Factors Affecting Thyroid Volume in Children Aged 4 to 18 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Study Variables
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosen, R.D.; Sapra, A. Embryology, Thyroid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551611/ (accessed on 18 June 2025).
- Hoyes, A.D.; Kershaw, D.R. Anatomy and development of the thyroid gland. Ear Nose Throat J. 1985, 64, 318–333. [Google Scholar]
- DeGroot, L.J.; Larsen, P.R.; Hennemann, G. The Thyroid and Its Diseases, 6th ed.; Churchill Livingstone: New York, NY, USA, 1996; pp. 312–388. [Google Scholar]
- Leow, C.K.; Webb, A.J. The lateral thyroid ligament of Berry. Int. Surg. 1998, 83, 75–78. [Google Scholar] [PubMed]
- Won, H.J.; Won, H.S.; Kwak, D.S.; Jang, J.; Jung, S.L.; Kim, I.B. Zuckerkandl Tubercle of the Thyroid Gland: Correlations between Findings of Anatomic Dissections and CT Imaging. AJNR Am. J. Neuroradiol. 2017, 38, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Konca, C.; Elhan, A.H. Unveiling the Accuracy of Ultrasonographic Assessment of Thyroid Volume: A Comparative Analysis of Ultrasonographic Measurements and Specimen Volumes. J. Clin. Med. 2023, 12, 6619. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Council for Control of Iodine Deficiency Disorders. Recommended normative values for thyroid volume in children aged 6–15 years: World Health Organization & International Council for Control of Iodine Deficiency Disorders. Bull. World Health Organ. 1997, 75, 95–97. [Google Scholar]
- Viduetsky, A.; Herrejon, C.L. Sonographic Evaluation of Thyroid Size: A Review of Important Measurement Parameters. J. Diagn. Med. Sonogr. 2019, 35, 206–210. [Google Scholar] [CrossRef]
- Bernardes, L.S.; Ruano, R.; Sapienza, A.D.; Maganha, C.A.; Zugaib, M. Nomograms of fetal thyroid measurements estimated by 2 dimensional sonography. J. Clin. Ultrasound 2008, 36, 1939. [Google Scholar] [CrossRef]
- Funaki, S.; Umehara, N.; Mezawa, H.; Kurakazu, M.; Matsushima, S.; Arata, N.; Okamoto, A.; Sago, H. Ultrasonographic assessment of fetal thyroid in Japan: Thyroid circumference and distal femoral and proximal tibial ossification. J. Med. Ultrason. 2020, 47, 603–608. [Google Scholar] [CrossRef]
- Moon, P.K.; Qian, Z.J.; Noel, J.E.; Orloff, L.A.; Seeley, H.; Hartman, G.E.; Josephs, S.; Meister, K.D. Sociodemographic Disparities in the Diagnostic Management of Pediatric Thyroid Nodules. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 1097–1102. [Google Scholar] [CrossRef]
- Brunn, J.; Block, U.; Ruf, G.; Bos, I.; Kunze, W.P.; Scriba, P.C. [Volumetric analysis of thyroid lobes by real-time ultrasound (author ’s transl)]. Dtsch. Med. Wochenschr. 1981, 106, 1338–1340. [Google Scholar] [CrossRef]
- An, S.; Li, W.; Wang, X.; Wang, Y.; Xu, X.; Mao, G.; Zhu, X.; Li, M.; Liu, L.; Cao, X.; et al. Study on influential factors and reference values for thyroid volume in Chinese children aged 6–12 years. Br. J. Nutr. 2022, 129, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention, National Center for Health Statistics. CDC Growth Charts. 2024. Available online: https://www.cdc.gov/growthcharts/cdc-growth-charts.htm (accessed on 26 July 2025).
- U.S. Centers for Disease Control and Prevention. Child and Teen BMI Calculator. 2024. Available online: https://www.cdc.gov/bmi/child-teen-calculator/ (accessed on 26 July 2025).
- Korovljev, D.; Stajer, V.; Ostojic, S.M. Relationship between Dietary Creatine and Growth Indicators in Children and Adolescents Aged 2–19 Years: A Cross-Sectional Study. Nutrients 2021, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Tritou, I.; Vakaki, M.; Sfakiotaki, R.; Kalaitzaki, K.; Raissaki, M. Pediatric thyroid ultrasound: A radiologist’s checklist. Pediatr. Radiol. 2020, 50, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Sea, J.H.; Ji, H.; You, S.K.; Lee, J.E.; Lee, S.M.; Cho, H.H. Age-dependent reference values of the thyroid gland in pediatric population; from routine computed tomography data. Clin. Imaging 2019, 56, 88–92. [Google Scholar] [CrossRef]
- Johnson, A.; Edwards, C.; Reddan, T. A review of sonographic thyroid volume and iodine sufficiency in children: An Australian perspective. Australas. J. Ultrasound Med. 2019, 23, 33–38. [Google Scholar] [CrossRef]
- de Souza, L.R.M.F.; Sedassari, N.A.; Dias, E.L.; Dib, F.C.M.; Palhares, H.M.C.; da Silva, A.P.; Tomé, J.M.; Borges, M.d.F. Ultrasound measurement of thyroid volume in euthyroid children under 3 years of age. Radiol. Bras. 2021, 54, 94–98. [Google Scholar] [CrossRef]
- Özdikici, M. Ultrasound Measurement of Thyroid Volume in Healthy Children. Ultrasound Q. 2025, 41, e00711. [Google Scholar] [CrossRef]
- Foo, L.C.; Zulfiqar, A.; Nafikudin, M.; Fadzil, M.T.; Asmah, A.S. Local versus WHO/International Council for Control of Iodine Deficiency Disorders-recommended thyroid volume reference in the assessment of iodine deficiency disorders. Eur. J. Endocrinol. 1999, 140, 491–497. [Google Scholar] [CrossRef]
- Szybiński, Z.; Trofimiuk-Müldner, M.; Buziak-Bereza, M.; Walczycka, L.; Hubalewska-Dydejczyk, A. Reference values for thyroid volume established by ultrasound in Polish schoolchildren. Endokrynol. Pol. 2012, 63, 104–109. [Google Scholar]
- Darcan, S.; Unak, P.; Yalman, O.; Lambrecht, F.Y.; Biber, F.Z.; Göksen, D.; Coker, M. Determination of iodine concentration in urine by isotope dilution analysis and thyroid volume of school children in the west coast of Turkey after mandatory salt iodization. Clin. Endocrinol. 2005, 63, 543–548. [Google Scholar] [CrossRef]
- Azizi, F.; Delshad, H.; Mehrabi, Y. Thyroid volumes in schoolchildren of Tehran: Comparison with European schoolchildren. J. Endocrinol. Investig. 2001, 24, 756–762. [Google Scholar] [CrossRef]
- Zou, Y.; Ding, G.; Lou, X.; Zhu, W.; Mao, G.; Zhou, J.; Mo, Z. Factors influencing thyroid volume in Chinese children. Eur. J. Clin. Nutr. 2013, 67, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, L.; Li, M.; Du, Y.; Liu, P.; Fan, L.; Meng, F. Study on association between height, weight, iodine supplementation and thyroid volume. Br. J. Nutr. 2022, 127, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Idigo, F.U.; Okon, I.E.; Okeji, M.C.; Anakwue, A.-M.C. Normative Thyroid Volume by Ultrasonography in a Nigerian Pediatric Population. J. Diagn. Med. Sonogr. 2018, 35, 17–21. [Google Scholar] [CrossRef]
- Kaba, S.; Doğan, M.; Yavuz, A.; Kılıç, S. Factors affecting thyroid volume and the incidence of nodules with goiter school-aged children. Çocuk Derg.—J. Child 2024, 24, 147–153. [Google Scholar] [CrossRef]
- Zhong, Q.; Yunus, R.A.; Sohail, M.; Saeed, S.; Rehman, T.A.; Khan, A.A.; Russ, E.; Schermerhorn, M.; Mahmood, F.; Matyal, R. Association of Body Surface Area versus Body Mass Index on Outcomes in Peripheral Arterial Disease. Ann. Vasc. Surg. 2025, 110, 347–361. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hess, S.Y.; Molinari, L.; De Benoist, B.; Delange, F.; Braverman, L.E.; Fujieda, K.; Ito, Y.; Jooste, P.L.; Moosa, K.; et al. New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: A World Health Organization/Nutrition for Health and Development Iodine Deficiency Study Group Report. Am. J. Clin. Nutr. 2004, 79, 231–237. [Google Scholar] [CrossRef]
- Xu, F.; Sullivan, K.; Houston, R.; Zhao, J.; May, W.; Maberly, G. Thyroid volumes in US and Bangladeshi schoolchildren: Comparison with European schoolchildren. Eur. J. Endocrinol. 1999, 140, 498–504. [Google Scholar] [CrossRef]
- Karanikas, G.; Schütz, M.; Szabo, M.; Becherer, A.; Wiesner, K.; Dudczak, R.; Kletter, K. Isotopic renal function studies in severe hypothyroidism and after thyroid hormone replacement therapy. Am. J. Nephrol. 2004, 24, 41–45. [Google Scholar] [CrossRef]
- Del-Rio, C.G.; Tapia, C.L.; Picazo, A.B.; Ruiz Moreno, J.A.; Hortas Nieto, M.L.; Romero, G.J. Renal failure and acquired hypothyroidism. Pediatr. Nephrol. 2003, 18, 290–292. [Google Scholar] [CrossRef]
- Nakahama, H.; Sakaguchi, K.; Horita, Y.; Sasaki, O.; Nakamura, S.; Inenaga, T.; Takishita, S. Treatment of severe hypothyroidism reduced serum creatinine levels in two chronic renal failure patients. Nephron 2001, 88, 264–267. [Google Scholar] [CrossRef]
- Naguib, R.; Elkemary, E. Thyroid Dysfunction and Renal Function: A Crucial Relationship to Recognize. Cureus 2023, 15, e35242. [Google Scholar] [CrossRef]
- Kim, S.H.; Min, H.K.; Lee, S.W. Relationship between Thyroid and Kidney Function: Analysis from the Korea National Health and Nutrition Examination Survey Between 2013 and 2015. Kidney Blood Press. Res. 2020, 45, 442–454. [Google Scholar] [CrossRef]
- Łebkowska, U.; Małyszko, J.; Łebkowski, W.J.; Walecki, J.; Myśliwiec, M. Is there any relation between thyroid gland function and kidney transplant function? Transplant. Proc. 2003, 35, 2222–2223. [Google Scholar] [CrossRef]
- Body, J.J.; Chanoine, J.P.; Dumon, J.C.; Delange, F. Circulating calcitonin levels in healthy children and subjects with congenital hypothyroidism from birth to adolescence. J. Clin. Endocrinol. Metab. 1993, 77, 565–567. [Google Scholar] [CrossRef]
- Simic, M.; Banisevic, M.; Andjelkovic, Z.; Zivic, G.; Zikic, L.; Beloglav, D.; Simic, D.; Gerasimov, G.A.; Mishchenko, B. Complete elimination of iodine deficiency-induced diseases in the Republic of Serbia through overall salt iodination. Probl. Endokrinol. 2003, 49, 37–40. [Google Scholar] [CrossRef]
Characteristics | Mean ± Standard Deviation; MEDIAN (Range) or Number (%) |
---|---|
Age (years) | 12.51 ± 3.61; 13.00 (4–18) |
Gender | |
Male | 25 (25.0%) |
Female | 75 (75.0%) |
Place of residence | |
Urban | 73 (73.0%) |
Rural | 27 (27.0%) |
Height (cm) (n = 97) | 153.87 ± 18.15; 156.00 (104.0; 181.0) |
Weight (kg) (n = 97) | 56.46 ± 22.32; 55.00 (15.5; 100.0) |
Body mass index (kg/m2) (n = 97) | 22.87 ± 5.96; 22.09 (11.76; 37.42) |
Height-for-age percentile (n = 97) | 63.4 ± 35.1; 78.2 (0.3; 99.9) |
Weight-for-age percentile (n = 97) | 71.3 ± 36.1; 90.2 (0.1; 99.9) |
Body mass index category (n = 97) | |
Underweight (<5th percentile) | 8 (8.0%) |
Healthy weight (5–84th percentile) | 35 (35.0%) |
Overweight (85–94th percentile) | 20 (20.0%) |
Obesity (≥95th percentile) | 34 (34.0%) |
Body surface area (m2) (n = 97) | 1.52 ± 0.38; 1.55 (0.67; 2.20) |
Birth order (n = 97) | |
1st | 50 (50.0%) |
2nd | 31 (31.0%) |
3rd | 13 (13.0%) |
4th | 3 (3.0%) |
Type of delivery (n = 97) | |
Vaginal delivery | 72 (72.0%) |
Cesarean section | 25 (25.0%) |
Gestational week at birth (n = 94) | 39.00 ± 2.16; 40.00 (30.0; 42.0) |
Birthweight (g) (n = 96) | 3256.93 ± 540.23; 3275.0 (1240.0; 5100.0) |
Apgar score at birth (n = 88) | 9.01 ± 0.70; 9.00 (5.00; 10.00) |
Laboratory parameters | |
Thyroid-stimulating hormone (TSH) (uIU/mL) | 2.11 ± 1.14; 1.90 (0.10; 5.10) |
Free thyroxine (FT4) (pmol/L) | 15.57 ± 2.34; 15.80 (8.15; 20.80) |
Free triiodothyronine (FT3) (pmol/L) (n = 99) | 4.98 ± 2.69; 4.70 (2.60; 30.00) |
Anti-thyroid peroxidase antibodies (IU/mL) | 28.43 ± 115.94; 9.05 (−1.00; 1140.00) |
Thyroglobulin (ng/mL) | 12.84 ± 9.44; 10.60 (0.10; 54.70) |
Calcitonin (ng/L) | 3.84 ± 4.72; 3.00 (−1.00; 40.00) |
Parathormone (pg/mL) | 18.96 ± 11.77; 16.90 (4.80; 71.30) |
Red blood cell count (1012/L) | 4.67 ± 0.41; 4.61 (3.75; 6.68) |
White blood cell count (109/L) | 7.32 ± 2.31; 7.10 (3.95; 19.90) |
Platelet count (109/L) | 259.97 ± 57.87; 256.00 (138.00; 420.00) |
Hemoglobin (g/L) | 129.12 ± 16.17; 131.00 (12.40; 152.00) |
Hematocrit (L/L) | 0.38 ± 0.03; 0.38 (0.26; 0.44) |
Blood glucose (mmol/L) | 5.87 ± 6.66; 4.60 (3.20; 52.00) |
Urea (mmol/L) | 4.63 ± 7.17; 3.90 (1.70; 75.00) |
Serum creatinine (μmol/L) | 54.09 ± 12.95; 53.00 (19.00; 85.00) |
Alanine aminotransferase (U/L) | 20.67 ± 12.10; 17.00 (8.00; 84.00) |
Aspartate aminotransferase (U/L) | 24.38 ± 7.56; 23.00 (13.00; 58.00) |
Right lobe volume (mL) | |
Formula 1 | 2.89 ± 1.25; 2.67 (0.96; 6.43) |
Formula 2 | 2.65 ± 1.15; 2.44 (0.88; 5.89) |
Left lobe volume (mL) | |
Formula 1 | 2.61 ± 1.07; 2.49 (0.56; 5.25) |
Formula 2 | 2.39 ± 0.98; 2.28 (0.51; 4.81) |
Total thyroid volume (mL) | |
Formula 1 | 5.51 ± 2.22; 5.37 (1.52; 11.68) |
Formula 2 | 5.05 ± 2.03; 4.92 (1.39; 10.70) |
Age Group/Characteristics | Percentile | ||||||
---|---|---|---|---|---|---|---|
5 | 10 | 25 | 50 | 75 | 90 | 95 | |
4–10 years (n = 32) | |||||||
Right lobe volume (Formula 1) | 0.9600 | 1.1330 | 1.3350 | 1.7950 | 2.3600 | 3.7850 | 4.4995 |
Right lobe volume (Formula 2) | 0.8800 | 1.0430 | 1.2225 | 1.6450 | 2.1600 | 3.4640 | 4.1215 |
Left lobe volume (Formula 1) | 0.6640 | 0.7610 | 1.1825 | 1.8850 | 2.3700 | 3.3690 | 3.7450 |
Left lobe volume (Formula 2) | 0.6075 | 0.7010 | 1.0800 | 1.7250 | 2.1700 | 3.0850 | 3.4310 |
Total thyroid volume (Formula 1) | 1.7345 | 1.9890 | 2.7175 | 3.6300 | 4.5875 | 7.4730 | 7.9000 |
Total thyroid volume (Formula 2) | 1.5915 | 1.8260 | 2.4925 | 3.3250 | 4.2000 | 6.8460 | 7.2320 |
11–14 years (n = 34) | |||||||
Right lobe volume (Formula 1) | 1.0975 | 1.4500 | 2.1475 | 2.9850 | 3.9450 | 4.8800 | 5.3125 |
Right lobe volume (Formula 2) | 1.0100 | 1.3300 | 1.9675 | 2.7300 | 3.6150 | 4.4700 | 4.8700 |
Left lobe volume (Formula 1) | 1.1425 | 1.3050 | 1.7975 | 2.8550 | 3.6250 | 4.3450 | 5.0250 |
Left lobe volume (Formula 2) | 1.0525 | 1.1950 | 1.6500 | 2.6150 | 3.3225 | 3.9800 | 4.6000 |
Total thyroid volume (Formula 1) | 2.4675 | 2.8500 | 3.7700 | 5.9100 | 7.3375 | 8.8600 | 10.2625 |
Total thyroid volume (Formula 2) | 2.2700 | 2.6100 | 3.4575 | 5.4050 | 6.7225 | 8.1200 | 9.3950 |
15–18 years (n = 34) | |||||||
Right lobe volume (Formula 1) | 1.9950 | 2.2450 | 2.5500 | 3.2450 | 4.3075 | 5.1000 | 5.5950 |
Right lobe volume (Formula 2) | 1.8275 | 2.0550 | 2.3400 | 2.9750 | 3.9450 | 4.6700 | 5.1275 |
Left lobe volume (Formula 1) | 1.8200 | 2.0450 | 2.4300 | 3.1500 | 3.6350 | 4.0450 | 5.0675 |
Left lobe volume (Formula 2) | 1.6625 | 1.8750 | 2.2225 | 2.8850 | 3.3325 | 3.7050 | 4.6425 |
Total thyroid volume (Formula 1) | 3.9350 | 4.3800 | 4.8900 | 6.6200 | 8.1025 | 8.8050 | 10.2600 |
Total thyroid volume (Formula 2) | 3.6025 | 4.0150 | 4.4800 | 6.0700 | 7.4250 | 8.0650 | 9.3975 |
Variable | Total Sample | 4–10 Years | 11–14 Years | 15–18 Years |
---|---|---|---|---|
Age | r = 0.577, p < 0.001 * | ρ = 0.560, p = 0.001 * | ρ = 0.357, p = 0.038 * | n.s. |
Height | r = 0.759, p < 0.001 * | ρ = 0.811, p < 0.001 * | ρ = 0.740, p < 0.001 * | ρ = 0.462, p = 0.006 *; ρ = 0.461, p = 0.006 * |
Weight | r = 0.785, p < 0.001 * | ρ = 0.738, p < 0.001 * | ρ = 0.769, p < 0.001 * | ρ = 0.561, p = 0.001 *; ρ = 0.559, p = 0.001 * |
Body mass index | r = 0.607, p < 0.001 * | ρ = 0.514, p < 0.001 * | ρ = 0.707, p < 0.001 * | ρ = 0.451, p = 0.007 *; ρ = 0.449, p = 0.008 * |
Body surface area | r = 0.811, p < 0.001 * | ρ = 0.788, p < 0.001 * | ρ = 0.790, p < 0.001 * | ρ = 0.586, p = 0.001 *; ρ = 0.584, p = 0.001 * |
Birthweight | r = 0.316, p = 0.002 * | n.s. | ρ = 0.370, p = 0.040 * | ρ = 0.360, p = 0.040 *; ρ = 0.359, p = 0.040 * |
Number of comorbidities | r = 0.198, p = 0.049 *; r = 0.198, p = 0.048 * | n.s. | n.s. | n.s. |
Calcitonin | r = −0.214, p = 0.032 *; r = −0.214, p = 0.033 * | n.s. | ρ = −0.364, p = 0.034 * | n.s. |
Parathormone | n.s. | ρ = 0.460, p = 0.008 * | n.s. | ρ = −0.537, p = 0.001 *; ρ = −0.536, p = 0.001 * |
Serum creatinine | r = 0.593, p < 0.001 * | ρ = 0.475, p = 0.006 * | ρ = 0.507, p = 0.002 * | ρ = 0.384, p = 0.025 * |
Variable | Formula 1 (n = 96) | Formula 2 (n = 96) | ||||
---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% CI | p | |
Constant | −2.388 | −3.910; −0.865 | 0.002 * | −2.184 | −3.578; −0.790 | 0.002 * |
Age | 0.152 | 0.042; 0.261 | 0.007 * | 0.139 | 0.039; 0.240 | 0.007 * |
Body mass index | 0.147 | 0.089; 0.205 | <0.001 * | 0.135 | 0.082; 0.187 | <0.001 * |
Serum creatinine | 0.049 | 0.019; 0.079 | 0.002 * | 0.045 | 0.017; 0.072 | 0.002 * |
R2; F (p) | 0.551; 37.592 (<0.001 *) | 0.551; 37.611 (<0.001 *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folić, N.; Folić, M.; Milosavljević, M.N.; Pejčić, A.V.; Janković, S.; Vulović, M.; Stepovic, M.; Mihajlović, I.; Milosavljević, J. Factors Affecting Thyroid Volume in Children Aged 4 to 18 Years. Diagnostics 2025, 15, 1980. https://doi.org/10.3390/diagnostics15151980
Folić N, Folić M, Milosavljević MN, Pejčić AV, Janković S, Vulović M, Stepovic M, Mihajlović I, Milosavljević J. Factors Affecting Thyroid Volume in Children Aged 4 to 18 Years. Diagnostics. 2025; 15(15):1980. https://doi.org/10.3390/diagnostics15151980
Chicago/Turabian StyleFolić, Nevena, Marko Folić, Miloš N. Milosavljević, Ana V. Pejčić, Slobodan Janković, Maja Vulović, Milos Stepovic, Isidora Mihajlović, and Jovana Milosavljević. 2025. "Factors Affecting Thyroid Volume in Children Aged 4 to 18 Years" Diagnostics 15, no. 15: 1980. https://doi.org/10.3390/diagnostics15151980
APA StyleFolić, N., Folić, M., Milosavljević, M. N., Pejčić, A. V., Janković, S., Vulović, M., Stepovic, M., Mihajlović, I., & Milosavljević, J. (2025). Factors Affecting Thyroid Volume in Children Aged 4 to 18 Years. Diagnostics, 15(15), 1980. https://doi.org/10.3390/diagnostics15151980