A Comparison of Long-Term Right Ventricular Functions in Children with Transcatheter and Surgically Closed Secundum Atrial Septal Defects (ASDs): A Strain Echocardiography Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Atrial septal defect |
TTE | Transthoracic echocardiography |
TDI | Tissue Doppler Imaging |
RV-SLS | Right ventricular segmental longitudinal strain |
GLS | Global longitudinal strain |
TAPSE | Tricuspid annular plane systolic excursion |
RV-FWLS | Right ventricular free-wall longitudinal strain |
RV-4CLS | Right ventricular four-chamber longitudinal strain |
References
- Van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Silvestry, F.E.; Cohen, M.S.; Armsby, L.B.; Burkule, N.J.; Fleishman, C.E.; Hijazi, Z.M.; Lang, R.M.; Rome, J.J.; Wang, Y. Guidelines for the Echocardiographic Assessment of Atrial Septal Defect and Patent Foramen Ovale: From the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J. Am. Soc. Echocardiogr. 2015, 28, 910–958. [Google Scholar] [CrossRef]
- Butera, G.; Carminati, M.; Chessa, M.; Youssef, R.; Drago, M.; Giamberti, A.; Pomè, G.; Bossone, E.; Frigiola, A. Percutaneous versus surgical closure of secundum atrial septal defect: Comparison of early results and complications. Am. Heart J. 2006, 151, 228–234. [Google Scholar] [CrossRef] [PubMed]
- King, T.D.; Thompson, S.L.; Steiner, C.; Mills, N.L. Secundum atrial septal defect. Nonoperative closure during cardiac catheterization. JAMA 1976, 235, 2506–2509. [Google Scholar] [CrossRef]
- Ghaderian, M.; Sabri, M.R.; Ahmadi, A.R.; Alipour, M.R.; Dehghan, B.; Mehrpour, M. Midterm Follow-up Results of Transcatheter Interatrial Septal Defect Closure. Heart Views 2019, 20, 1–5. [Google Scholar] [CrossRef]
- Ko, H.K.; Kang, S.Y.; Yu, J.J.; Ko, J.K.; Kim, Y.H. Small left atrial size complicating percutaneous transcatheter device closure of secundum atrial septal defect with conventional approach. Korean Circ. J. 2015, 45, 216–224. [Google Scholar] [CrossRef]
- Butera, G.; Biondi-Zoccai, G.; Sangiorgi, G.; Abella, R.; Giamberti, A.; Bussadori, C.; Sheiban, I.; Saliba, Z.; Santoro, T.; Pelissero, G.; et al. Percutaneous versus surgical closure of secundum atrial septal defects: A systematic review and meta-analysis of currently available clinical evidence. EuroIntervention 2011, 7, 377–385. [Google Scholar] [CrossRef]
- Du, Z.D.; Hijazi, Z.M.; Kleinman, C.S.; Silverman, N.H.; Larntz, K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: Results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 2002, 39, 1836–1844. [Google Scholar] [CrossRef]
- Abaci, A.; Unlu, S.; Alsancak, Y.; Kaya, U.; Sezenoz, B. Short and long term complications of device closure of atrial septal defect and patent foramen ovale: Meta-analysis of 28,142 patients from 203 studies. Catheter. Cardiovasc. Interv. 2013, 82, 1123–1138. [Google Scholar] [CrossRef]
- Fraisse, A.; Latchman, M.; Sharma, S.R.; Bayburt, S.; Amedro, P.; di Salvo, G.; Baruteau, A.E. Atrial septal defect closure: Indications and contra-indications. J. Thorac. Dis. 2018, 10 (Suppl. 24), S2874–S2881. [Google Scholar] [CrossRef]
- Jalal, Z.; Hascoët, S.; Gronier, C.; Godart, F.; Mauri, L.; Dauphin, C.; Lefort, B.; Lachaud, M.; Piot, D.; Dinet, M.L.; et al. Long-Term Outcomes After Percutaneous Closure of Ostium Secundum Atrial Septal Defect in the Young: A Nationwide Cohort Study. JACC Cardiovasc. Interv. 2018, 11, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Balcı, K.G.; Balcı, M.M.; Aksoy, M.M.; Yılmaz, S.; Aytürk, M.; Doğan, M.; Yeter, E.; Akdemir, R. Remodeling process in right and left ventricle after percutaneous atrial septal defect closure in adult patients. Turk. Kardiyol. Dern. Ars. 2015, 43, 250–258. [Google Scholar] [CrossRef]
- Di Salvo, G.; Pacileo, G.; Castaldi, B.; Gala, S.; Morelli, C.; D’Andrea, A.; Limongelli, G.; Del Gaizo, F.; Merlino, E.; Russo, M.G.; et al. Two-dimensional strain and atrial function: A study on patients after percutaneous closure of atrial septal defect. Eur. J. Echocardiogr. 2008, 10, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Jategaonkar, S.R.; Scholtz, W.; Butz, T.; Bogunovic, N.; Faber, L.; Horstkotte, D. Two-dimensional strain and strain rate imaging of the right ventricle in adult patients before and after percutaneous closure of atrial septal defects. Eur. J. Echocardiogr. 2009, 10, 499–502. [Google Scholar] [CrossRef]
- Dhillon, R.; Josen, M.; Henein, M.; Redington, A. Transcatheter closure of atrial septal defect preserves right ventricular function. Heart 2002, 87, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Bussadori, C.; Oliveira, P.; Arcidiacono, C.; Saracino, A.; Nicolosi, E.; Negura, D.; Piazza, L.; Micheletti, A.; Chessa, M.; Butera, G.; et al. Right and left ventricular strain and strain rate in young adults before and after percutaneous atrial septal defect closure. Echocardiography 2011, 28, 730–737. [Google Scholar] [CrossRef]
- Eyskens, B.; Ganame, J.; Claus, P.; Boshoff, D.; Gewillig, M.; Mertens, L. Ultrasonic strain rate and strain imaging of the right ventricle in children before and after percutaneous closure of an atrial septal defect. J. Am. Soc. Echocardiogr. 2006, 19, 994–1000. [Google Scholar] [CrossRef]
- Moradian, M.; Daneshamooz, H.; Shojaeifard, M.; Ghadrdoost, B.; Langeroudi, H.M.; Khorgami, M.R. Echocardiographic Right Ventricular Deformation Indices Before and After Atrial Septal Defect Closure: A Scomparison between Device and Surgical Closure. Res. Cardiovasc. Med. 2018, 7, 92–97. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Roushdy, A.; Hasan-Ali, H.; Kishk, Y.T.; El Sayegh, A.; Hassan, A.K.M. Impact of atrial septal defect device size on biventricular global and regional function: A two-dimensional strain echocardiographic study. Cardiol. Young 2022, 32, 746–754. [Google Scholar] [CrossRef]
- Kamphuis, V.P.; Nassif, M.; Man, S.C.; Swenne, C.A.; Kors, J.A.; Vink, A.S.; Ten Harkel, A.D.J.; Maan, A.C.; Mulder, B.J.M.; de Winter, R.J.; et al. Electrical remodeling after percutaneous atrial septal defect closure in pediatric and adult patients. Int. J. Cardiol. 2019, 285, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Grignani, R.T.; Tolentino, K.M.; Rajgor, D.D.; Quek, S.C. Longitudinal evaluation of P-wave dispersion and P-wave maximum in children after transcatheter device closure of secundum atrial septal defect. Pediatr. Cardiol. 2015, 36, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Thilén, U.; Carlson, J.; Platonov, P.G.; Olsson, S.B. Atrial myocardial pathoelectrophysiology in adults with a secundum atrial septal defect is unaffected by closure of the defect. A study using high resolution signal-averaged orthogonal P-wave technique. Int. J. Cardiol. 2009, 132, 364–368. [Google Scholar] [CrossRef]
- Rücklová, K.; Koubský, K.; Tomek, V.; Kubuš, P.; Janoušek, J. Prolonged repolarization in atrial septal defect: An example of mechanoelectrical feedback due to right ventricular volume overload. Heart Rhythm. 2016, 13, 1303–1308. [Google Scholar] [CrossRef]
- Monfredi, O.; Luckie, M.; Mirjafari, H.; Willard, T.; Buckley, H.; Griffiths, L.; Clarke, B.; Mahadevan, V.S. Percutaneous device closure of atrial septal defect results in very early and sustained changes of right and left heart function. Int. J. Cardiol. 2013, 167, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Mirea, O.; Pagourelias, E.D.; Duchenne, J.; Bogaert, J.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. Intervendor Differences in the Accuracy of Detecting Regional Functional Abnormalities: A Report From the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc. Imaging 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Negishi, T.; Negishi, K.; Thavendiranathan, P.; Cho, G.Y.; Popescu, B.A.; Vinereanu, D.; Kurosawa, K.; Penicka, M.; Marwick, T.H. Effect of Experience and Training on the Concordance and Precision of Strain Measurements. JACC Cardiovasc. Imaging 2017, 10, 518–522. [Google Scholar] [CrossRef]
Variable (n) | Control (50) | Transcatheter (30) | Surgical (30) | p-Value |
---|---|---|---|---|
Age | 14.8 ± 2.1 | 15.2 ± 1.8 | 15.1 ± 1.9 | 0.62 |
Male sex, n (%) | 22 (44%) | 11 (37%) | 16 (53%) | 0.43 |
Body mass index (BMI) | 21.3 ± 2.5 | 21.3 ± 2.5 | 21.7 ± 3.1 | 0.8 |
Atrial septal defect (ASD) size (mm) | --- | 14.87 ± 3.7 | 20 ± 3.6 | <0.001 |
Right ventricular free-wall longitudinal strain (RV-FWLS) | −23.6 ± 3.3 xy | −20.3 ± 2 xz | −16.90 ± 6.6 yz | <0.001 |
Right ventricular four-chamber longitudinal strain (RV-4CLS) | −23.3 ± 2.9 xy | −20.5 ± 2.8 xz | −17.1 ± 2.1 yz | <0.001 |
Tricuspid annular plane systolic excursion (TAPSE) | 17.9 ± 2 xy | 19.6 ± 2.5 xz | 14.5 ± 1.9 yz | <0.001 |
Systolic pulmonary artery pressure (sPAP) (mmHg) | 16 ± 1 | 16.1 ± 1 | 16.3 ± 1.6 | 0.96 |
Right ventricle (mm) | 34.6 ± 2 y | 35.5 ± 1.8 | 36.5 ± 2.1 y | 0.001 |
Right atrium (mm) | 31.8 ± 2.4 xy | 32.6 ± 2 xz | 34.1 ± 2 yz | <0.001 |
Left atrium (mm) | 33.8 ± 2.4 | 34.9 ± 1.6 | 34.6 ± 1.6 | 0.054 |
Left ventricle end diastolic diameter (LVEDD) (mm) | 46.4 ± 3.8 | 47.3 ± 4.6 | 47.6 ± 3.7 | 0.41 |
Interventricular septum (IVS) (mm) | 8.5 ± 0.8 | 8.75 ± 0.8 | 8.53 ± 0.9 | 0.38 |
Left ventricle ejection fraction (LVEF) | 67.6 ± 3.7 | 66.8 ± 3.8 | 68.1 ± 3.1 | 0.39 |
QRS (msec) | 74.4 ± 12 y | 77.7 ± 17.6 z | 96.3 ± 17.7 yz | <0.001 |
Device size (mm) | --- | 16.6 ± 3.4 | --- | --- |
Sizing balloon (mm) | --- | 16.1 ± 3.3 | 15.1 | 0.62 |
Right bundle branch block (RBBB), n (%) | 0 | 1 (3%) | 3 (10%) | 0.07 |
Follow-up period | 8.03 ± 2 | 8.38 ± 3.2 | 0.6 |
Correlation Analysis | ||||
---|---|---|---|---|
Variables | RV-FWLS | RV-4CLS | ||
r | p Value | r | p Value | |
RV-FWLS | 1 | --- | 0.883 | <0.001 |
RV-4CSL | 0.883 | <0.001 | 1 | --- |
Age | −0.131 | 0.17 | −0.088 | 0.36 |
BMI | −0.091 | 0.35 | 0.002 | 0.98 |
ASD size | 0.771 | <0.001 | 0.621 | <0.001 |
TAPSE | −0.572 | <0.001 | −0.533 | <0.001 |
sPAP | 0.239 | 0.012 | 0.228 | 0.016 |
RV | 0.197 | 0.039 | 0.254 | 0.007 |
RA | 0.241 | 0.011 | 0.244 | 0.01 |
LA | 0.033 | 0.73 | 0.014 | 0.89 |
LVEDD | −0.014 | 0.88 | 0.083 | 0.39 |
IVS | −0.139 | 0.15 | −0.064 | 0.51 |
LVEF | 0.11 | 0.27 | 0.11 | 0.25 |
QRS (msec) | 0.473 | <0.001 | 0.453 | <0.001 |
(A) | ||||||
Variables | Univariate Logistic Regression | |||||
RV-FWLS | RV-4CLS | |||||
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Age | 1.085 | 0.84–1.4 | 0.53 | 1.019 | 0.81–1.28 | 0.87 |
BMI | 1.145 | 0.95–1.4 | 0.15 | 1.158 | 0.98–1.37 | 0.09 |
ASD Size | 2.073 | 1.41–3.1 | <0.001 | 1.545 | 1.25–1.91 | <0.001 |
TAPSE | 0.460 | 0.32–0.67 | <0.001 | 0.462 | 0.32–0.66 | <0.001 |
sPAP | 1.717 | 1.15–2.6 | 0.009 | 1.458 | 1.01–2.11 | 0.045 |
RV | 1.818 | 1.28–2.58 | 0.001 | 1.798 | 1.3–2.49 | <0.001 |
RA | 1.636 | 1.22–2.2 | 0.001 | 1.533 | 1.18–1.98 | 0.001 |
LA | 1.177 | 0.91–1.5 | 0.21 | 1.185 | 0.94–1.5 | 0.16 |
LVEDD | 1.107 | 0.98–1.25 | 0.01 | 1.131 | 1.01–1.27 | 0.034 |
IVS | 1.051 | 0.58–1.89 | 0.87 | 1.257 | 0.74–2.14 | 0.4 |
LVEF | 1.012 | 0.88–1.2 | 0.87 | 1.079 | 0.95–1.23 | 0.25 |
RBBB | 16.875 | 1.65–172.5 | 0.017 | 12.143 | 1.2–122.7 | 0.034 |
QRS (MS) | 1.179 | 1.1–1.27 | <0.001 | 1.203 | 1.11–1.3 | <0.001 |
Device Type | 1.856 | 0.29–11.8 | 0.51 | 1.461 | 0.53–4 | 0.46 |
(B) | ||||||
Variables | Multivariate Logistic Regression | |||||
RV-FWLS | RV-4CLS | |||||
OR | 95% CI | p Value | OR | 95% CI | p Value | |
ASD Size | 2.6 | 1.3–5.2 | <0.001 | 1.5 | 1.09–1.9 | <0.001 |
QRS (msec) | 1.1 | 1.04–1.3 | 0.009 | 1.1 | 1.03–1.2 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaca, S.; Özbingöl, D.; Karaca Özer, P.; Yavuz, M.L.; Tansel, T.; Nişli, K. A Comparison of Long-Term Right Ventricular Functions in Children with Transcatheter and Surgically Closed Secundum Atrial Septal Defects (ASDs): A Strain Echocardiography Study. Diagnostics 2025, 15, 606. https://doi.org/10.3390/diagnostics15050606
Karaca S, Özbingöl D, Karaca Özer P, Yavuz ML, Tansel T, Nişli K. A Comparison of Long-Term Right Ventricular Functions in Children with Transcatheter and Surgically Closed Secundum Atrial Septal Defects (ASDs): A Strain Echocardiography Study. Diagnostics. 2025; 15(5):606. https://doi.org/10.3390/diagnostics15050606
Chicago/Turabian StyleKaraca, Serra, Doruk Özbingöl, Pelin Karaca Özer, Mustafa Lütfi Yavuz, Türkan Tansel, and Kemal Nişli. 2025. "A Comparison of Long-Term Right Ventricular Functions in Children with Transcatheter and Surgically Closed Secundum Atrial Septal Defects (ASDs): A Strain Echocardiography Study" Diagnostics 15, no. 5: 606. https://doi.org/10.3390/diagnostics15050606
APA StyleKaraca, S., Özbingöl, D., Karaca Özer, P., Yavuz, M. L., Tansel, T., & Nişli, K. (2025). A Comparison of Long-Term Right Ventricular Functions in Children with Transcatheter and Surgically Closed Secundum Atrial Septal Defects (ASDs): A Strain Echocardiography Study. Diagnostics, 15(5), 606. https://doi.org/10.3390/diagnostics15050606