A 3 mm Spectral Line Study of the Central Molecular Zone Infrared Dark Cloud G1.75-0.08
Abstract
:1. Introduction
2. Observations and Data Reduction
2.1. Yebes Observations
2.2. IRAM Observations
3. Analysis and Results
3.1. Detected Spectral Lines and Spectral Line Parameters
Transition | Telescope | ||
---|---|---|---|
[MHz] | [K] | ||
HNCO | 87 925.2178 a | 10.55 | Yebes |
HCN | 88 631.846 b | 4.25 | Yebes |
HCO+ | 89 188.5247 | 4.28 | Yebes |
N2H+ | 93 173.7637 c | 4.47 | IRAM 30 m |
3.2. Line Optical Thicknesses and Excitation Temperatures
3.3. Molecular Column Densities and Fractional Abundances
3.4. Virial Analysis of the Cloud and Its Clumps
4. Discussion
4.1. Spectral Line Profiles and Cloud Kinematics
4.2. Dynamical State of G1.75-0.08
4.3. Dynamical State of the Clumps
4.4. Molecular Detections and Abundances in G1.75-0.08
4.4.1. HNCO (Isocyanic Acid)
4.4.2. HCN (Hydrogen Cyanide)
4.4.3. HCO+ (Formyl Ion)
4.4.4. N2H+ (Diazenylium)
4.4.5. [N2H+]/[HCO+] Abundance Ratio and [N2D+]/[N2H+] Deuteration
5. Conclusions
- Three different molecular line transitions were unambiguously detected towards the clumps in G1.75-0.08 with Yebes, namely, HNCO, HCN, and HCO+. With the IRAM 30 m telescope, we detected only N2H+ towards clump B.
- The HCN and HNCO spectra exhibit two velocity components, which give an impression of red asymmetric line profiles that would be an indication of expanding gas motions.
- Our new spectral line data support the view that the G1.75-0.08 filament is strongly subcritical (by a factor of ), which is atypical compared to the general population of Galactic molecular cloud filaments.
- Both clumps at the ends of the G1.75-0.08 filament were found to be gravitationally unbound (). Because the clumps are 70 m dark and massive (several M⊙), they can be considered candidates for being high-mass starless clumps, but not prestellar.
- The fractional abundances of the detected species in the target clumps are consistent with those observed in other IRDCs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALMA | Atacama Large Millimetre/submillimetre Array |
APEX | Atacama Pathfinder EXperiment |
ArTéMiS | Architectures de bolomètres pour des Télescopes à grand champ |
de vue dans le domaine sub-Millimétrique au Sol | |
CDMS | Cologne Database for Molecular Spectroscopy |
CLASS | Continuum and Line Analysis Single-dish Software |
CMZ | Central Molecular Zone |
EMIR | Eight MIxer Receiver |
FFTS | Fast-Fourier Transform Spectrometer |
FWHM | Full width at half maximum |
GILDAS | Grenoble Image and Line Data Analysis Software |
HMPO | High-mass protostellar object |
HPBW | Half-power beam width |
IPAC | Infrared Processing & Analysis Center |
IRAM | Institut de Radioastronomie Millimétrique |
IRDC | Infrared dark cloud |
JPL | Jet Propulsion Laboratory |
LABOCA | Large APEX BOlometer CAmera |
LSR | Local standard of rest |
LTE | Local thermodynamic equilibrium |
MALT90 | Millimetre Astronomy Legacy Team 90 GHz |
NASA | National Aeronautics and Space Administration |
PWV | Precipitable water vapour |
SFR | Star formation rate |
VESPA | Versatile SPectrometer Array |
1 | https://rt40m.oan.es/rt40m_en.php accessed on 1 February 2024. |
2 | Grenoble Image and Line Data Analysis Software (GILDAS) is provided and actively developed by IRAM, and is available at
www.iram.fr/IRAMFR/GILDAS accessed on 28 December 2022. |
3 | https://splatalogue.online/ accessed on 1 February 2024. |
4 | https://cdms.astro.uni-koeln.de/ accessed on 1 February 2024. |
5 | http://spec.jpl.nasa.gov/ accessed on 1 February 2024. |
6 | We note that for example in Miettinen [41], we used a column density formula, where the rotational degeneracy () does not appear in the denominator, while in Equation (32) of Mangum & Shirley [40] it does (see also their Equation (33)). This difference arises from the different definitions of the dipole moment matrix element, which can be either , where is the permanent electric dipole moment and S is the line strength (Equation (62) in [40]), or (see [42], where ). |
7 | |
8 | www.astropy.org accessed on 1 April 2023. |
References
- Pérault, M.; Omont, A.; Simon, G.; Seguin, P.; Ojha, D.; Blommaert, J.; Felli, M.; Gilmore, G.; Guglielmo, F.; Habing, H.; et al. First ISOCAM images of the Milky Way. Astron. Astrophys. 1996, 315, L165. [Google Scholar]
- Egan, M.P.; Shipman, R.F.; Price, S.D.; Carey, S.J.; Clark, F.O.; Cohen, M. A Population of Cold Cores in the Galactic Plane. Astrophys. J. 1998, 494, L199. [Google Scholar] [CrossRef]
- Peretto, N.; Fuller, G.A. The initial conditions of stellar protocluster formation. I. A catalogue of Spitzer dark clouds. Astron. Astrophys. 2009, 505, 405. [Google Scholar] [CrossRef]
- Jackson, J.M.; Finn, S.C.; Chambers, E.T.; Rathborne, J.M.; Simon, R. The “Nessie” Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud. Astrophys. J. Lett. 2010, 719, L185. [Google Scholar] [CrossRef]
- Kainulainen, J.; Ragan, S.E.; Henning, T.; Stutz, A. High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12. Astron. Astrophys. 2013, 557, A120. [Google Scholar] [CrossRef]
- Henshaw, J.D.; Caselli, P.; Fontani, F.; Jiménez-Serra, I.; Tan, J.C.; Longmore, S.N.; Pineda, J.E.; Parker, R.J.; Barnes, A.T. Investigating the structure and fragmentation of a highly filamentary IRDC. Mon. Not. R. Astron. Soc. 2016, 463, 146. [Google Scholar] [CrossRef]
- Miettinen, O. The Seahorse Nebula: New views of the filamentary infrared dark cloud G304.74+01.32 from SABOCA, Herschel, and WISE. Astron. Astrophys. 2018, 609, A123. [Google Scholar] [CrossRef]
- Rathborne, J.M.; Jackson, J.M.; Simon, R. Infrared Dark Clouds: Precursors to Star Clusters. Astrophys. J. 2006, 641, 389. [Google Scholar] [CrossRef]
- Beuther, H.; Steinacker, J. The Protostar in the Massive Infrared Dark Cloud IRDC 18223-3. Astrophys. J. 2007, 656, L85. [Google Scholar] [CrossRef]
- Chambers, E.T.; Jackson, J.M.; Rathborne, J.M.; Simon, R. Star Formation Activity of Cores within Infrared Dark Clouds. Astrophys. J. Suppl. 2009, 181, 360. [Google Scholar] [CrossRef]
- Battersby, C.; Bally, J.; Jackson, J.M.; Ginsburg, A.; Shirley, Y.L.; Schlingman, W.; Glenn, J. An Infrared Through Radio Study of the Properties and Evolution of IRDC Clumps. Astrophys. J. 2010, 721, 222. [Google Scholar] [CrossRef]
- Retes-Romero, R.; Mayya, Y.D.; Luna, A.; Carrasco, L. Infrared Dark Clouds and High-mass Star Formation Activity in Galactic Molecular Clouds. Astrophys. J. 2020, 897, 53. [Google Scholar] [CrossRef]
- Motte, F.; Bontemps, S.; Louvet, F. High-Mass Star and Massive Cluster Formation in the Milky Way. Annu. Rev. Astron. Astrophys. 2018, 56, 41. [Google Scholar] [CrossRef]
- Sanhueza, P.; Jackson, J.M.; Zhang, Q.; Guzmán, A.E.; Lu, X.; Stephens, I.W.; Wang, K.; Tatematsu, K. A Massive Prestellar Clump Hosting No High-mass Cores. Astrophys. J. 2017, 841, 97. [Google Scholar] [CrossRef]
- Siringo, G.; Kreysa, E.; Kovács, A.; Schuller, F.; Weiß, A.; Esch, W.; Gemünd, H.-P.; Jethava, N.; Lundershausen, G.; Colin, A. The Large APEX BOlometer CAmera LABOCA. Astron. Astrophys. 2009, 497, 945. [Google Scholar] [CrossRef]
- Miettinen, O. LABOCA 870 μm dust continuum mapping of selected infrared-dark cloud regions in the Galactic plane. Astron. Astrophys. 2012, 542, A101. [Google Scholar] [CrossRef]
- Miettinen, O. A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds. Astron. Astrophys. 2014, 562, A3. [Google Scholar] [CrossRef]
- Foster, J.B.; Jackson, J.M.; Barnes, P.J.; Barris, E.; Brooks, K.; Cunningham, M.; Finn, S.C.; Fuller, G.A.; Longmore, S.N.; Mascoop, J.L.; et al. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Pilot Survey. Astrophys. J. Suppl. 2011, 197, 25. [Google Scholar] [CrossRef]
- Foster, J.B.; Rathborne, J.M.; Sanhueza, P.; Claysmith, C.; Whitaker, J.S.; Jackson, J.M.; Mascoop, J.L.; Wienen, M.; Breen, S.L.; Herpin, F.; et al. Characterisation of the MALT90 Survey and the Mopra Telescope at 90 GHz. Publ. Astron. Soc. Aust. 2013, 30, e038. [Google Scholar] [CrossRef]
- Jackson, J.M.; Rathborne, J.M.; Foster, J.B.; Whitaker, J.S.; Sanhueza, P.; Claysmith, C.; Mascoop, J.L.; Wienen, M.; Breen, S.L.; Herpin, F.; et al. MALT90: The Millimetre Astronomy Legacy Team 90 GHz Survey. Publ. Astron. Soc. Aust. 2013, 30, e057. [Google Scholar] [CrossRef]
- Miettinen, O.; Mattern, M.; André, P. ArTéMiS imaging of the filamentary infrared dark clouds G1.75-0.08 and G11.36+0.80: Dust-based physical properties of the clouds and their clumps. Astron. Astrophys. 2022, 667, A90. [Google Scholar] [CrossRef]
- Revéret, V.; André, P.; Le Pennec, J.; Talvard, M.; Agnèse, P.; Arnaud, A.; Clerc, L.; de Breuck, C.; Cigna, J.-C.; Delisle, C.; et al. The ArTéMiS wide-field sub-millimeter camera: Preliminary on-sky performance at 350 microns. Proc. SPIE 2014, 9153, 915305. [Google Scholar]
- André, P.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; et al. Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS. Astron. Astrophys. 2016, 592, A54. [Google Scholar] [CrossRef]
- Talvard, M.; Revéret, V.; Le-Pennec, Y.; André, P.; Arnaud, A.; Clerc, L.; de Breuck, C.; Delisle, C.; Doumayrou, E.; Duband, L.; et al. Latest results and prospects of the ArTeMiS camera on APEX. Proc. SPIE 2018, 10708, 1070838. [Google Scholar]
- Petkova, M.A.; Kruijssen, J.M.D.; Kluge, A.L.; Glover, S.C.O.; Walker, D.L.; Longmore, S.N.; Henshaw, J.D.; Reissl, S.; Dale, J.E. The complex multiscale structure in simulated and observed emission maps of the proto-cluster cloud G0.253+0.016 (’the Brick’). Mon. Not. R. Astron. Soc. 2023, 520, 2245. [Google Scholar] [CrossRef]
- Henshaw, J.D.; Barnes, A.T.; Battersby, C.; Ginsburg, A.; Sormani, M.C.; Walker, D.L. Star Formation in the Central Molecular Zone of the Milky Way. In Protostars and Planets VII; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2023; Volume 534, p. 83. [Google Scholar]
- Tercero, F.; López-Pérez, J.A.; Gallego, J.D.; Beltrán, F.; García, O.; Patino-Esteban, M.; López-Fernández, I.; Gómez-Molina, G.; Diez, M.; García-Carreño, P.; et al. Yebes 40 m radio telescope and the broad band Nanocosmos receivers at 7 mm and 3 mm for line surveys. Astron. Astrophys. 2021, 645, A37. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.G.D.P.; Cernicharo, J.; Schlemmer, S.; Marcelino, N.; Loison, J.-C.; Agúndez, M.; Gupta, D.; Wakelam, V.; Thorwirth, S.; Cabezas, C.; et al. Discovery of H2CCCH+ in TMC-1. Astron. Astrophys. 2023, 676, L1. [Google Scholar] [CrossRef]
- Agúndez, M.; Marcelino, N.; Tercero, B.; Jiménez-Serra, I.; Cernicharo, J. Abundance and excitation of molecular anions in interstellar clouds. Astron. Astrophys. 2023, 677, A106. [Google Scholar] [CrossRef]
- Tercero, B.; Marcelino, N.; Roueff, E.; Agúndez, M.; Cabezas, C.; Fuentetaja, R.; de Vicente, P.; Cernicharo, J. Doubly substituted isotopologues of HCCCN in TMC-1: Detection of D13CCCN, DC13CCN, DCC13CN, DCCC15N, H13C13CCN, H13CC13CN, HC13C13CN, HCC13C15N, and HC13CC15N. Astron. Astrophys. 2024, 682, L12. [Google Scholar] [CrossRef]
- Carter, M.; Lazareff, B.; Maier, D.; Chenu, J.-Y.; Fontana, A.-L.; Bortolotti, Y.; Boucher, C.; Navarrini, A.; Blanchet, S.; Greve, A.; et al. The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope. Astron. Astrophys. 2012, 538, A89. [Google Scholar] [CrossRef]
- Pagani, L.; Daniel, F.; Dubernet, M.-L. On the frequency of N{_2}H+ and N{_2}D{}. Astron. Astrophys. 2009, 494, 719. [Google Scholar] [CrossRef]
- De Simone, M.; Fontani, F.; Codella, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.; López-Sepulcre, A.; Caux, E.; Vastel, C.; Soldateschi, J. Deuterium and 15N fractionation in N2H+. Mon. Not. R. Astron. Soc. 2018, 476, 1982. [Google Scholar] [CrossRef]
- Müller, H.S.P.; Schlöder, F.; Stutzki, J.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists. J. Mol. Struct. 2005, 742, 215. [Google Scholar] [CrossRef]
- Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Müller, H.S.P. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883. [Google Scholar] [CrossRef]
- Mangum, J. Observing Modes Used in Radio Astronomy; NRAO: Charlottesville, VA, USA, 2006. [Google Scholar]
- Pagani, L.; Frayer, D.; Pagani, B.; Lefèvre, C. Radio telescope total power mode: Improving observation efficiency. Astron. Astrophys. 2020, 643, A126. [Google Scholar] [CrossRef]
- Loughnane, R.M.; Redman, M.P.; Thompson, M.A.; Lo, N.; O’Dwyer, B.; Cunningham, M.R. Observations of HCN hyperfine line anomalies towards low- and high-mass star-forming cores. Mon. Not. R. Astron. Soc. 2012, 420, 1367. [Google Scholar] [CrossRef]
- Prieto, L.V.; Contreras, C.S.; Cernicharo, J.; Agúndez, M.; Quintana-Lacaci, G.; Alcolea, J.; Bujarrabal, V.; Herpin, F.; Menten, K.M.; Wyrowski, F. New N-bearing species towards OH 231.8+4.2. HNCO, HNCS, HC3N, and NO. Astron. Astrophys. 2015, 575, A84. [Google Scholar]
- Mangum, J.G.; Shirley, Y.L. How to Calculate Molecular Column Density. Publ. Astron. Soc. Pac. 2015, 127, 266. [Google Scholar] [CrossRef]
- Miettinen, O. What did the seahorse swallow? APEX 170 GHz observations of the chemical conditions in the Seahorse infrared dark cloud. Astron. Astrophys. 2020, 639, A65. [Google Scholar] [CrossRef]
- Turner, B.E. A Molecular Line Survey of Sagittarius B2 and Orion–KL from 70 to 115 GHz. II. Analysis of the Data. Astrophys. J. Suppl. 1991, 76, 617. [Google Scholar] [CrossRef]
- Fiege, J.D.; Pudritz, R.E. Helical fields and filamentary molecular clouds—I. Mon. Not. R. Astron. Soc. 2000, 311, 85. [Google Scholar] [CrossRef]
- Sanhueza, P.; Jackson, J.M.; Foster, J.B.; Garay, G.; Silva, A.; Finn, S.C. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm. Astrophys. J. 2012, 756, 60. [Google Scholar] [CrossRef]
- Miettinen, O. Dense cores in the Seahorse infrared dark cloud: Physical properties from modified blackbody fits to the far-infrared-submillimetre spectral energy distributions. Astron. Astrophys. 2020, 644, A82. [Google Scholar] [CrossRef]
- Miettinen, O. A molecular line study of the filamentary infrared dark cloud G304.74+01.32. Astron. Astrophys. 2012, 540, A104. [Google Scholar] [CrossRef]
- Gregersen, E.M.; Evans, N.J.; Zhou, S.; Choi, M. New Protostellar Collapse Candidates: An HCO+ Survey of the Class 0 Sources. Astrophys. J. 1997, 484, 256. [Google Scholar] [CrossRef]
- Gao, Y.; Lou, Y.-Q. Global collapses and expansions in star-forming clouds. Mon. Not. R. Astron. Soc. 2010, 403, 1919. [Google Scholar] [CrossRef]
- Kristensen, L.E.; van Dishoeck, E.F.; Bergin, E.A.; Visser, R.; Yıldız, U.A.; San Jose-Garcia, I.; Jørgensen, J.K.; Herczeg, G.J.; Johnstone, D.; Wampfler, S.F.; et al. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110-101 emission in low-mass protostars. Astron. Astrophys. 2012, 542, A8. [Google Scholar] [CrossRef]
- Qin, S.-L.; Schilke, P.; Wu, J.; Liu, T.; Wu, Y.; Sánchez-Monge, Á.; Liu, Y. SMA observations of the W3(OH) complex: Dynamical differentiation between W3(H2O) and W3(OH). Mon. Not. R. Astron. Soc. 2016, 456, 2681. [Google Scholar] [CrossRef]
- Burkert, A.; Hartmann, L. Collapse and Fragmentation in Finite Sheets. Astrophys. J. 2004, 616, 288. [Google Scholar] [CrossRef]
- Heigl, S.; Hoemann, E.; Burkert, A. Taking off the edge - simultaneous filament and end core formation. Mon. Not. R. Astron. Soc. 2022, 517, 5272. [Google Scholar] [CrossRef]
- Hoemann, E.; Heigl, S.; Burkert, A. Filament collapse: A two phase process. Mon. Not. R. Astron. Soc. 2023, 521, 5152. [Google Scholar] [CrossRef]
- Hoemann, E.; Heigl, S.; Burkert, A. Filament fragmentation: Density gradients suppress end-dominated collapse. Mon. Not. R. Astron. Soc. 2023, 525, 3998. [Google Scholar] [CrossRef]
- Henshaw, J.D.; Ginsburg, A.; Haworth, T.J.; Longmore, S.N.; Kruijssen, J.M.D.; Mills, E.A.C.; Sokolov, V.; Walker, D.L.; Barnes, A.T.; Contreras, Y.; et al. ‘The Brick’ is not a brick: A comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016. Mon. Not. R. Astron. Soc. 2019, 485, 2457. [Google Scholar] [CrossRef]
- Mattern, M.; Kauffmann, J.; Csengeri, T.; Urquhart, J.S.; Leurini, S.; Wyrowski, F.; Giannetti, A.; Barnes, P.J.; Beuther, H.; Bronfman, L.; et al. SEDIGISM: The kinematics of ATLASGAL filaments. Astron. Astrophys. 2018, 619, A166. [Google Scholar] [CrossRef]
- Tress, R.G.; Sormani, M.C.; Girichidis, P.; Glover, S.C.O.; Klessen, R.S.; Smith, R.J.; Sobacchi, E.; Armillotta, L.; Barnes, A.T.; Battersby, C.; et al. Magnetic field morphology and evolution in the Central Molecular Zone and its effect on gas dynamics. Astron. Astrophys. 2024. submitted. [Google Scholar] [CrossRef]
- Baldeschi, A.; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A.M.; et al. Distance biases in the estimation of the physical properties of Hi-GAL compact sources—I. Clump properties and the identification of high-mass star-forming candidates. Mon. Not. R. Astron. Soc. 2017, 466, 3682. [Google Scholar] [CrossRef]
- Traficante, A.; Fuller, G.A.; Billot, N.; Duarte-Cabral, A.; Merello, M.; Molinari, S.; Peretto, N.; Schisano, E. Massive 70 μm quiet clumps I: Evidence of embedded low/intermediate-mass star formation activity. Mon. Not. R. Astron. Soc. 2017, 470, 3882. [Google Scholar] [CrossRef]
- Sanhueza, P.; Contreras, Y.; Wu, B.; Jackson, J.M.; Guzmán, A.E.; Zhang, Q.; Li, S.; Lu, X.; Silva, A.; Izumi, N.; et al. The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation. Astrophys. J. 2019, 886, 102. [Google Scholar] [CrossRef]
- Li, S.; Sanhueza, P.; Zhang, Q.; Nakamura, F.; Lu, X.; Wang, J.; Liu, T.; Tatematsu, K.; Jackson, J.M.; Silva, A.; et al. The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). II. Molecular Outflows in the Extreme Early Stages of Protocluster Formation. Astrophys. J. 2020, 903, 119. [Google Scholar] [CrossRef]
- Myers, P.C.; Hatchfield, H.P.; Battersby, C. Virial Clumps in Central Molecular Zone Clouds. Astrophys. J. 2022, 929, 34. [Google Scholar] [CrossRef]
- Chabrier, G.; Dumond, P. A Consistent Explanation for the Unusual Initial Mass Function and Star Formation Rate in the Central Molecular Zone (CMZ). Astrophys. J. 2024, 966, 48. [Google Scholar] [CrossRef]
- Li, S.; Sanhueza, P.; Zhang, Q.; Guido, G.; Sabatini, G.; Morii, K.; Lu, X.; Tafoya, D.; Nakamura, F.; Izumi, N.; et al. The ALMA Survey of 70 <italic>μ</italic>m Dark High-mass Clumps in Early Stages (ASHES). VIII. Dynamics of Embedded Dense Cores. Astrophys. J. 2023, 949, 109. [Google Scholar]
- Vasyunina, T.; Linz, H.; HeNning, T.; Zinchenko, I.; Beuther, H.; Voronkov, M. Chem. Infrared Dark Clouds. Astron. Astrophys. 2011, 527, A88. [Google Scholar] [CrossRef]
- Rathborne, J.M.; Longmore, S.N.; Jackson, J.M.; Foster, J.B.; Contreras, Y.; Garay, G.; Testi, L.; Alves, J.F.; Bally, J.; Bastian, N.; et al. G0.253+0.016: A Centrally Condensed, High-mass Protocluster. Astrophys. J. 2014, 786, 140. [Google Scholar] [CrossRef]
- Rathborne, J.M.; Longmore, S.N.; Jackson, J.M.; Alves, J.F.; Bally, J.; Bastian, N.; Contreras, Y.; Foster, J.B.; Garay, G.; Kruijssen, J.M.D.; et al. A Cluster in the Making: ALMA Reveals the Initial Conditions for High-mass Cluster Formation. Astrophys. J. 2015, 802, 125. [Google Scholar] [CrossRef]
- Fontani, F.; Caselli, P.; Crapsi, A.; Cesaroni, R.; Molinari, S.; Testi, L.; Brand, J. Searching for massive pre-stellar cores through observations of N2H+ and N2D+. Astron. Astrophys. 2006, 460, 709. [Google Scholar] [CrossRef]
- Fontani, F.; Palau, A.; Caselli, P.; Sánchez-Monge, Á.; Butler, M.J.; Tan, J.C.; Jiménez-Serra, I.; Busquet, G.; Leurini, S.; Audard, M. Deuteration as an evolutionary tracer in massive-star formation. Astron. Astrophys. 2011, 529, L7. [Google Scholar] [CrossRef]
- Gerner, T.; Shirley, Y.L.; Beuther, H.; Semenov, D.; Linz, H.; Albertsson, T.; Henning, T. Chemical evolution in the early phases of massive star formation. II. Deuteration. Astron. Astrophys. 2015, 579, A80. [Google Scholar] [CrossRef]
- Lackington, M.; Fuller, G.A.; Pineda, J.E.; Garay, G.; Peretto, N.; Traficante, A. Deuteration in infrared dark clouds. Mon. Not. R. Astron. Soc. 2016, 455, 806. [Google Scholar] [CrossRef]
- Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar]
- Astropy Collaboration; Price-Whelan, A.M.; Sipőcz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N.; et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar]
Source | M | |||
---|---|---|---|---|
[h:m:s] | [∘:′:″] | [K] | [M⊙] | |
Clump A | 17 50 05.08 | −27 28 32.12 | ||
Clump B | 17 49 59.38 | −27 29 24.98 |
Transition | N | x | ||||||
---|---|---|---|---|---|---|---|---|
[km s−1] | [km s−1] | [K] | [K km s−1] | [K] | [cm−2] | |||
Clump A | ||||||||
HNCO | ||||||||
… | ||||||||
HCN | ||||||||
… | ||||||||
HCO+ | a | |||||||
Clump B | ||||||||
HNCO | ||||||||
… | ||||||||
HCN | ||||||||
… | ||||||||
HCO+ | a | |||||||
N2H+ |
Source | a | |
---|---|---|
G1.75-0.08 | 11,113 ± 6171 M⊙ pc−1 b | |
Clump A | 16,248 ± 1017 M⊙ | |
Clump B | 43,384 ± 1710 M⊙ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miettinen, O.; Santander-García, M. A 3 mm Spectral Line Study of the Central Molecular Zone Infrared Dark Cloud G1.75-0.08. Galaxies 2024, 12, 32. https://doi.org/10.3390/galaxies12040032
Miettinen O, Santander-García M. A 3 mm Spectral Line Study of the Central Molecular Zone Infrared Dark Cloud G1.75-0.08. Galaxies. 2024; 12(4):32. https://doi.org/10.3390/galaxies12040032
Chicago/Turabian StyleMiettinen, Oskari, and Miguel Santander-García. 2024. "A 3 mm Spectral Line Study of the Central Molecular Zone Infrared Dark Cloud G1.75-0.08" Galaxies 12, no. 4: 32. https://doi.org/10.3390/galaxies12040032
APA StyleMiettinen, O., & Santander-García, M. (2024). A 3 mm Spectral Line Study of the Central Molecular Zone Infrared Dark Cloud G1.75-0.08. Galaxies, 12(4), 32. https://doi.org/10.3390/galaxies12040032