Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory
Abstract
:1. Introduction
2. Science Program
2.1. Black Holes and Neutron Stars throughout Cosmic Time
2.1.1. Remnants of the First Stars
2.1.2. Seeds of Galaxy Formation
2.1.3. Formation and Evolution of Compact Binaries
2.2. Dynamics of Dense Matter
2.2.1. Structure and Composition of Neutron Stars
2.2.2. New Phases in Quantum Chromodynamics
2.2.3. Chemical Evolution of the Universe
2.2.4. The Engine Powering Short -ray Bursts
2.3. Extreme Gravity and Fundamental Physics
2.3.1. Testing General Relativity
2.3.2. Rare and Novel Compact Objects
2.3.3. Dark Matter and Dark Energy
2.4. Discovery Potential
3. Observatory
3.1. Sensitivity
3.2. Detector
3.2.1. Optical Configuration
3.2.2. Test Masses
3.2.3. Mirror Coatings
3.2.4. Test Mass Suspensions
3.2.5. Active Vibration Isolation
3.2.6. Local Gravity Fluctuations
3.2.7. Laser System
3.2.8. Calibration
3.3. Vacuum System
3.4. Observatory Location
3.5. A 20 km Cosmic Explorer?
4. Project and Realization
5. Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Elsewhere, Einstein Telescope and Cosmic Explorer are referred to as third-generation observatories, with the current observatories and their incremental upgrades referred to as second generation; the initial detectors in the LIGO and Virgo observatories were first generation. |
2 | An initial estimate of the round-trip power loss can be found from the clipping loss of a Gaussian mode with spot radius w impinging on a test mass with diameter D [22]. However, the Eigenfunction of a finite-aperture cavity is not Gaussian, and accurately computing its round-trip loss requires numerical simulation with Eigenvalue or Fourier-transform methods [93,98,99]. |
3 | For 2 μm light, the transverse motion of the baffles could introduce significant noise due to the larger beam size (16 cm) [127]. |
4 | This tuning of the macroscopic cavity lengths is distinct from “detuned” operation, in which resonant enhancement at kilohertz frequencies is instead achieved by adjusting the microscopic length of the signal extraction cavity. |
References
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Mei, J.; Bai, Y.Z.; Bao, J.; Barausse, E.; Cai, L.; Canuto, E.; Cao, B.; Chen, W.M.; Chen, Y.; Ding, Y.W.; et al. The TianQin project: Current progress on science and technology. Prog. Theor. Exp. Phys. 2021, 2021, 05A107. [Google Scholar] [CrossRef]
- Verbiest, J.P.W.; Oslowski, S.; Burke-Spolaor, S. Pulsar Timing Array Experiments. arXiv 2021, arXiv:2101.10081. [Google Scholar]
- Kamionkowski, M.; Kovetz, E.D. The Quest for B Modes from Inflationary Gravitational Waves. Ann. Rev. Astron. Astrophys. 2016, 54, 227–269. [Google Scholar] [CrossRef]
- Aggarwal, N.; Aguiar, O.D.; Bauswein, A.; Cella, G.; Clesse, S.; Cruise, A.M.; Domcke, V.; Figueroa, D.G.; Geraci, A.; Goryachev, M.; et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Rel. 2021, 24, 4. [Google Scholar] [CrossRef]
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Musha, M.; Kawano, I.; Yokoyama, J.; Tanaka, T.; Ioka, K.; Akutsu, T.; et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Prog. Theor. Exp. Phys. 2021, 2021, 05A105. [Google Scholar] [CrossRef]
- Geiger, R. Future Gravitational Wave Detectors Based on Atom Interferometry; World Scientific: Singapore, 2017; p. 285. [Google Scholar] [CrossRef]
- Harms, J.; Ambrosino, F.; Angelini, L.; Braito, V.; Branchesi, M.; Brocato, E.; Cappellaro, E.; Coccia, E.; Coughlin, M.; Della Ceca, R.; et al. Lunar Gravitational-wave Antenna. Astrophys. J. 2021, 910, 1. [Google Scholar] [CrossRef]
- Ballmer, S.W.; Adhikari, R.; Badurina, L.; Brown, D.A.; Chattopadhyay, S.; Evans, M.; Fritschel, P.; Hall, E.; Hogan, J.M.; Jani, K.; et al. Snowmass2021 Cosmic Frontier White Paper: Future Gravitational-Wave Detector Facilities. In Proceedings of the 2022 Snowmass Summer Study, Settle, WA, USA, 17–26 July 2022. [Google Scholar]
- Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Atsuta, S.; et al. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nat. Astron. 2019, 3, 35–40. [Google Scholar] [CrossRef]
- Dooley, K.L. Status of GEO 600. J. Phys. Conf. Ser. 2015, 610, 012015. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 2018, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, L.; McCuller, L.; Evans, M.; Fritschel, P. The A+ Design Curve. Technical Report T1800042; LIGO. 2018. Available online: https://dcc.ligo.org/public/0149/T1800042/004/T1800042-v4.pdf (accessed on 14 April 2022).
- Bersanetti, D.; Patricelli, B.; Piccinni, O.J.; Piergiovanni, F.; Salemi, F.; Sequino, V. Advanced Virgo: Status of the Detector, Latest Results and Future Prospects. Universe 2021, 7, 322. [Google Scholar] [CrossRef]
- Adhikari, R.; Arai, K.; Brooks, A.; Wipf, C.; Aguiar, O.; Altin, P.; Barr, B.; Barsotti, L.; Bassiri, R.; Bell, A.; et al. A cryogenic silicon interferometer for gravitational-wave detection. Class. Quant. Grav. 2020, 37, 165003. [Google Scholar] [CrossRef]
- Ackley, K.; Adya, V.; Agrawal, P.; Altin, P.; Ashton, G.; Bailes, M.; Baltinas, E.; Barbuio, A.; Beniwal, D.; Blair, C.; et al. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publ. Astron. Soc. Austral. 2020, 37, e047. [Google Scholar] [CrossRef]
- Eichholz, J.; Holland, N.A.; Adya, V.B.; van Heijningen, J.V.; Ward, R.L.; Slagmolen, B.J.J.; McClelland, D.E.; Ottaway, D.J. Practical test mass and suspension configuration for a cryogenic kilohertz gravitational wave detector. Phys. Rev. D 2020, 102, 122003. [Google Scholar] [CrossRef]
- Einstein Telescope Steering Committee. Einstein Telescope: Science Case, Design Study and Feasibility Report. Technical Report ET–0028A–20; Einstein Telescope. 2020. Available online: http://www.et-gw.eu/index.php/relevant-et-documents (accessed on 14 April 2022).
- Barsotti, L.; Evans, M.; Mavalvala, N.; Ballmer, S. Long Uncomplicated Next-Generation Gravitational-Wave Observatory. In Proceedings of the Gravitational-Wave Advanced Detector Workshop 2013, Elba, Italy, 19–25 May 2013. [Google Scholar]
- Dwyer, S.; Sigg, D.; Ballmer, S.W.; Barsotti, L.; Mavalvala, N.; Evans, M. Gravitational wave detector with cosmological reach. Phys. Rev. D 2015, 91, 082001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors. Class. Quant. Grav. 2017, 34, 044001. [Google Scholar] [CrossRef]
- Evans, M.; Adhikari, R.X.; Afle, C.; Ballmer, S.W.; Biscoveanu, S.; Borhanian, S.; Brown, D.A.; Chen, Y.; Eisenstein, R.; Gruson, A.; et al. A Horizon Study for Cosmic Explorer: Science, Observatories, and Community. arXiv 2021, arXiv:2109.09882. [Google Scholar]
- Reitze, D.; Abbott, R.; Adams, C.; Adhikari, R.; Aggarwal, N.; Anand, S.; Ananyeva, A.; Anderson, S.; Appert, S.; Arai, K.; et al. The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory. arXiv 2019, arXiv:1903.04615. [Google Scholar]
- Reitze, D.; Adhikari, R.X.; Ballmer, S.; Barish, B.; Barsotti, L.; Billingsley, G.; Brown, D.A.; Chen, Y.; Coyne, D.; Eisenstein, R.; et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. arXiv 2019, arXiv:1907.04833. [Google Scholar]
- Maggiore, M.; Van Den Broeck, C.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. JCAP 2020, 03, 050. [Google Scholar] [CrossRef]
- Raffai, P.; Gondán, L.; Heng, I.S.; Kelecsényi, N.; Logue, J.; Márka, Z.; Márka, S. Optimal Networks of Future Gravitational-Wave Telescopes. Class. Quant. Grav. 2013, 30, 155004. [Google Scholar] [CrossRef]
- Hu, Y.M.; Raffai, P.; Gondán, L.; Heng, I.S.; Kelecsényi, N.; Hendry, M.; Márka, Z.; Márka, S. Global optimization for future gravitational wave detector sites. Class. Quant. Grav. 2015, 32, 105010. [Google Scholar] [CrossRef]
- Vitale, S.; Evans, M. Parameter estimation for binary black holes with networks of third generation gravitational-wave detectors. Phys. Rev. D 2017, 95, 064052. [Google Scholar] [CrossRef]
- Hall, E.D.; Evans, M. Metrics for next-generation gravitational-wave detectors. Class. Quant. Grav. 2019, 36, 225002. [Google Scholar] [CrossRef]
- Nitz, A.H.; Dal Canton, T. Pre-merger Localization of Compact-binary Mergers with Third-generation Observatories. Astrophys. J. Lett. 2021, 917, L27. [Google Scholar] [CrossRef]
- Li, Y.; Heng, I.S.; Chan, M.L.; Messenger, C.; Fan, X. Exploring the sky localization and early warning capabilities of third generation gravitational wave detectors in three-detector network configurations. Phys. Rev. D 2022, 105, 043010. [Google Scholar] [CrossRef]
- Gossan, S.E.; Hall, E.D.; Nissanke, S.M. Optimizing the Third Generation of Gravitational-wave Observatories for Galactic Astrophysics. Astrophys. J. 2022, 926, 231. [Google Scholar] [CrossRef]
- Borhanian, S.; Sathyaprakash, B.S. Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors. arXiv 2022, arXiv:2202.11048. [Google Scholar]
- García-Quirós, C.; Colleoni, M.; Husa, S.; Estellés, H.; Pratten, G.; Ramos-Buades, A.; Mateu-Lucena, M.; Jaume, R. Multimode frequency-domain model for the gravitational wave signal from nonprecessing black-hole binaries. Phys. Rev. D 2020, 102, 064002. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star Formation History. Ann. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Vitale, S.; Farr, W.M.; Ng, K.; Rodriguez, C.L. Measuring the star formation rate with gravitational waves from binary black holes. Astrophys. J. Lett. 2019, 886, L1. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 2016, 93, 122003. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Salaris, M.; Cassisi, S. Evolution of Stars and Stellar Populations; Wiley: Chichester, UK, 2005. [Google Scholar]
- Bromm, V.; Larson, R.B. The First stars. Ann. Rev. Astron. Astrophys. 2004, 42, 79–118. [Google Scholar] [CrossRef]
- Madau, P.; Rees, M.J. Massive black holes as Population III remnants. Astrophys. J. Lett. 2001, 551, L27–L30. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-Mass Black Holes. Ann. Rev. Astron. Astrophys. 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Banados, E.; Venemans, B.P.; Mazzucchelli, C.; Farina, E.P.; Walter, F.; Wang, F.; Decarli, R.; Stern, D.; Fan, X.; Davies, F.; et al. An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5. Nature 2018, 553, 473–476. [Google Scholar] [CrossRef]
- Chen, H.Y.; Ricarte, A.; Pacucci, F. Prospects to Explore High-redshift Black Hole Formation with Multi-band Gravitational Waves Observatories. arXiv 2022, arXiv:2202.04764. [Google Scholar]
- Mapelli, M. Binary Black Hole Mergers: Formation and Populations. Front. Astron. Space Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
- Rodriguez, C.L.; Amaro-Seoane, P.; Chatterjee, S.; Rasio, F.A. Post-Newtonian Dynamics in Dense Star Clusters: Highly-Eccentric, Highly-Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 2018, 120, 151101. [Google Scholar] [CrossRef] [PubMed]
- Zevin, M.; Romero-Shaw, I.M.; Kremer, K.; Thrane, E.; Lasky, P.D. Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophys. J. Lett. 2021, 921, L43. [Google Scholar] [CrossRef]
- Zevin, M.; Bavera, S.S.; Berry, C.P.L.; Kalogera, V.; Fragos, T.; Marchant, P.; Rodriguez, C.L.; Antonini, F.; Holz, D.E.; Pankow, C. One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways. Astrophys. J. 2021, 910, 152. [Google Scholar] [CrossRef]
- Ng, K.K.Y.; Vitale, S.; Farr, W.M.; Rodriguez, C.L. Probing multiple populations of compact binaries with third-generation gravitational-wave detectors. Astrophys. J. Lett. 2021, 913, L5. [Google Scholar] [CrossRef]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef]
- Chatziioannou, K. Neutron star tidal deformability and equation of state constraints. Gen. Rel. Grav. 2020, 52, 109. [Google Scholar] [CrossRef]
- Haskell, B.; Schwenzer, K. Isolated Neutron Stars. In Handbook of Gravitational Wave Astronomy; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Woan, G.; Pitkin, M.D.; Haskell, B.; Jones, D.I.; Lasky, P.D. Evidence for a Minimum Ellipticity in Millisecond Pulsars. Astrophys. J. Lett. 2018, 863, L40. [Google Scholar] [CrossRef]
- Most, E.R.; Papenfort, L.J.; Dexheimer, V.; Hanauske, M.; Schramm, S.; Stöcker, H.; Rezzolla, L. Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers. Phys. Rev. Lett. 2019, 122, 061101. [Google Scholar] [CrossRef]
- Prakash, A.; Radice, D.; Logoteta, D.; Perego, A.; Nedora, V.; Bombaci, I.; Kashyap, R.; Bernuzzi, S.; Endrizzi, A. Signatures of deconfined quark phases in binary neutron star mergers. Phys. Rev. D 2021, 104, 083029. [Google Scholar] [CrossRef]
- Sarin, N.; Lasky, P.D. The evolution of binary neutron star post-merger remnants: A review. Gen. Rel. Grav. 2021, 53, 59. [Google Scholar] [CrossRef]
- Kashyap, R.; Das, A.; Radice, D.; Padamata, S.; Prakash, A.; Logoteta, D.; Perego, A.; Godzieba, D.A.; Bernuzzi, S.; Bombaci, I.; et al. Numerical relativity simulations of prompt collapse mergers: Threshold mass and phenomenological constraints on neutron star properties after GW170817. arXiv 2021, arXiv:2111.05183. [Google Scholar] [CrossRef]
- Srivastava, V.; Davis, D.; Kuns, K.; Landry, P.; Ballmer, S.; Evans, M.; Hall, E.; Read, J.; Sathyaprakash, B.S. Science-Driven Tunable Design of Cosmic Explorer Detectors. arXiv 2022, arXiv:2201.10668. [Google Scholar] [CrossRef]
- Clark, J.A.; Bauswein, A.; Stergioulas, N.; Shoemaker, D. Observing Gravitational Waves From The Post-Merger Phase Of Binary Neutron Star Coalescence. Class. Quant. Grav. 2016, 33, 085003. [Google Scholar] [CrossRef]
- Abdikamalov, E.; Pagliaroli, G.; Radice, D. Gravitational Waves from Core-Collapse Supernovae. arXiv 2020, arXiv:2010.04356. [Google Scholar]
- Srivastava, V.; Ballmer, S.; Brown, D.A.; Afle, C.; Burrows, A.; Radice, D.; Vartanyan, D. Detection Prospects of Core-Collapse Supernovae with Supernova-Optimized Third-Generation Gravitational-wave Detectors. Phys. Rev. D 2019, 100, 043026. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event. Nature 2017, 551, 80. [Google Scholar] [CrossRef]
- Barnes, J. The Physics of Kilonovae. Front. Phys. 2020, 8, 355. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Ciolfi, R. Short gamma-ray burst central engines. Int. J. Mod. Phys. D 2018, 27, 1842004. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.; Adya, V.; Affeldt, C.; et al. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D 2019, 100, 104036. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.; Adya, V.; Affeldt, C.; et al. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D 2021, 103, 122002. [Google Scholar] [CrossRef]
- Perkins, S.E.; Yunes, N.; Berti, E. Probing Fundamental Physics with Gravitational Waves: The Next Generation. Phys. Rev. D 2021, 103, 044024. [Google Scholar] [CrossRef]
- Gossan, S.; Veitch, J.; Sathyaprakash, B.S. Bayesian model selection for testing the no-hair theorem with black hole ringdowns. Phys. Rev. D 2012, 85, 124056. [Google Scholar] [CrossRef]
- Meidam, J.; Agathos, M.; Van Den Broeck, C.; Veitch, J.; Sathyaprakash, B.S. Testing the no-hair theorem with black hole ringdowns using TIGER. Phys. Rev. D 2014, 90, 064009. [Google Scholar] [CrossRef]
- Berti, E.; Sesana, A.; Barausse, E.; Cardoso, V.; Belczynski, K. Spectroscopy of Kerr black holes with Earth- and space-based interferometers. Phys. Rev. Lett. 2016, 117, 101102. [Google Scholar] [CrossRef]
- Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Rel. 2019, 22, 4. [Google Scholar] [CrossRef]
- Bertone, G.; Croon, D.; Amin, M.A.; Boddy, K.K.; Kavanagh, B.J.; Mack, K.J.; Natarajan, P.; Opferkuch, T.; Schutz, K.; Takhistov, V.; et al. Gravitational wave probes of dark matter: Challenges and opportunities. SciPost Phys. Core 2020, 3, 007. [Google Scholar] [CrossRef]
- Chen, Z.C.; Huang, Q.G. Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer. JCAP 2020, 08, 039. [Google Scholar] [CrossRef]
- Yuan, C.; Brito, R.; Cardoso, V. Probing ultralight dark matter with future ground-based gravitational-wave detectors. Phys. Rev. D 2021, 104, 044011. [Google Scholar] [CrossRef]
- Nagano, K.; Nakatsuka, H.; Morisaki, S.; Fujita, T.; Michimura, Y.; Obata, I. Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors. Phys. Rev. D 2021, 104, 062008. [Google Scholar] [CrossRef]
- Chen, H.Y.; Cowperthwaite, P.S.; Metzger, B.D.; Berger, E. A Program for Multimessenger Standard Siren Cosmology in the Era of LIGO A+, Rubin Observatory, and Beyond. Astrophys. J. Lett. 2021, 908, L4. [Google Scholar] [CrossRef]
- Wu, C.; Mandic, V.; Regimbau, T. Accessibility of the Gravitational-Wave Background due to Binary Coalescences to Second and Third Generation Gravitational-Wave Detectors. Phys. Rev. D 2012, 85, 104024. [Google Scholar] [CrossRef]
- Regimbau, T.; Evans, M.; Christensen, N.; Katsavounidis, E.; Sathyaprakash, B.; Vitale, S. Digging deeper: Observing primordial gravitational waves below the binary black hole produced stochastic background. Phys. Rev. Lett. 2017, 118, 151105. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Harms, J. Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground. Phys. Rev. D 2020, 102, 063009. [Google Scholar] [CrossRef]
- Sachdev, S.; Regimbau, T.; Sathyaprakash, B.S. Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds. Phys. Rev. D 2020, 102, 024051. [Google Scholar] [CrossRef]
- Biscoveanu, S.; Talbot, C.; Thrane, E.; Smith, R. Measuring the primordial gravitational-wave background in the presence of astrophysical foregrounds. Phys. Rev. Lett. 2020, 125, 241101. [Google Scholar] [CrossRef]
- Lang, K.R. Serendipitous Astronomy. Science 2010, 327, 39–40. [Google Scholar] [CrossRef]
- Hall, E.D.; Kuns, K.; Smith, J.R.; Bai, Y.; Wipf, C.; Biscans, S.; Adhikari, R.X.; Arai, K.; Ballmer, S.; Barsotti, L.; et al. Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Phys. Rev. D 2021, 103, 122004. [Google Scholar] [CrossRef]
- Schutz, B.F. Networks of gravitational wave detectors and three figures of merit. Class. Quant. Grav. 2011, 28, 125023. [Google Scholar] [CrossRef]
- Rakhmanov, M.; Romano, J.D.; Whelan, J.T. High-frequency corrections to the detector response and their effect on searches for gravitational waves. Class. Quant. Grav. 2008, 25, 184017. [Google Scholar] [CrossRef]
- Essick, R.; Vitale, S.; Evans, M. Frequency-dependent responses in third generation gravitational-wave detectors. Phys. Rev. D 2017, 96, 084004. [Google Scholar] [CrossRef]
- Rollins, J.G.; Hall, E.; Wipf, C.; McCuller, L. pygwinc: Gravitational Wave Interferometer Noise Calculator. 2020. Available online: https://ascl.net/2007.020 (accessed on 14 April 2022).
- Kogelnik, H.; Li, T. Laser Beams and Resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Sidles, J.A.; Sigg, D. Optical torques in suspended Fabry–Perot interferometers. Phys. Lett. A 2006, 354, 167–172. [Google Scholar] [CrossRef]
- Evans, M.; Gras, S.; Fritschel, P.; Miller, J.; Barsotti, L.; Martynov, D.; Brooks, A.; Coyne, D.; Abbott, R.; Adhikari, R.; et al. Observation of Parametric Instability in Advanced LIGO. Phys. Rev. Lett. 2015, 114, 161102. [Google Scholar] [CrossRef]
- Miao, H.; Smith, N.D.; Evans, M. Quantum limit for laser interferometric gravitational wave detectors from optical dissipation. Phys. Rev. X 2019, 9, 011053. [Google Scholar] [CrossRef]
- McCuller, L.; Dwyer, S.; Green, A.; Yu, H.; Barsotti, L.; Blair, C.; Brown, D.; Effler, A.; Evans, M.; Fernandez-Galiana, A.; et al. LIGO’s quantum response to squeezed states. Phys. Rev. D 2021, 104, 062006. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Sausalito, CA, USA, 1986. [Google Scholar]
- Barriga, P.; Bhawal, B.; Ju, L.; Blair, D.G. Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors. J. Opt. Soc. Am. A 2007, 24, 1731–1741. [Google Scholar] [CrossRef]
- Granata, M.; Amato, A.; Balzarini, L.; Canepa, M.; Degallaix, J.; Forest, D.; Dolique, V.; Mereni, L.; Michel, C.; Pinard, L.; et al. Amorphous optical coatings of present gravitational-wave interferometers. Class. Quant. Grav. 2020, 37, 095004. [Google Scholar] [CrossRef]
- Vajente, G.; Yang, L.; Davenport, A.; Fazio, M.; Ananyeva, A.; Zhang, L.; Billingsley, G.; Prasai, K.; Markosyan, A.; Bassiri, R.; et al. Low Mechanical Loss TiO2:GeO2 Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers. Phys. Rev. Lett. 2021, 127, 071101. [Google Scholar] [CrossRef] [PubMed]
- Granata, M.; Amato, A.; Cagnoli, G.; Coulon, M.; Degallaix, J.; Forest, D.; Mereni, L.; Michel, C.; Pinard, L.; Sassolas, B.; et al. Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors. Appl. Opt. 2020, 59, A229–A235. [Google Scholar] [CrossRef] [PubMed]
- Penn, S.D.; Kinley-Hanlon, M.M.; MacMillan, I.A.O.; Heu, P.; Follman, D.; Deutsch, C.; Cole, G.D.; Harry, G.M. Mechanical Ringdown Studies of Large-Area Substrate-Transferred GaAs/AlGaAs Crystalline Coatings. J. Opt. Soc. Am. B 2019, 36, C15–C21. [Google Scholar] [CrossRef]
- Brooks, A.; Vajente, G.; Yamamoto, H.; Abbott, R.; Adams, C.; Adhikari, R.; Ananyeva, A.; Appert, S.; Arai, K.; Areeda, J.; et al. Point absorbers in Advanced LIGO. Appl. Opt. 2021, 60, 4047. [Google Scholar] [CrossRef]
- Jia, W.; Yamamoto, H.; Kuns, K.; Effler, A.; Evans, M.; Fritschel, P.; Abbott, R.; Adams, C.; Adhikari, R.; Ananyeva, A.; et al. Point Absorber Limits to Future Gravitational-Wave Detectors. Phys. Rev. Lett. 2021, 127, 241102. [Google Scholar] [CrossRef]
- Aston, S.; Barton, M.; Bell, A.; Beveridge, N.; Bland, B.; Brummitt, A.; Cagnoli, G.; Cantley, C.; Carbone, L.; Cumming, A.; et al. Update on quadruple suspension design for Advanced LIGO. Class. Quant. Grav. 2012, 29, 235004. [Google Scholar] [CrossRef]
- Saulson, P.R. Thermal noise in mechanical experiments. Phys. Rev. D 1990, 42, 2437–2445. [Google Scholar] [CrossRef]
- Cumming, A.V.; Jones, R.; Hammond, G.D.; Hough, J.; Martin, I.W.; Rowan, S. Large-scale Monolithic Fused-Silica Mirror Suspension for Third-Generation Gravitational-Wave Detectors. Phys. Rev. Appl. 2022, 17, 024044. [Google Scholar] [CrossRef]
- Matichard, F.; Lantz, B.; Mittleman, R.; Mason, K.; Kissel, J.; Abbott, B.; Biscans, S.; McIver, J.; Abbott, R.; Abbott, S.; et al. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Class. Quant. Grav. 2015, 32, 185003. [Google Scholar] [CrossRef]
- Mow-Lowry, C.M.; Martynov, D. A 6D interferometric inertial isolation system. Class. Quant. Grav. 2019, 36, 245006. [Google Scholar] [CrossRef]
- van Heijningen, J.V.; Bertolini, A.; van den Brand, J.F.J. A novel interferometrically read out inertial sensor for future gravitational wave detectors. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Harms, J. Terrestrial gravity fluctuations. Living Rev. Rel. 2019, 22, 6. [Google Scholar] [CrossRef]
- Coughlin, M.W.; Harms, J.; Driggers, J.; McManus, D.J.; Mukund, N.; Ross, M.P.; Slagmolen, B.J.J.; Venkateswara, K. Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO. Phys. Rev. Lett. 2018, 121, 221104. [Google Scholar] [CrossRef] [PubMed]
- Driggers, J.C.; Harms, J.; Adhikari, R.X. Subtraction of Newtonian Noise Using Optimized Sensor Arrays. Phys. Rev. D 2012, 86, 102001. [Google Scholar] [CrossRef]
- Gan, W.S. Seismic Metamaterials. In New Acoustics Based on Metamaterials; Springer: Singapore, 2018; pp. 277–288. [Google Scholar] [CrossRef]
- Fiorucci, D.; Harms, J.; Barsuglia, M.; Fiori, I.; Paoletti, F. Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Phys. Rev. D 2018, 97, 062003. [Google Scholar] [CrossRef]
- Bowman, J.R.; Baker, G.E.; Bahavar, M. Ambient infrasound noise. Geophys. Res. Lett. 2005, 32, L09803. [Google Scholar] [CrossRef]
- Cahillane, C.; Mansell, G.; Sigg, D. Laser Frequency Noise in Next Generation Gravitational-Wave Detectors. Opt. Express 2021, 29, 42144–42161. [Google Scholar] [CrossRef]
- Essick, R. Calibration uncertainty’s impact on gravitational-wave observations. Phys. Rev. D 2022, 105, 082002. [Google Scholar] [CrossRef]
- Pürrer, M.; Haster, C.J. Gravitational waveform accuracy requirements for future ground-based detectors. Phys. Rev. Res. 2020, 2, 023151. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Lecoeuche, Y.; Karki, S.; Betzwieser, J.; Bossilkov, V.; Kandhasamy, S.; Payne, E.; Savage, R.L. Fiducial displacements with improved accuracy for the global network of gravitational wave detectors. Class. Quant. Grav. 2021, 38, 015009. [Google Scholar] [CrossRef]
- Spidell, M.; Lehman, J.; López, M.; Lecher, H.; Kück, S.; Bhattacharjee, D.; Lecoeuche, Y.; Savage, R. A bilateral comparison of NIST and PTB laser power standards for scale realization confidence by gravitational wave observatories. Metrologia 2021, 58, 055011. [Google Scholar] [CrossRef]
- Ross, M.P.; Mistry, T.; Datrier, L.; Kissel, J.; Venkateswara, K.; Weller, C.; Kumar, K.; Hagedorn, C.; Adelberger, E.; Lee, J.; et al. Initial results from the LIGO Newtonian calibrator. Phys. Rev. D 2021, 104, 082006. [Google Scholar] [CrossRef]
- Estevez, D.; Mours, B.; Pradier, T. Newtonian calibrator tests during the Virgo O3 data taking. Class. Quant. Grav. 2021, 38, 075012. [Google Scholar] [CrossRef]
- Inoue, Y.; Haino, S.; Kanda, N.; Ogawa, Y.; Suzuki, T.; Tomaru, T.; Yamanmoto, T.; Yokozawa, T. Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field calibrators. Phys. Rev. D 2018, 98, 022005. [Google Scholar] [CrossRef]
- Dylla, F.; Weiss, R.; Zucker, M.E. Proceedings of the NSF Workshop on Large Ultrahigh-Vacuum Systems for Frontier Scientific Research, Livingston, LA, USA, 28–31 January 2019; Available online: https://dcc.ligo.org/LIGO-P1900072/public (accessed on 14 April 2022).
- Vajente, G. Noise from Clipping on Cosmic Explorer Beam Tube Baffles; Technical Report CE–T2100011; Cosmic Explorer; 2021; Available online: https://arxiv.org/pdf/2109.09882.pdf (accessed on 14 April 2022).
- Bai, Y. Cosmic Explorer: Back-scatter Noise and Design Recommendations; Technical Report T1900854–v1; LIGO; 2019; Available online: https://dcc.ligo.org/public/ (accessed on 14 April 2022).
- Day, R. FFT Simulation Using FOG; Technical Report G1300532; LIGO; 2013; Available online: https://dcc.ligo.org/LIGO-G1300532/public (accessed on 14 April 2022).
- Amann, F.; Bonsignorio, F.; Bulik, T.; Bulten, H.J.; Cuccuru, S.; Dassargues, A.; DeSalvo, R.; Fenyvesi, E.; Fidecaro, F.; Fiori, I.; et al. Site-selection criteria for the Einstein Telescope. Rev. Sci. Instrum. 2020, 91, 9. [Google Scholar] [CrossRef]
- Efron, N.; Read, M. Analysing International Tunnel Costs; Technical Report; Worcester Polytechnic Institute: Worcester, MA, USA, 2012. [Google Scholar]
- Kuns, K.; Massachusetts Institute of Technology, Cambridge, MA, USA; Schiettekatte, F.; University of Montreal, Montréal, QC, Canada; Slagmolen, B.J.J.; Australian National University, Canberra ACT, Australia; Töyra, D.; Australian National University, Canberra ACT, Australia. Personal communication, 2020.
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.Y. The nature of noise wavefield and its applications for site effects studies: A literature review. Earth-Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Peterson, J.R. Observations and Modeling of Seismic Background Noise; Technical Report; US Geological Survey: Albuquerque, NM, USA, 1993. [CrossRef]
- Nguyen, P.; Schofield, R.M.; Effler, A.; Austin, C.; Adya, V.; Ball, M.; Banagiri, S.; Banowetz, K.; Billman, C.; Blair, C.D.; et al. Environmental noise in advanced LIGO detectors. Class. Quant. Grav. 2021, 38, 145001. [Google Scholar] [CrossRef]
- Physics of Ambient Noise Generation by Ocean Waves. In Seismic Ambient Noise; Cambridge University Press: Cambridge, UK, 2019; pp. 69–108. [CrossRef]
- De Angelis, S.; Bodin, P. Watching the Wind: Seismic Data Contamination at Long Periods due to Atmospheric Pressure-Field-Induced Tilting. Bull. Seismol. Soc. Am. 2012, 102, 1255–1265. [Google Scholar] [CrossRef]
- Kahanamoku, S.; Alegado, R.A.; Kagawa-Viviani, A.; Kamelamela, K.L.; Kamai, B.; Walkowicz, L.M.; Prescod-Weinstein, C.; de los Reyes, M.A.; Neilson, H. A Native Hawaiian-Led Summary of the Current Impact of Constructing the Thirty Meter Telescope on Maunakea. arXiv 2020, arXiv:2001.00970. [Google Scholar]
- Barbu, B. Where science meets the sacred. Symmetry Magazine, 2021. [Google Scholar]
- Martynov, D.; Miao, H.; Yang, H.; Vivanco, F.H.; Thrane, E.; Smith, R.; Lasky, P.; East, W.E.; Adhikari, R.; Bauswein, A.; et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 2019, 99, 102004. [Google Scholar] [CrossRef]
- NSF Large Facilities Office. Research Infrastructure Guide; Technical Report NSF 21–107; National Science Foundation: Washington, DC, USA, 2021.
- Harrison, F.A.; Kennicutt, R.C., Jr. (Eds.) Pathways to Discovery in Astronomy and Astrophysics for the 2020s; National Academies of Science, Engineering, and Medicine: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Foucart, F.; Laguna, P.; Lovelace, G.; Radice, D.; Witek, H. Snowmass 2021 Cosmic Frontier White Paper: Numerical relativity for next-generation gravitational-wave probes of fundamental physics. arXiv 2022, arXiv:2203.08139. [Google Scholar]
- Chakrabarti, S.; Drlica-Wagner, A.; Li, T.S.; Sehgal, N.; Simon, J.D.; Birrer, S.; Brown, D.A.; Bernstein, R.; Bolatto, A.D.; Chang, P.; et al. Snowmass2021 Cosmic Frontier White Paper: Observational Facilities to Study Dark Matter. In Proceedings of the 2022 Snowmass Summer Study, Settle, WA, USA, 17–26 July 2022. [Google Scholar]
- Engel, K.; Lewis, T.; Muzio, M.S.; Venters, T.M. Advancing the Landscape of Multimessenger Science in the Next Decade. In Proceedings of the 2022 Snowmass Summer Study, Settle, WA, USA, 17–26 July 2022. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall , E.D. Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory. Galaxies 2022, 10, 90. https://doi.org/10.3390/galaxies10040090
Hall ED. Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory. Galaxies. 2022; 10(4):90. https://doi.org/10.3390/galaxies10040090
Chicago/Turabian StyleHall , Evan D. 2022. "Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory" Galaxies 10, no. 4: 90. https://doi.org/10.3390/galaxies10040090
APA StyleHall , E. D. (2022). Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory. Galaxies, 10(4), 90. https://doi.org/10.3390/galaxies10040090