Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment
Conflicts of Interest
List of Contributions
- Brunese, M.C.; Rocca, A.; Santone, A.; Cesarelli, M.; Brunese, L.; Mercaldo, F. Explainable and Robust Deep Learning for Liver Segmentation Through U-Net Network. Diagnostics 2025, 15, 878. https://doi.org/10.3390/diagnostics15070878.
- Inmutto, N.; Pojchamarnwiputh, S.; Na Chiangmai, W. Multiphase Computed Tomography Scan Findings for Artificial Intelligence Training in the Differentiation of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Interobserver Agreement of Expert Abdominal Radiologists. Diagnostics 2025, 15, 821. https://doi.org/10.3390/diagnostics15070821.
- Gül, S.; Cetinel, G.; Aydin, B.M.; Akgün, D.; Öztaş Kara, R. YOLOSAMIC: A Hybrid Approach to Skin Cancer Segmentation with the Segment Anything Model and YOLOv8. Diagnostics 2025, 15, 479. https://doi.org/10.3390/diagnostics15040479.
- Faiella, E.; Pileri, M.; Ragone, R.; De Nicola, A.M.; Beomonte Zobel, B.; Grasso, R.F.; Santucci, D. Promising Results About the Possibility to Identify Prostate Cancer Patients Employing a Random Forest Classifier: A Preliminary Study Preoperative Patients Selection. Diagnostics 2025, 15, 421. https://doi.org/10.3390/diagnostics15040421.
- Peker, R.B.; Kurtoglu, C.O. Evaluation of the Performance of a YOLOv10-Based Deep Learning Model for Tooth Detection and Numbering on Panoramic Radiographs of Patients in the Mixed Dentition Period. Diagnostics 2025, 15, 405. https://doi.org/10.3390/diagnostics15040405.
- Liu, H.-H.; Chang, C.-B.; Chen, Y.-S.; Kuo, C.-F.; Lin, C.-Y.; Ma, C.-Y.; Wang, L.-J. Automated Detection and Differentiation of Stanford Type A and Type B Aortic Dissections in CTA Scans Using Deep Learning. Diagnostics 2025, 15, 12. https://doi.org/10.3390/diagnostics15010012.
- Wu, L.; Ling, Y.; Lan, L.; He, K.; Yu, C.; Zhou, Z.; Shen, L. Automatic Segmentation of the Left Ventricle in Apical Four-Chamber View on Transesophageal Echocardiography Based on UNeXt Deep Neural Network. Diagnostics 2024, 14, 2766. https://doi.org/10.3390/diagnostics14232766.
- Hadhoud, Y.; Mekhaznia, T.; Bennour, A.; Amroune, M.; Kurdi, N.A.; Aborujilah, A.H.; Al-Sarem, M. From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images. Diagnostics 2024, 14, 2754. https://doi.org/10.3390/diagnostics14232754.
- Ianculescu, M.; Petean, C.; Sandulescu, V.; Alexandru, A.; Vasilevschi, A.-M. Early Detection of Parkinson’s Disease Using AI Techniques and Image Analysis. Diagnostics 2024, 14, 2615. https://doi.org/10.3390/diagnostics14232615.
- Pellegrino, R.; Federico, A.; Gravina, A.G. Conversational LLM Chatbot ChatGPT-4 for Colonoscopy Boston Bowel Preparation Scoring: An Artificial Intelligence-to-Head Concordance Analysis. Diagnostics 2024, 14, 2537. https://doi.org/10.3390/diagnostics14222537.
- Gil-Rios, M.-A.; Cruz-Aceves, I.; Hernandez-Aguirre, A.; Hernandez-Gonzalez, M.-A.; Solorio-Meza, S.-E. Improving Automatic Coronary Stenosis Classification Using a Hybrid Metaheuristic with Diversity Control. Diagnostics 2024, 14, 2372. https://doi.org/10.3390/diagnostics14212372.
- Tian, Y.; Gao, R.; Shi, X.; Lang, J.; Xue, Y.; Wang, C.; Zhang, Y.; Shen, L.; Yu, C.; Zhou, Z. U-Net and Its Variants Based Automatic Tracking of Radial Artery in Ultrasonic Short-Axis Views: A Pilot Study. Diagnostics 2024, 14, 2358. https://doi.org/10.3390/diagnostics14212358.
- Marquez, B.; Wooten, Z.T.; Salazar, R.M.; Peterson, C.B.; Fuentes, D.T.; Whitaker, T.J.; Jhingran, A.; Pollard-Larkin, J.; Prajapati, S.; Beadle, B.; et al. Analyzing the Relationship between Dose and Geometric Agreement Metrics for Auto-Contouring in Head and Neck Normal Tissues. Diagnostics 2024, 14, 1632. https://doi.org/10.3390/diagnostics14151632.
- Urso, L.; Cittanti, C.; Manco, L.; Ortolan, N.; Borgia, F.; Malorgio, A.; Scribano, G.; Mastella, E.; Guidoboni, M.; Stefanelli, A.; et al. ML Models Built Using Clinical Parameters and Radiomic Features Extracted from 18F-Choline PET/CT for the Prediction of Biochemical Recurrence after Metastasis-Directed Therapy in Patients with Oligometastatic Prostate Cancer. Diagnostics 2024, 14, 1264. https://doi.org/10.3390/diagnostics14121264.
- Kim, Y.R.; Yoon, Y.S.; Cha, J.G. Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model. Diagnostics 2024, 14, 781. https://doi.org/10.3390/diagnostics14070781.
- Lastrucci, A.; Iosca, N.; Wandael, Y.; Barra, A.; Lepri, G.; Forini, N.; Ricci, R.; Miele, V.; Giansanti, D. AI and Interventional Radiology: A Narrative Review of Reviews on Opportunities, Challenges, and Future Directions. Diagnostics 2025, 15, 893. https://doi.org/10.3390/diagnostics15070893.
- Mercurio, M.; Denami, F.; Melissaridou, D.; Corona, K.; Cerciello, S.; Laganà, D.; Gasparini, G., on behalf of the IORS; Minici, R. Deep Learning Models to Detect Anterior Cruciate Ligament Injury on MRI: A Comprehensive Review. Diagnostics 2025, 15, 776. https://doi.org/10.3390/diagnostics15060776.
- Romeo, M.; Dallio, M.; Napolitano, C.; Basile, C.; Di Nardo, F.; Vaia, P.; Iodice, P.; Federico, A. Clinical Applications of Artificial Intelligence (AI) in Human Cancer: Is It Time to Update the Diagnostic and Predictive Models in Managing Hepatocellular Carcinoma (HCC)? Diagnostics 2025, 15, 252. https://doi.org/10.3390/diagnostics15030252.
- Lastrucci, A.; Wandael, Y.; Ricci, R.; Maccioni, G.; Giansanti, D. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics 2024, 14, 939. https://doi.org/10.3390/diagnostics14090939.
- Megat Ramli, P.N.; Aizuddin, A.N.; Ahmad, N.; Abdul Hamid, Z.; Ismail, K.I. A Systematic Review: The Role of Artificial Intelligence in Lung Cancer Screening in Detecting Lung Nodules on Chest X-Rays. Diagnostics 2025, 15, 246. https://doi.org/10.3390/diagnostics15030246.
References
- Artificial Intelligence in Clinical Medical Imaging. Available online: https://mdpi-res.com/bookfiles/book/9149/Artificial_Intelligence_in_Clinical_Medical_Imaging.pdf?v=1744852066 (accessed on 11 June 2025).
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herington, J.; McCradden, M.D.; Creel, K.; Boellaard, R.; Jones, E.C.; Jha, A.K.; Rahmim, A.; Scott, P.J.H.; Sunderland, J.J.; Wahl, R.L.; et al. Ethical Considerations for Artificial Intelligence in Medical Imaging: Data Collection, Development, and Evaluation. J. Nucl. Med. 2023, 64, 1848–1854. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran. J. Public Health 2021, 50, i–v. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Habli, I.; Lawton, T.; Porter, Z. Artificial intelligence in health care: Accountability and safety. Bull. World Health Organ. 2020, 98, 251–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Contribution. | Authors | Clinical Area | AI Application |
---|---|---|---|
1 | Brunese et al. | Liver (Oncology) | U-Net for liver segmentation in CT/MRI; explainability for HCC diagnosis. |
2 | Inmutto et al. | Liver (Oncology) | Differentiation between HCC and ICC using multiphase CT with AI model. |
3 | Gül et al. | Skin (Dermatology) | YOLOv8 + SAM hybrid model for skin lesion detection and segmentation. |
4 | Faiella et al. | Prostate (Oncology) | Random Forest on mp-MRI and radiomics to predict lymph node involvement. |
5 | Peker et al. | Dental | YOLOv10 system for automatic tooth detection in pediatric panoramic X-rays. |
6 | Liu et al. | Heart (Cardiology) | Deep learning to detect Stanford A/B aortic dissections in CTA. |
7 | Wu et al. | Heart (Cardiology) | UNeXt segmentation of left ventricle in TEE images. |
8 | Hadhoud et al. | Thorax (Heart and Lungs) | CNN–ViT for classification of chest diseases (e.g., TB and pneumonia). |
9 | Ianculescu et al. | Neurology | AI for early Parkinson’s disease detection from hand-drawn-spiral analysis. |
10 | Pellegrino et al. | Gastroenterology | Interaction of ChatGPT-4 and experts on Boston Bowel Preparation Scale scoring. |
11 | Gil-Rios et al. | Cardiology (Coronary) | Metaheuristic hybrid model for classifying coronary stenosis in radiology. |
12 | Tian et al. | Vascular Intervention | U-Net variants for radial artery tracking in ultrasound. |
13 | Marquez et al. | Radiotherapy (Oncology) | Correlation of dose/geometric metrics for auto-contouring in head and neck cancer. |
14 | Urso et al. | Prostate (Oncology) | ML model predicting recurrence in prostate cancer post-therapy using PET/CT radiomics. |
15 | Kim et al. | Bone/Spine | Deep learning for opportunistic screening of vertebral fractures in CT scans. |
Contribution. | Authors | Clinical Area | AI Application |
---|---|---|---|
16 | Lastrucci et al. | Interventional Radiology | Overview of AI integration with interventional radiology, identifying opportunities and challenges. |
17 | Mercurio et al. | Musculoskeletal (Orthopedics) | Deep learning models for detecting anterior cruciate ligament injuries on MRI. |
18 | Romeo et al. | Oncology (Hepatology) | AI for managing hepatocellular carcinoma (HCC) through updated diagnostic and predictive models. |
19 | Lastrucci et al. | Radiotherapy (Oncology) | Deep learning in radiotherapy, exploring its impact on treatment planning and delivery. |
20 | Ramli et al. | Pulmonology (Lung Cancer) | AI for detecting lung nodules in chest X-rays for early lung cancer screening. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giansanti, D. Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment. Diagnostics 2025, 15, 1557. https://doi.org/10.3390/diagnostics15121557
Giansanti D. Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment. Diagnostics. 2025; 15(12):1557. https://doi.org/10.3390/diagnostics15121557
Chicago/Turabian StyleGiansanti, Daniele. 2025. "Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment" Diagnostics 15, no. 12: 1557. https://doi.org/10.3390/diagnostics15121557
APA StyleGiansanti, D. (2025). Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment. Diagnostics, 15(12), 1557. https://doi.org/10.3390/diagnostics15121557