, D.; Humphreys, R.M.; Jones, T.J.; Marengo, M.; Gehrz, R.D.; Helton, L.A.; Hoffmann, W.F.; Skemer, A.J.; Hinz, P.M. Searching for Cool Dust in the Mid-to-far Infrared: The Mass-loss Histories of the Hypergiants μ Cep, VY CMa, IRC+10420, and ρ Cas. Astron. J. 2016, 151, 51. [Google Scholar] [CrossRef] [Green Version]
- Hubble, E.; Sandage, A. The Brightest Variable Stars in Extragalactic Nebulae. I. M31 and M33. Astrophys. J. 1953, 118, 353. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Jones, T.J.; Gehrz, R.D. The enigmatic object variable A in M33. Astron. J. 1987, 94, 315–323. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Jones, T.J.; Polomski, E.; Koppelman, M.; Helton, A.; McQuinn, K.; Gehrz, R.D.; Woodward, C.E.; Wagner, R.M.; Gordon, K.; et al. M33’s Variable A: A Hypergiant Star More Than 35 YEARS in Eruption. Astron. J. 2006, 131, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, R.M.; Ziurys, L.M.; Bernal, J.J.; Gordon, M.S.; Helton, L.A.; Ishibashi, K.; Jones, T.J.; Richards, A.M.S.; Vlemmings, W. The Unexpected Spectrum of the Innermost Ejecta of the Red Hypergiant VY CMa. Astrophys. J. 2019, 874, L26. [Google Scholar] [CrossRef] [Green Version]
- Drout, M.R.; Massey, P.; Meynet, G.; Tokarz, S.; Caldwell, N. Yellow Supergiants in the Andromeda Galaxy (M31). Astrophys. J. 2009, 703, 441–460. [Google Scholar] [CrossRef] [Green Version]
- Massey, P.; Olsen, K.A.G.; Hodge, P.W.; Strong, S.B.; Jacoby, G.H.; Schlingman, W.; Smith, R.C. A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33. Astron. J. 2006, 131, 2478–2496. [Google Scholar] [CrossRef] [Green Version]
- Kourniotis, M.; Bonanos, A.Z.; Yuan, W.; Macri, L.M.; Garcia-Alvarez, D.; Lee, C.H. Monitoring luminous yellow massive stars in M 33: New yellow hypergiant candidates. Astron. Astrophys. 2017, 601, A76. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, R.M.; Sandage, A. On the stellar content and structure of the spiral Galaxy M33. Astrophys. J. 1980, 44, 319–381. [Google Scholar] [CrossRef]
- Massey, P.; Olsen, K.A.G.; Hodge, P.W.; Jacoby, G.H.; McNeill, R.T.; Smith, R.C.; Strong, S.B. A Survey of Local Group Galaxies Currently Forming Stars. II. UBVRI Photometry of Stars in Seven Dwarfs and a Comparison of the Entire Sample. Astron. J. 2007, 133, 2393–2417. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, J.N.; Soneira, R.M. The universe at faint magnitudes. I—Models for the galaxy and the predicted star counts. Astrophys. J. 1980, 44, 73–110. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Smart, B.M. A Spectroscopic Survey of Massive Stars in M31 and M33. Astron. J. 2016, 152, 62. [Google Scholar] [CrossRef] [Green Version]
- Robin, A.C.; Reylé, C.; Derrière, S.; Picaud, S. A synthetic view on structure and evolution of the Milky Way. Astron. Astrophys. 2003, 409, 523–540. [Google Scholar] [CrossRef]
- Massey, P. Evolved Massive Stars in the Local Group. I. Identification of Red Supergiants in NGC 6822, M31, and M33. Astrophys. J. 1998, 501, 153–174. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; Meixner, M.; Babler, B.L.; Bracker, S.; Meade, M.R.; et al. Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud. Astron. J. 2009, 138, 1003–1021. [Google Scholar] [CrossRef] [Green Version]
- Bonanos, A.Z.; Lennon, D.J.; Köhlinger, F.; van Loon, J.T.; Massa, D.L.; Sewilo, M.; Evans, C.J.; Panagia, N.; Babler, B.L.; Block, M.; et al. Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud. Astron. J. 2010, 140, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Woolf, N.J.; Ney, E.P. Circumstellar Infrared Emission from Cool Stars. Astrophys. J. 1969, 155, L181. [Google Scholar] [CrossRef]
- Treffers, R.; Cohen, M. High-resolution spectra of cool stars in the 10- and 20-micron regions. Astrophys. J. 1974, 188, 545–552. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Howarth, I.D. New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC and SMC abundances. Mon. Not. R. Astron. Soc. 2011, 413, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, K.B.W.; Woodward, C.E.; Willner, S.P.; Polomski, E.F.; Gehrz, R.D.; Humphreys, R.M.; van Loon, J.T.; Ashby, M.L.N.; Eicher, K.; Fazio, G.G. The M33 Variable Star Population Revealed by Spitzer. Astrophys. J. 2007, 664, 850–861. [Google Scholar] [CrossRef] [Green Version]
- Mould, J.; Barmby, P.; Gordon, K.; Willner, S.P.; Ashby, M.L.N.; Gehrz, R.D.; Humphreys, R.; Woodward, C.E. A Point-Source Survey of M31 with the Spitzer Space Telescope. Astrophys. J. 2008, 687, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Stanek, K.Z.; Kochanek, C.S.; Sonneborn, G. Spitzer Point-source Catalogs of ∽300,000 Stars in Seven Nearby Galaxies. Astrophys. J. 2015, 219, 42. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Kochanek, C.S.; Stanek, K.Z.; Gerke, J. Finding η Car Analogs in Nearby Galaxies Using Spitzer. II. Identification of An Emerging Class of Extragalactic Self-Obscured Stars. Astrophys. J. 2015, 799, 187. [Google Scholar] [CrossRef] [Green Version]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation - I. Models from 0.8 to 120 M solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar] [CrossRef] [Green Version]
- Meynet, G.; Kudritzki, R.P.; Georgy, C. The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution. Astron. Astrophys. 2015, 581, A36. [Google Scholar] [CrossRef] [Green Version]
- Saio, H.; Georgy, C.; Meynet, G. Evolution of blue supergiants and α Cygni variables: Puzzling CNO surface abundances. Mon. Not. R. Astron. Soc. 2013, 433, 1246–1257. [Google Scholar] [CrossRef]
- Georgy, C.; Saio, H.; Meynet, G. The puzzle of the CNO abundances of α Cygni variables resolved by the Ledoux criterion. Mon. Not. R. Astron. Soc. 2014, 439, L6–L10. [Google Scholar] [CrossRef] [Green Version]
- Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 2015, 575, A60. [Google Scholar] [CrossRef] [Green Version]
- Kourniotis, M.; Kraus, M.; Arias, M.L.; Cidale, L.; Torres, A.F. On the evolutionary state of massive stars in transition phases in M33. Mon. Not. R. Astron. Soc. 2018, 480, 3706–3717. [Google Scholar] [CrossRef]
- Beasor, E.R.; Davies, B. The evolution of red supergiant mass-loss rates. Mon. Not. R. Astron. Soc. 2018, 475, 55–62. [Google Scholar] [CrossRef]
- Gordon, M.S.; Humphreys, R.M.; Jones, T.J.; Shenoy, D.; Gehrz, R.D.; Helton, L.A.; Marengo, M.; Hinz, P.M.; Hoffmann, W.F. Searching for Cool Dust. II. Infrared Imaging of The OH/IR Supergiants, NML Cyg, VX Sgr, S Per, and the Normal Red Supergiants RS Per and T Per. Astron. J. 2018, 155, 212. [Google Scholar] [CrossRef] [Green Version]
- Gilliland, R.L.; Dupree, A.K. First Image of the Surface of a Star with the Hubble Space Telescope. Astrophys. J. 1996, 463, L29. [Google Scholar] [CrossRef]
- Tuthill, P.G.; Haniff, C.A.; Baldwin, J.E. Hotspots on late-type supergiants. Mon. Not. R. Astron. Soc. 1997, 285, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Monnier, J.D.; Millan-Gabet, R.; Tuthill, P.G.; Traub, W.A.; Carleton, N.P.; Coudé du Foresto, V.; Danchi, W.C.; Lacasse, M.G.; Morel, S.; Perrin, G.; et al. High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer. Astrophys. J. 2004, 605, 436–461. [Google Scholar] [CrossRef] [Green Version]
- Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. The convective photosphere of the red supergiant CE Tauri. I. VLTI/PIONIER H-band interferometric imaging. Astron. Astrophys. 2018, 614, A12. [Google Scholar] [CrossRef] [Green Version]
- Nance, S.; Sullivan, J.M.; Diaz, M.; Wheeler, J.C. The Betelgeuse Project II: asteroseismology. Mon. Not. R. Astron. Soc. 2018, 479, 251–261. [Google Scholar] [CrossRef] [Green Version]
- López Ariste, A.; Mathias, P.; Tessore, B.; Lèbre, A.; Aurière, M.; Petit, P.; Ikhenache, N.; Josselin, E.; Morin, J.; Montargès, M. Convective cells in Betelgeuse: imaging through spectropolarimetry. Astron. Astrophys. 2018, 620, A199. [Google Scholar] [CrossRef] [Green Version]
- Reid, N.; Tinney, C.; Mould, J. Luminous asymptotic giant branch stars in the Large Magellanic Cloud. Astrophys. J. 1990, 348, 98–119. [Google Scholar] [CrossRef]
- Groenewegen, M.A.T.; Sloan, G.C.; Soszyński, I.; Petersen, E.A. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants. Astron. Astrophys. 2009, 506, 1277–1296. [Google Scholar] [CrossRef]
- Currie, T.; Hernandez, J.; Irwin, J.; Kenyon, S.J.; Tokarz, S.; Balog, Z.; Bragg, A.; Berlind, P.; Calkins, M. The Stellar Population of h and χ Persei: Cluster Properties, Membership, and the Intrinsic Colors and Temperatures of Stars. Astrophys. J. 2010, 186, 191–221. [Google Scholar] [CrossRef] [Green Version]
- Marco, A.; Negueruela, I. NGC 7419 as a template for red supergiant clusters. Astron. Astrophys. 2013, 552, A92. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K.; Ruch, G.; Wallerstein, G. High-Resolution, Long-Slit Spectroscopy of VY Canis Majoris: The Evidence for Localized High Mass Loss Events. Astron. J. 2005, 129, 492–510. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Helton, L.A.; Jones, T.J. The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta. Astron. J. 2007, 133, 2716–2729. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.; Humphreys, R.M.; Davidson, K.; Gehrz, R.D.; Schuster, M.T.; Krautter, J. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris. Astron. J. 2001, 121, 1111–1125. [Google Scholar] [CrossRef]
- Shenoy, D.P.; Jones, T.J.; Humphreys, R.M.; Marengo, M.; Leisenring, J.M.; Nelson, M.J.; Wilson, J.C.; Skrutskie, M.F.; Hinz, P.M.; Hoffmann, W.F.; et al. Adaptive Optics Imaging of VY Canis Majoris at 2–5 μm with LBT/LMIRCam. Astron. J. 2013, 146, 90. [Google Scholar] [CrossRef]
- Gordon, M.S.; Jones, T.J.; Humphreys, R.M.; Ertel, S.; Hinz, P.M.; Hoffmann, W.F.; Stone, J.; Spalding, E.; Vaz, A. Thermal Emission in the Southwest Clump of VY CMa. Astron. J. 2019, 157, 57. [Google Scholar] [CrossRef]
- Vlemmings, W.H.T.; Diamond, P.J.; van Langevelde, H.J. Circular polarization of water masers in the circumstellar envelopes of late type stars. Astron. Astrophys. 2002, 394, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Vlemmings, W.H.T.; van Langevelde, H.J.; Diamond, P.J.; Habing, H.J.; Schilizzi, R.T. VLBI astrometry of circumstellar OH masers: Proper motions and parallaxes of four AGB stars. Astron. Astrophys. 2003, 407, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Vlemmings, W.H.T.; van Langevelde, H.J.; Diamond, P.J. The magnetic field around late-type stars revealed by the circumstellar H_2O masers. Astron. Astrophys. 2005, 434, 1029–1038. [Google Scholar] [CrossRef]
- Kervella, P.; Lagadec, E.; Montargès, M.; Ridgway, S.T.; Chiavassa, A.; Haubois, X.; Schmid, H.M.; Langlois, M.; Gallenne, A.; Perrin, G. The close circumstellar environment of Betelgeuse. III. SPHERE/ZIMPOL imaging polarimetry in the visible. Astron. Astrophys. 2016, 585, A28. [Google Scholar] [CrossRef] [Green Version]
- Gies, D.R. Binaries in Massive Star Formation. In Massive Star Formation: Observations Confront Theory; ASP Conference Series; Beuther, H., Linz, H., Henning, T., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 387, p. 93. [Google Scholar]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [Green Version]
- Neugent, K.F.; Levesque, E.M.; Massey, P. Binary Red Supergiants: A New Method for Detecting B-type Companions. Astron. J. 2018, 156, 225. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S.; Auchettl, K.; Belczynski, K. Stellar binaries that survive supernovae. Mon. Not. R. Astron. Soc. 2019, 485, 5394–5410. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Fraser, M.; Smartt, S.J.; Maund, J.R.; Crockett, R.M. The death of massive stars—II. Observational constraints on the progenitors of Type Ibc supernovae. Mon. Not. R. Astron. Soc. 2013, 436, 774–795. [Google Scholar] [CrossRef] [Green Version]
- Levesque, E.M. Astrophysics of Red Supergiants; IOP Publishing: Bristol, UK, 2017. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, M.S.; Humphreys, R.M. Red Supergiants, Yellow Hypergiants, and Post-RSG Evolution. Galaxies 2019, 7, 92. https://doi.org/10.3390/galaxies7040092
Gordon MS, Humphreys RM. Red Supergiants, Yellow Hypergiants, and Post-RSG Evolution. Galaxies. 2019; 7(4):92. https://doi.org/10.3390/galaxies7040092
Chicago/Turabian StyleGordon, Michael S., and Roberta M. Humphreys. 2019. "Red Supergiants, Yellow Hypergiants, and Post-RSG Evolution" Galaxies 7, no. 4: 92. https://doi.org/10.3390/galaxies7040092
APA StyleGordon, M. S., & Humphreys, R. M. (2019). Red Supergiants, Yellow Hypergiants, and Post-RSG Evolution. Galaxies, 7(4), 92. https://doi.org/10.3390/galaxies7040092