Agreement Between Bioelectrical Impedance Analysis and Ultrasound for Measuring Body Composition in Women with Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
Body Composition Analysis
2.2. Statistical Analysis
2.3. Power Size Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BF | Body fat |
US | Ultrasound |
BIA | Bioelectrical impedance analysis |
BMI | Body mass index |
References
- Azrad, M.; Demark-Wahnefried, W. The Association Between Adiposity and Breast Cancer Recurrence and Survival: A Review of the Recent Literature. Curr. Nutr. Rep. 2014, 3, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Arbeille, P.; Kerbeci, P.; Capri, A.; Dannaud, C.; Trappe, S.W.; Trappe, T.A. Quantification of Muscle Volume by Echography: Comparison with MRI Data on Subjects in Long-Term Bed Rest. Ultrasound Med. Biol. 2009, 35, 1092–1097. [Google Scholar] [CrossRef]
- Mechelli, F.; Arendt-Nielsen, L.; Stokes, M.; Agyapong-Badu, S. Validity of ultrasound imaging versus magnetic resonance imaging for measuring anterior thigh muscle, subcutaneous fat, and fascia thickness. Methods Protoc. 2019, 2, 58. [Google Scholar] [CrossRef]
- Escriche-Escuder, A.; Trinidad-Fernández, M.; Pajares, B.; Iglesias-Campos, M.; Alba, E.; Cuesta-Vargas, A.I.; Roldán-Jiménez, C. Ultrasound use in metastatic breast cancer to measure body composition changes following an exercise intervention. Sci. Rep. 2021, 11, 8858. [Google Scholar] [CrossRef]
- Roemer Emily, J.; West Kesley, L.; Northrup Jessica, B.; Iverson Jana, M.; Sweatt, S.K.; Gower, B.A.; Chieh, A.Y.; Liu, Y.; Li, L.; Cho Sweatt, S.K.; et al. Utility of ultrasound for body fat assessment: Validity and reliability compared to a multicompartment criterion. Physiol. Behav. 2016, 176, 139–148. [Google Scholar] [CrossRef]
- Miclos-Balica, M.; Muntean, P.; Schick, F.; Haragus, H.G.; Glisici, B.; Pupazan, V.; Neagu, A.; Neagu, M. Reliability of body composition assessment using A-mode ultrasound in a heterogeneous sample. Eur. J. Clin. Nutr. 2021, 75, 438–445. [Google Scholar] [CrossRef]
- Wagner, D.R. Ultrasound as a tool to assess body fat. J. Obes. 2013, 2013, 280713. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The utility of body composition assessment in nutrition and clinical practice: An overview of current methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Aleixo, G.F.P.; Shachar, S.S.; Nyrop, K.A.; Muss, H.B.; Battaglini, C.L.; Williams, G.R. Bioelectrical Impedance Analysis for the Assessment of Sarcopenia in Patients with Cancer: A Systematic Review. Oncologist 2020, 25, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Feigelson, H.S.; Bodelon, C.; Powers, J.D.; E Curtis, R.; Buist, D.S.M.; Veiga, L.H.S.; Bowles, E.J.A.; de Gonzalez, A.B.; Gierach, G.L. Body Mass Index and Risk of Second Cancer Among Women With Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Siders, W.A. Validity and accuracy of regional bioelectrical impedance devices to determine whole-body fatness. Nutrition 2003, 19, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Neovius, M.; Hemmingsson, E.; Freyschuss, B.; Uddén, J. Bioelectrical impedance underestimates total and truncal fatness in abdominally obese women. Obesity 2006, 14, 1731–1738. [Google Scholar] [CrossRef]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef]
- Gillespie, T.C.; Sayegh, H.E.; Brunelle, C.L.; Daniell, K.M.; Taghian, A.G. Breast cancer-related lymphedema: Risk factors, precautionary measures, and treatments. Gland. Surg. 2018, 7, 379–403. [Google Scholar] [CrossRef]
- Ren, Y.; Kebede, M.A.; Ogunleye, A.A.; Emerson, M.A.; Evenson, K.R.; Carey, L.A.; Hayes, S.C.; Troester, M.A. Burden of lymphedema in long-term breast cancer survivors by race and age. Cancer 2022, 128, 4119–4128. [Google Scholar] [CrossRef]
- Champ, C.E.; Peluso, C.; Carenter, D.J.; Rosenberg, J.; Velasquez, F.; Annichine, A.; Matsko, K.; Hyde, P.N.; Diaz, A.K.; Beriwal, S.; et al. EXERT-BC: Prospective study of an exercise regimen after treatment for breast cancer. Sports Med. Int. Open 2023, 8, a21930922. [Google Scholar] [CrossRef]
- Crosse, L.; Clinic, M.; Systems, H.; Worth, F. Accuracy of resting metabolic rate prediction equations in athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar] [CrossRef]
- Bondareva, E.A.; Parfent’eva, O.I.; Vasil’eva, A.A.; Kulemin, N.A.; Popova, E.V.; Gadzhiakhmedova, A.N.; Kovaleva, O.N.; Khromov-Borisov, N.N. Reproducibility of Body Fat and Fat-Free Mass Measurements by Bioimpedance and Ultrasound Scanning Analysis in a Group of Young Adults. Hum. Physiol. 2023, 49, 411–420. [Google Scholar] [CrossRef]
- Kang, S.; Park, J.H.; Seo, M.W.; Jung, H.C.; Kim, Y.I.; Lee, J.M. Validity of the portable ultrasound bodymetrixTM Bx-2000 for measuring body fat percentage. Sustainability 2020, 12, 8786. [Google Scholar] [CrossRef]
- Bondareva, E.A.; Parfenteva, O.I.; Troshina, E.A.; Ershova, E.V.; Mazurina, N.V.; Komshilova, K.A.; Kulemin, N.A.; Ahmetov, I.I. Agreement between bioimpedance analysis and ultrasound scanning in body composition assessment. Am. J. Hum. Biol. 2023, 36, e24001. [Google Scholar] [CrossRef] [PubMed]
- Rudnev, S.; Burns, J.S.; Williams, P.L.; Lee, M.M.; Korrick, S.A.; Denisova, T.; Dikov, Y.; Kozupitsa, G.; Hauser, R.; Sergeyev, O. Comparison of Bioimpedance Body Composition in Young Adults in the Russian Children’s Study. Clin. Nutr. ESPEN 2020, 35, 153–161. [Google Scholar] [CrossRef]
- González-Ruíz, K.; Medrano, M.; Correa-Bautista, J.E.; García-Hermoso, A.; Prieto-Benavides, D.H.; Tordecilla-Sanders, A.; Agostinis-Sobrinho, C.; Correa-Rodríguez, M.; Rio-Valle, J.S.; González-Jiménez, E.; et al. Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy x-ray absorptiometry for estimating body fat percentage in colombian children and adolescents with excess of adiposity. Nutrients 2018, 10, 1086. [Google Scholar] [CrossRef]
- Kuo, F.C.; Lu, C.H.; Wu, L.W.; Kao, T.-W.; Su, S.-C.; Liu, J.-S.; Chen, K.-C.; Chang, C.-H.; Kuo, C.-C.; Lee, C.-H.; et al. Comparison of 7-site skinfold measurement and dual-energy X-ray absorptiometry for estimating body fat percentage and regional adiposity in Taiwanese diabetic patients. PLoS ONE 2020, 15, e0236323. [Google Scholar] [CrossRef]
- Elsey, A.M.; Lowe, A.K.; Cornell, A.N.; Whitehead, P.N.; Conners, R.T. Comparison of the Three-Site and Seven-Site Measurements in Female Collegiate Athletes Using BodyMetrixTM. Int. J. Exerc. Sci. 2021, 14, 230–238. [Google Scholar]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef]
- Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity 2011, 19, 402–408. [Google Scholar] [CrossRef]
- Gutiérrez-Marín, D.; Escribano, J.; Closa-Monasterolo, R.; Ferré, N.; Venables, M.; Singh, P.; Wells, J.C.; Muñoz-Hernando, J.; Zaragoza-Jordana, M.; Gispert-Llauradó, M.; et al. Validation of bioelectrical impedance analysis for body composition assessment in children with obesity aged 8-14y. Clin. Nutr. 2021, 40, 4132–4139. [Google Scholar] [CrossRef]
- Nijholt, W.; Scafoglieri, A.; Jager-Wittenaar, H.; Hobbelen, J.S.M.; van der Schans, C.P. The reliability and validity of ultrasound to quantify muscles in older adults: A systematic review. J. Cachexia Sarcopenia Muscle 2017, 8, 702–712. [Google Scholar] [CrossRef]
- Carpenter, D.J.; Peluso, C.; Hilton, C.; Coopey, S.B.; Gomez, J.; Rosenberg, J.; Beriwal, S.; Hyde, P.N.; Champ, C.E. EXERT-BCN: An Exercise Regimen Designed to Improve Body Composition, Functional Capacity, and Strength After Treatment for Breast Cancer With Nutrition Optimization. JCO Oncol. Pract. 2025, 7, OP2400954. [Google Scholar] [CrossRef]
Physical Characteristics | N | Mean | Minimum | Maximum |
---|---|---|---|---|
Age (years) | 106 | 55.5 ± 1.1 | 24 | 79 |
Lymphedema (Y/N) | 25/81 | |||
Obese/Overweight/Normal Weight | 49/23/34 | |||
BMI (kg/m2) | 106 | 29.4 ± 0.6 | 17.3 | 48.1 |
BIA body fat (%) * | 106 | 38.0 ± 0.8 | 16.6 | 53.5 |
US body fat (%) | 106 | 34.6 ± 0.7 | 17.4 | 49.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberg, J.; Natarajan, J.; Carpenter, D.J.; Peluso, C.; Hilton, C.; Champ, C.E. Agreement Between Bioelectrical Impedance Analysis and Ultrasound for Measuring Body Composition in Women with Breast Cancer. Diagnostics 2025, 15, 1545. https://doi.org/10.3390/diagnostics15121545
Rosenberg J, Natarajan J, Carpenter DJ, Peluso C, Hilton C, Champ CE. Agreement Between Bioelectrical Impedance Analysis and Ultrasound for Measuring Body Composition in Women with Breast Cancer. Diagnostics. 2025; 15(12):1545. https://doi.org/10.3390/diagnostics15121545
Chicago/Turabian StyleRosenberg, Jared, Jyotsna Natarajan, David J. Carpenter, Chris Peluso, Christie Hilton, and Colin E. Champ. 2025. "Agreement Between Bioelectrical Impedance Analysis and Ultrasound for Measuring Body Composition in Women with Breast Cancer" Diagnostics 15, no. 12: 1545. https://doi.org/10.3390/diagnostics15121545
APA StyleRosenberg, J., Natarajan, J., Carpenter, D. J., Peluso, C., Hilton, C., & Champ, C. E. (2025). Agreement Between Bioelectrical Impedance Analysis and Ultrasound for Measuring Body Composition in Women with Breast Cancer. Diagnostics, 15(12), 1545. https://doi.org/10.3390/diagnostics15121545