Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
- The QTc interval exhibited a notable prolongation in individuals experiencing generalized and focal seizures when contrasted with the control group. Nevertheless, despite achieving statistical significance, the results were determined to fall within the parameters of normalcy. Also, the Tp-e interval was markedly extended in both generalized and focal seizure groups in comparison to the controls.
- The QTc interval and Tp-e interval exhibited a statistically significant prolongation within the AED cohort in comparison to the control cohort, but they were found to be within normal limits.
- In the comparative analysis of various antiepileptic medications, the QTc interval was observed to be the most prolonged in subjects administered phenobarbital and lamotrigine; however, the disparities among the cohorts did not reach statistical significance. In a similar vein, the Tp-e intervals were found to be analogous.
- P Max exhibited a statistically significant elevation in males in comparison to females in the generalized seizure cohort.
- Correlation analysis revealed a robust positive relationship between the Tp-e interval and the QTc interval, in addition to a comparatively weaker yet statistically significant correlation with QTc Disp.
- The victim had epilepsy, defined as recurrent unprovoked seizures.
- The victim died unexpectedly while in a reasonable state of health.
- The death occurred “suddenly” (in minutes), when known.
- The death occurred during normal activities (e.g., in or around bed, at home, at work) and benign circumstances.
- An obvious medical cause of death was not found.
- The death was not directly caused by the seizure or status epilepticus. Definite SUDEP meets all above criteria, with post-mortem examination.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surges, R.; Thijs, R.D.; Tan, H.L.; Sander, J.W. Sudden unexpected death in epilepsy: Risk factors and potential pathomechanisms. Nat. Rev. Neurol. 2009, 5, 492–504. [Google Scholar] [CrossRef]
- Devinsky, O. Sudden, unexpected death in epilepsy. N. Engl. J. Med. 2011, 365, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Zaccara, G.; Lattanzi, S.; Brigo, F. Cardiac adverse effects of antiseizure medications. Expert Opin. Drug Saf. 2022, 21, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Kautzner, J.; Malik, M. QT interval dispersion and its clinical utility. Pacing Clin. Electrophysiol. 1997, 20 Pt 2, 2625–2640. [Google Scholar] [CrossRef] [PubMed]
- Dagar, S.; Emektar, E.; Corbacioglu, S.K.; Demirci, O.L.; Tandogan, M.; Cevik, Y. Evaluation of electrocardiographic parameters in patients with epileptic seizure. Acta Neurol. Belg. 2020, 120, 321–327. [Google Scholar] [CrossRef]
- Serdyuk, S.; Davtyan, K.; Burd, S.; Drapkina, O.; Boytsov, S.; Gusev, E.; Topchyan, A. Cardiac arrhythmias and sudden unexpected death in epilepsy: Results of long-term monitoring. Heart Rhythm. 2021, 18, 221–228. [Google Scholar] [CrossRef]
- Tomson, T.; Ericson, M.; Ihrman, C.; Lindblad, L.E. Heart rate variability in patients with epilepsy. Epilepsy Res. 1998, 30, 77–83. [Google Scholar] [CrossRef]
- Nei, M. Cardiac effects of seizures. Epilepsy Curr. 2009, 9, 91–95. [Google Scholar] [CrossRef]
- Beniczky, S.; Trinka, E.; Wirrell, E.; Abdulla, F.; Al Baradie, R.; Alonso Vanegas, M.; Auvin, S.; Singh, M.B.; Blumenfeld, H.; Bogacz Fressola, A.; et al. Updated classification of epileptic seizures: Position paper of the International League Against Epilepsy. Epilepsia 2025, 66, 1804–1823. [Google Scholar] [CrossRef]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children-A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome. Front. Neurol. 2020, 11, 632510. [Google Scholar] [CrossRef]
- Novak, J.L.; Miller, P.R.; Markovic, D.; Meymandi, S.K.; DeGiorgio, C.M. Risk Assessment for Sudden Death in Epilepsy: The SUDEP-7 Inventory. Front. Neurol. 2015, 6, 252. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Miller, P.; Meymandi, S.; Chin, A.; Epps, J.; Gordon, S.; Gornbein, J.; Harper, R.M. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: The SUDEP-7 Inventory. Epilepsy Behav. 2010, 19, 78–81. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Curtis, A.; Hertling, D.; Moseley, B.D. Sudden unexpected death in epilepsy: Risk factors, biomarkers, and prevention. Acta Neurol. Scand. 2019, 139, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Moseley, B.D.; DeGiorgio, C.M. The SUDEP Risk Inventory: Association with postictal generalized EEG suppression. Epilepsy Res. 2015, 117, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Lhatoo, S.D.; Faulkner, H.J.; Dembny, K.; Trippick, K.; Johnson, C.; Bird, J.M. An electroclinical case-control study of sudden unexpected death in epilepsy. Ann. Neurol. 2010, 68, 787–796. [Google Scholar] [CrossRef]
- Bruno, E.; Richardson, M.P.; Consortium, R.-C. Postictal generalized EEG suppression and postictal immobility: What do we know? Epileptic Disord. 2020, 22, 245–251. [Google Scholar] [CrossRef]
- Pernice, R.; Faes, L.; Kotiuchyi, I.; Stivala, S.; Busacca, A.; Popov, A.; Kharytonov, V. Time, frequency and information domain analysis of short-term heart rate variability before and after focal and generalized seizures in epileptic children. Physiol. Meas. 2019, 40, 074003. [Google Scholar] [CrossRef]
- Annegers, J.F. United States perspective on definitions and classifications. Epilepsia 1997, 38 (Suppl. S11), S9–S12. [Google Scholar] [CrossRef]
- Devinsky, O.; Hesdorffer, D.C.; Thurman, D.J.; Lhatoo, S.; Richerson, G. Sudden unexpected death in epilepsy: Epidemiology, mechanisms, and prevention. Lancet Neurol. 2016, 15, 1075–1088. [Google Scholar] [CrossRef]
- Hamdy, R.M.; Elaziz, O.H.A.; El Attar, R.S.; Abdel-Tawab, H.; Kotb, F.M. Evaluation of QT dispersion in epileptic patients and its association with SUDEP risk. Epilepsy Res. 2022, 180, 106860. [Google Scholar] [CrossRef]
- Dlouhy, B.J.; Gehlbach, B.K.; Richerson, G.B. Sudden unexpected death in epilepsy: Basic mechanisms and clinical implications for prevention. J. Neurol. Neurosurg. Psychiatry 2016, 87, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Rocamora, R.; Kurthen, M.; Lickfett, L.; Von Oertzen, J.; Elger, C.E. Cardiac asystole in epilepsy: Clinical and neurophysiologic features. Epilepsia 2003, 44, 179–185. [Google Scholar] [CrossRef]
- Ryvlin, P.; Nashef, L.; Lhatoo, S.D.; Bateman, L.M.; Bird, J.; Bleasel, A.; Boon, P.; Crespel, A.; Dworetzky, B.A.; Høgenhaven, H.; et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): A retrospective study. Lancet Neurol. 2013, 12, 966–977. [Google Scholar] [CrossRef]
- Shmuely, S.; van der Lende, M.; Lamberts, R.J.; Sander, J.W.; Thijs, R.D. The heart of epilepsy: Current views and future concepts. Seizure 2017, 44, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Kolsal, E.; Serdaroğlu, A.; Çilsal, E.; Kula, S.; Soysal, A.Ş.; Kurt, A.N.Ç.; Arhan, E. Can heart rate variability in children with epilepsy be used to predict seizures? Seizure 2014, 23, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hirose, S.; Okada, M.; Kaneko, S.; Mitsudome, A. Are some idiopathic epilepsies disorders of ion channels?: A working hypothesis. Epilepsy Res. 2000, 41, 191–204. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.F. Genetics of the epilepsies. Curr. Opin. Pediatr. 2000, 12, 536–542. [Google Scholar] [CrossRef]
- Chiang, C.E.; Roden, D.M. The long QT syndromes: Genetic basis and clinical implications. J. Am. Coll. Cardiol. 2000, 36, 1–12. [Google Scholar] [CrossRef]
- Higham, P.D.; Campbell, R.W. QT dispersion. Br. Heart J. 1994, 71, 508–510. [Google Scholar] [CrossRef]
- Elming, H.; Holm, E.; Jun, L.; Torp-Pedersen, C.; Køber, L.; Kircshoff, M.; Malik, M.; Camm, J. The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens. Eur. Heart J. 1998, 19, 1391–1400. [Google Scholar] [CrossRef]
- Day, C.P.; McComb, J.M.; Campbell, R.W. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Br. Heart J. 1990, 63, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; Kenneback, G.; Bergfeldt, L.; Tomson, T. Prevalence of cardiac conduction disturbances during carbamazepine treatment: Preliminary data. Funct. Neurol. 1987, 2, 563–567. [Google Scholar] [PubMed]
- Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989, 30, 389–399. [Google Scholar] [CrossRef]
- Surawicz, B.; Knoebel, S.B. Long QT: Good, bad or indifferent? J. Am. Coll. Cardiol. 1984, 4, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.M. Long QT syndrome. Cardiol. Clin. 2000, 18, 309–325. [Google Scholar] [CrossRef]
- Davis, A.M.; Wilkinson, J.L. The long QT syndrome and seizures in childhood. J. Paediatr. Child Health 1998, 34, 410–411. [Google Scholar] [CrossRef]
- Brugada, P.; Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 1992, 20, 1391–1396. [Google Scholar] [CrossRef]
- Akalin, F.; Tirtir, A.; Yilmaz, Y. Increased QT dispersion in epileptic children. Acta Paediatr. 2003, 92, 916–920. [Google Scholar] [CrossRef]
- Walczak, T.S.; Leppik, I.E.; D’Amelio, M.; Rarick, J.; So, E.; Ahman, P.; Ruggles, K.; Cascino, G.D.; Annegers, J.F.; Hauser, W.A. Incidence and risk factors in sudden unexpected death in epilepsy: A prospective cohort study. Neurology 2001, 56, 519–525. [Google Scholar] [CrossRef]
- Ergul, Y.; Ekici, B.; Tatli, B.; Nisli, K.; Ozmen, M. QT and P wave dispersion and heart rate variability in patients with Dravet syndrome. Acta Neurol. Belg. 2013, 113, 161–166. [Google Scholar] [CrossRef]
- Li, Z.; Hertervig, E.; Carlson, J.; Johansson, C.; Olsson, S.B.; Yuan, S. Dispersion of refractoriness in patients with paroxysmal atrial fibrillation. Evaluation with simultaneous endocardial recordings from both atria. J. Electrocardiol. 2002, 35, 227–234. [Google Scholar] [CrossRef]
- Barr, C.S.; Naas, A.A.; Fenwick, M.; Struthers, A.D. Enalapril reduces QTc dispersion in mild congestive heart failure secondary to coronary artery disease. Am. J. Cardiol. 1997, 79, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.L.; Villanueva, T.; Karagounis, L.A.; Anderson, J.L. Reduction in QT interval dispersion by successful thrombolytic therapy in acute myocardial infarction. TEAM-2 Study Investigators. Circulation 1994, 90, 94–100. [Google Scholar] [CrossRef] [PubMed]
- de Bruyne, M.C.; Hoes, A.W.; Kors, J.A.; Hofman, A.; van Bemmel, J.H.; Grobbee, D.E. QTc dispersion predicts cardiac mortality in the elderly: The Rotterdam Study. Circulation 1998, 97, 467–472. [Google Scholar] [CrossRef]
- Macfarlane, P.W.; McLaughlin, S.C.; Rodger, J.C. Influence of lead selection and population on automated measurement of QT dispersion. Circulation 1998, 98, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Surges, R.; Taggart, P.; Sander, J.W.; Walker, M.C. Too long or too short? New insights into abnormal cardiac repolarization in people with chronic epilepsy and its potential role in sudden unexpected death. Epilepsia 2010, 51, 738–744. [Google Scholar] [CrossRef]
- Okutucu, S.; Aytemir, K.; Oto, A. P-wave dispersion: What we know till now? JRSM Cardiovasc. Dis. 2016, 5, 2048004016639443. [Google Scholar] [CrossRef]
- de Sousa, J.M.; Fialho, G.L.; Wolf, P.; Walz, R.; Lin, K. Determining factors of electrocardiographic abnormalities in patients with epilepsy: A case-control study. Epilepsy Res. 2017, 129, 106–116. [Google Scholar] [CrossRef]
- Kayrak, M.; Acar, K.; Gul, E.E.; Ozbek, O.; Abdulhalikov, T.; Sonmez, O.; Alibaşiç, H. The Association between Myocardial Iron Load and Ventricular Repolarization Parameters in Asymptomatic Beta-Thalassemia Patients. Adv. Hematol. 2012, 2012, 170510. [Google Scholar] [CrossRef]
- Sicouri, S.; Antzelevitch, C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 1991, 68, 1729–1741. [Google Scholar] [CrossRef]
- Adali, M.K.; Davutoglu, Y.; Yilmaz, S. The relationship between premature ventricular complexes and index of cardiac-electrophysiological balance. Rev. Assoc. Med. Bras. 2023, 69, 142–146. [Google Scholar] [CrossRef]
- Söylemez, N.; Yaman, B. Association between ventricular premature contraction burden and ventricular repolarization duration. Rev. Assoc. Med. Bras. 2022, 68, 1571–1575. [Google Scholar] [CrossRef]
- Ishizue, N.; Niwano, S.; Saito, M.; Fukaya, H.; Nakamura, H.; Igarashi, T.; Fujiishi, T.; Yoshizawa, T.; Oikawa, J.; Satoh, A.; et al. Polytherapy with sodium channel-blocking antiepileptic drugs is associated with arrhythmogenic ST-T abnormality in patients with epilepsy. Seizure 2016, 40, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, R.J.; Blom, M.T.; Novy, J.; Belluzzo, M.; Seldenrijk, A.; Penninx, B.W.; Sander, J.W.; Tan, H.L.; Thijs, R.D. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 309–313. [Google Scholar] [CrossRef]
- Celdran de Castro, A.; Nascimento, F.A.; Beltran-Corbellini, Á.; Toledano, R.; Garcia-Morales, I.; Gil-Nagel, A.; Aledo-Serrano, Á. Levetiracetam, from broad-spectrum use to precision prescription: A narrative review and expert opinion. Seizure 2023, 107, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, W.E. Long QT interval in Rett syndrome: Expanding the knowledge of a poorly understood phenomenon. Dev. Med. Child Neurol. 2020, 62, 775. [Google Scholar] [CrossRef] [PubMed]
- Pickard, H.; Ashby, S.; Sibree, D.; Elliott, M.; Bhandare, A.; Wykes, R.C.; Sen, A.; Bush, K.; Diehl, B.; Donovan, B.; et al. Epilepsy Research Institute UK Sudden Unexpected Death in Epilepsy (SUDEP) workshop: Identifying the pre-clinical and clinical priorities for SUDEP research. Epilepsy Behav. 2025, 171, 110473. [Google Scholar] [CrossRef]
VARIABLES (n) | Control (50) | Generalized (51) | Focal (50) | p-Value |
---|---|---|---|---|
Age | 11 (1–18) | 12 (1–18) | 10.5 (0.5–18) | 0.71 |
Male Sex (%) | 25, (50%) | 21, (42%) | 25, (50%) | 0.59 |
Weight | 39.5 (11–57) | 40 (12.5–100) | 40.5 (6–89) | 0.29 |
Height | 147.5 (85–166) | 151 (82–186) | 142 (69–190) | 0.41 |
QTc, (ms) | 391.5 (370–432) b | 396 (370–451) c | 405.5 (380–440) bc | <0.001 |
Tp-e, (ms) | 63 ± 2.9 ab | 64.3 ± 3.2 a | 64.4 ± 2.6 b | 0.036 |
Monitoring Period (years) | - | 4 (1–10) | 5 (0.5–17) | 0.07 |
QT Disp | 29.8 ± 5 | 31 ± 6.1 | 30.7 ± 4.2 | 0.498 |
QTc Disp | 35 (24–45) | 38 (23–45) | 36.5 (27–48) | 0.08 |
P Disp | 33 (14–42) | 32 (22–44) | 32 (23–41) | 0.053 |
P Min | 54 (48–60) b | 54 (47–60) | 55 (47–61) b | 0.01 |
P Max | 86 (74–92) | 86 (78–92) | 86 (78–90) | 0.68 |
VARIABLES (n) | Valproic Acid (28) | Levetiracetam (40) | Clobazam (5) | Carbamazepine (6) | Lamotrigine (3) | Phenobarbital (2) | Clonazepam (2) | p-Value |
---|---|---|---|---|---|---|---|---|
Age | 11 (1–15) | 9.5 (0.5–17) | 12 (4–16) | 14.5 (5–18) | 16 (14–18) | 9.5 (3–16) | 17 (16–18) | 0.04 |
Weight | 40.5 (13–80) | 38 (6–93) | 44 (21–81) | 46.5 (18–89) | 53 (52–72) | 39.7 (14–65.3) | 60 (46–74) | 0.23 |
Height | 149.5 (82–186) | 136.5 (69–190) | 146 (110–160) | 153 (123–176) | 157 (150–161) | 126.5 (92–161) | 163 (161–165) | 0.42 |
QTc (ms) | 393.5 (370–436) | 405.5 (375–440) | 410 (390–432) | 392.5 (380–420) | 392 (388–451) | 422.5 (420–425) | 409 (388–430) | 0.24 |
Tp-e (ms) | 64.4 ± 3.1 | 64.2 ± 3 | 63.9 ± 3.8 | 64.1 ± 1.2 | 66.1 ± 4.4 | 68.3 ± 1.4 | 65 ± 3.5 | 0.59 |
Monitoring Period (years) | 3.5 (1–13) | 3 (0.5–13) | 5 (2–5) | 6.5 (0.5–17) | 8 (3–9) | 4.5 (3–6) | 13 (10–16) | 0.20 |
QT Disp | 31.2 ± 6.1 | 30.9 ± 4.6 | 28.6 ± 5.1 | 31 ± 4.1 | 29 ± 10.8 | 27.5 ± 6.4 | 32.5 ± 6.4 | 0.89 |
QTc Disp | 38 (23–45) | 36.5 (28–44) | 34 (28–45) | 36 (35–48) | 36 (27–40) | 34.5 (34–35) | 40 (36–44) | 0.74 |
P Disp | 32 (22–44) | 31.5 (23–41) | 32 (26–39) | 31 (27–38) | 32 (28–34) | 32 (32–32) | 32 (30–34) | 0.99 |
P Min | 54.5 (47–61) | 55 (47–60) | 52 (49–56) | 54 (50–56) | 55 (49–58) | 55.5 (55–56) | 53 (52–54) | 0.75 |
P Max | 86 (78–92) | 86 (78–90) | 84 (82–88) | 85.5 (80–90) | 86 (83–87) | 87.5 (87–88) | 85 (82–88) | 0.85 |
VARIABLES | Monitoring Period (Years) | |
---|---|---|
R | p-Value | |
QTc (ms) | −0.011 | 0.92 |
Tp-e (ms) | −0.060 | 0.55 |
QT Disp | −0.040 | 0.69 |
QTc Disp | −0.133 | 0.19 |
P Disp | −0.059 | 0.56 |
P Min | 0.060 | 0.55 |
P Max | −0.014 | 0.89 |
VARIABLES (n) | Control (50) | No-AED (15) | AED (86) | p-Value |
---|---|---|---|---|
Age | 11 (1–18) | 11 (6–17) | 11.5 (0.5–18) | 0.72 |
Weight | 39.5 (11–57) | 44 (21–100) | 39.5 (6–93) | 0.42 |
Height | 147.5 (85–166) | 145 (110–180) | 145.5 (69–190) | 0.47 |
QTc (ms) | 391.5 (370–432) b | 402 (370–440) | 400 (370–451) b | 0.035 |
Tp-e (ms) | 63.1 ± 2.9 b | 64.3 ± 2.3 | 64.4 ± 3 b | 0.037 |
Monitoring Period (years) | - | 5 (2–12) | 4 (0.5–17) | 0.13 |
QT Disp | 29.8 ± 5.1 | 31.5 ± 4.8 | 30.7 ± 5.3 | 0.45 |
QTc Disp | 35 (24–45) | 38 (28–44) | 37 (23–48) | 0.09 |
P Disp | 33 (14–42) | 32 (24–41) | 32 (22–44) | 0.25 |
P Min | 54 (48–60) | 54 (49–57) | 54.5 (47–61) | 0.16 |
P Max | 86 (74–82) | 86 (79–90) | 86 (78–92) | 0.77 |
VARIABLES | Focal Seizures | p-Value | Generalized Seizures | p-Value | ||
---|---|---|---|---|---|---|
Female | Male | Female | Male | |||
QTc (ms) | 410 (384–440) | 402 (380–440) | 0.24 | 398 (370–451) | 390 (380–435) | 0.96 |
Tp-e (ms) | 64.9 ± 2.7 | 63.9 ± 2.4 | 0.19 | 64.3 ± 3.3 | 64.4 ± 3.2 | 0.93 |
Monitoring Period (years) | 6 (0.5–17) | 3 (0.5–13) | 0.06 | 4 (1–10) | 3 (1–7) | 0.19 |
QT Disp | 29.8 ± 3.4 | 31.6 ± 4.7 | 0.15 | 30.5 ± 5.6 | 31.7 ± 6.9 | 0.49 |
QTc Disp | 36 (27–45) | 38 (28–48) | 0.67 | 37 (23–44) | 39 (25–45) | 0.19 |
P Disp | 31 (23–38) | 32 (24–41) | 0.68 | 30 (24–44) | 33 (22–41) | 0.12 |
P Min | 55 (48–61) | 55 (47–59) | 0.93 | 53.5 (47–59) | 54 (48–60) | 0.45 |
P Max | 86 (78–90) | 86 (80–90) | 0.84 | 84 (78–91) | 87 (82–92) | 0.009 |
VARIABLES | Tp-e (ms) | |
---|---|---|
R | p-Value | |
QTc (ms) | 0.557 | <0.001 |
QT Disp | 0.092 | 0.26 |
QTc Disp | 0.269 | <0.001 |
P Disp | −0.054 | 0.51 |
P Min | 0.042 | 0.61 |
P Max | −0.023 | 0.78 |
VARIABLES (n) | Group 1 (0–5 Years) (21) | Group 2 (6–12 Years) (37) | Group 3 (13–18 Years) (43) | p-Value |
---|---|---|---|---|
QTc (ms) | 412 (375–436) | 400 (370–440) | 400 (380–451) | 0.4 |
Tp-e (ms) | 65 ± 3.3 | 64.5 ± 2.8 | 63.9 ± 2.9 | 0.38 |
QT Disp | 31 ± 4.5 | 30.9 ± 4.5 | 30.8 ± 6.1 | 0.98 |
QTc Disp | 38 (28–45) | 36 (23–45) | 38 (25–48) | 0.78 |
P Disp | 32 (25–40) | 33 (23–44) | 32 (22–41) | 0.54 |
P Min | 55 (48–60) | 54 (47–61) | 55 (48–60) | 0.29 |
P Max | 86 (78–90) | 86 (78–92) | 86 (80–90) | 0.83 |
Epilepsy Type | Key Findings | Relevant ECG Parameters | Implication for SUDEP Risk | Source |
---|---|---|---|---|
Generalized | Often associated with peri-ictal cardiac abnormalities, such as bradycardia. Refractory generalized epilepsy showed higher QT dispersion and impaired HRV; linked with increased SUDEP-7 risk. | Prolonged QT interval, bradycardia, QTc > 450 ms, QT Disp > 50 ms | Higher risk due to autonomic dysfunction and widespread cortical involvement. QTc prolongation and reduced HRV significantly correlated with SUDEP risk. | Surges et al., 2009 [1]; Devinsky et al., 2016 [19]; Hamdy et al., 2022 [20] |
Focal | Can cause localized cortical involvement that affects autonomic regulation. Seizure-induced ictal asystole observed exclusively in focal epilepsies (especially temporal and frontal), often left-lateralized. | Ictal asystole, HR variability, Asystole duration 4–60 s post-seizure | Risk depends on seizure spread; focal seizures may cause bradyarrhythmia or asystole in severe cases. Prolonged postictal periods and central apnea may contribute to reduced cerebral perfusion and SUDEP. | Devinsky et al., 2016 [19]; Dlouhy et al., 2016 [21]; Rocamora et al., 2003 [22] |
Both | Alterations in autonomic nervous system function observed in both types. Both ictal and postictal arrhythmias (asystole, AV block, VT/VF) can occur in various types of epilepsy; cardiovascular comorbidities common. | HRV reduction, arrhythmia post-seizure Postictal asystole, QT Disp, VT/VF | Postictal autonomic instability increases SUDEP risk, especially with impaired arousal and cardiorespiratory delay. Postictal EEG suppression and apnea after generalized tonic–clonic seizure linked with terminal asystole; genetic channelopathies may underlie fatal arrhythmias. | Ryvlin et al., 2013 [23]; Shmuely et al., 2017 [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaca, S.; Özbingöl, D.; Karaca Özer, P.; Yavuz, M.L.; Nişli, K.; Öztarhan, K.; Duman Kayar, Ç.; Öney, C.; Yıldız, E.P. Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures. Diagnostics 2025, 15, 1622. https://doi.org/10.3390/diagnostics15131622
Karaca S, Özbingöl D, Karaca Özer P, Yavuz ML, Nişli K, Öztarhan K, Duman Kayar Ç, Öney C, Yıldız EP. Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures. Diagnostics. 2025; 15(13):1622. https://doi.org/10.3390/diagnostics15131622
Chicago/Turabian StyleKaraca, Serra, Doruk Özbingöl, Pelin Karaca Özer, Mustafa Lütfi Yavuz, Kemal Nişli, Kazım Öztarhan, Çisem Duman Kayar, Ceyda Öney, and Edibe Pempegül Yıldız. 2025. "Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures" Diagnostics 15, no. 13: 1622. https://doi.org/10.3390/diagnostics15131622
APA StyleKaraca, S., Özbingöl, D., Karaca Özer, P., Yavuz, M. L., Nişli, K., Öztarhan, K., Duman Kayar, Ç., Öney, C., & Yıldız, E. P. (2025). Electrocardiographic Markers of Sudden Unexpected Death Risk in Pediatric Epilepsy: A Comparative Study of Generalized and Focal Seizures. Diagnostics, 15(13), 1622. https://doi.org/10.3390/diagnostics15131622