The Effect of Lesion Length on Doppler Velocities Used Routinely to Determine Carotid Stenosis Cross-Sectional Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. DUS Examination
2.3. Quantitative Catheter Angiography (QA)
2.4. Intravascular Ultrasound
2.5. Stenosis Parameters
2.6. Data Presentation and Statistical Analysis
3. Results
3.1. Characteristics of Patients and Index Lesions
3.2. Correlation of the Stenosis Individual Characteristics with Flow Velocities
3.3. Threshold for the Lesion-Length Effect on PSV and EDV
3.4. Combined Effect of Lesion Length and Cross-Sectional Stenosis Severity on PSV and EDV
3.5. Flow Velocity Formulas Integrating the Effect of Lesion Length and Cross-Sectional Stenosis Severity
4. Discussion
4.1. Carotid Stenosis Cross-Sectional Severity: A Classic Measure of Stroke Risk
4.2. Interpretation of DUS Velocities: What This Study Adds
4.3. Cerebrovascular Circulation: Role of the Circle of Willis in Providing Collateral Flow
4.4. Duplex Sonography: Its Advantages and Central Role in Determining Patient Management Pathway
4.5. Inaccuracy of DUS Classic Interpretation
4.6. Stenotic Flow Velocity Determinants: From Fluid Dynamics Theory, Through Experimental Models, to Humans
4.7. Hemodynamic Relevance of the Lesion Length: Coronary Artery Cutoffs
4.8. The Coronaries vs. Carotids: Fundamental ‘Downstream’ Differences
4.9. Carotid Lesion Length: Why a Missed Determinant of Stenotic Flow Velocities?
4.10. Classic DUS Interpretation Can Mislead Clinical Decisions: Evidence from Angiography
4.11. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Coronary Artery Disease |
CEA | Carotid Endarterectomy |
CT | Computed Tomography |
CTA | Computed Tomography Angiography |
DENSITOM | Densitometric |
Dmin | Minimal Lumen Diameter |
DS | Diameter Stenosis |
DUS | Duplex Ultrasound |
eGFR | Estimated Glomerular Filtration Rate |
EDV | End-Diastolic Velocity |
IVUS | Intravascular Ultrasound |
LL | Lesion Length (unless specified otherwise: total lesion length) |
MLA | Minimal Lumen Area |
NASCET | North American Symptomatic Carotid Endarterectomy Trial (method) |
PAD | Peripheral Arterial Disease |
PSV | Peak-Systolic Velocity |
QA | Quantitative Angiography |
RD | Reference Diameter |
V | (flow) velocity |
References
- Musialek, P.; Bonati, L.H.; Bulbulia, R.; Halliday, A.; Bock, B.; Capoccia, L.; Eckstein, H.H.; Grunwald, I.Q.; Lip, P.L.; Monteiro, A.; et al. Stroke risk management in carotid atherosclerotic disease: A Clinical Consensus Statement of the ESC Council on Stroke and the ESC Working Group on Aorta and Peripheral Vascular Diseases. Cardiovasc. Res. 2025, 121, 13–43. [Google Scholar] [CrossRef] [PubMed]
- Tekieli, L.; Dzierwa, K.; Grunwald, I.Q.; Mazurek, A.; Urbanczyk-Zawadzka, M.; Wiewiorka, L.; Banys, R.P.; Dabrowski, W.; Podlasek, A.; Weglarz, E.; et al. Outcomes in acute carotid-related stroke eligible for mechanical reperfusion: SAFEGUARD-STROKE Registry. J. Cardiovasc. Surg. 2024, 65, 231–248. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar]
- Tekieli, L.; Afanasjev, A.; Mazgaj, M.; Borodetsky, V.; Sievert, K.; Ruzsa, Z.; Knapik, M.; Širvinskas, A.; Mazurek, A.; Dzierwa, K.; et al. A multi-center study of the MicroNET-covered stent in consecutive patients with acute carotid-related stroke: SAFEGUARD-STROKE. Adv. Interv. Cardiol. 2024, 20, 172–193. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.A.; Simpson, R.J.; Altaf, N.; Bath, P.M.; Macsweeney, S.T.; Auer, D.P. Magnetic Resonance Imaging Plaque Hemorrhage for Risk Stratification in Carotid Artery Disease with Moderate Risk Under Current Medical Therapy. Stroke 2017, 48, 678–685. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Musialek, P.; Lip, G.Y.H.; Chaturvedi, S. Selective Screening for Asymptomatic Carotid Artery Stenosis: An Appraisal of the 2024 European Society of Cardiology (ESC) Guidelines Position. Am. J. Med. 2025, 138, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Musialek, P.; Rosenfield, K.; Siddiqui, A.; Grunwald, I.Q. Carotid Stenosis and Stroke: Medicines, Stents, Surgery-“Wait-and-See” or Protect? Thromb. Haemost. 2024, 124, 815–827. [Google Scholar] [CrossRef]
- Brinjikji, W.; Huston, J.; Rabinstein, A.A.; Kim, G.M.; Lerman, A.; Lanzino, G. Contemporary carotid imaging: From degree of stenosis to plaque vulnerability. J. Neurosurg. 2016, 124, 27–42. [Google Scholar] [CrossRef]
- Dakis, K.; Nana, P.; Athanasios, C.; Spanos, K.; Konstantinos, B.; Giannoukas, A.; Kouvelos, G. Carotid Plaque Vulnerability Diagnosis by CTA versus MRA: A Systematic Review. Diagnostics 2023, 13, 646. [Google Scholar] [CrossRef]
- Kamtchum-Tatuene, J.; Noubiap, J.J.; Wilman, A.H.; Saqqur, M.; Shuaib, A.; Jickling, G.C. Prevalence of High-risk Plaques and Risk of Stroke in Patients With Asymptomatic Carotid Stenosis: A Meta-analysis. JAMA Neurol. 2020, 77, 1524–1535. [Google Scholar] [CrossRef]
- David, E.; Grazhdani, H.; Aliotta, L.; Gavazzi, L.M.; Foti, P.V.; Palmucci, S.; Inì, C.; Tiralongo, F.; Castiglione, D.; Renda, M.; et al. Imaging of Carotid Stenosis: Where Are We Standing? Comparison of Multiparametric Ultrasound, CT Angiography, and MRI Angiography, with Recent Developments. Diagnostics 2024, 14, 1708. [Google Scholar] [CrossRef] [PubMed]
- Musialek, P.; Tekieli, L.; Podlasek, A. Carotid plaque characteristics and stroke risks: More questions—Or more answers? Pol. Heart J. 2025, 83, 257–259. [Google Scholar] [CrossRef]
- Bonati, L.H.; Kakkos, S.; Berkefeld, J.; de Borst, G.J.; Bulbulia, R.; Halliday, A.; van Herzeele, I.; Koncar, I.; McCabe, D.J.; Lal, A.; et al. European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur. Stroke J. 2021, 6, I–XLVII. [Google Scholar] [CrossRef] [PubMed]
- AbuRahma, A.F.; Avgerinos, E.D.; Chang, R.W.; Darling, R.C., 3rd; Duncan, A.A.; Forbes, T.L.; Malas, M.B.; Murad, M.H.; Perler, B.A.; Powell, R.J.; et al. Society for Vascular Surgery clinical practice guidelines for management of extracranial cerebrovascular disease. J. Vasc. Surg. 2022, 75 (Suppl. S1), 4S–22S. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.; Rantner, B.; Ancetti, S.; de Borst, G.J.; De Carlo, M.; Halliday, A.; Kakkos, S.K.; Markus, H.S.; McCabe, D.J.H.; Sillesen, H.; et al. European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on the Management of Atherosclerotic Carotid and Vertebral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2023, 65, 7–111. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. ESC Scientific Document Group. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Brodie, D.S.; McLean, A.; Hamilton, P.; Murphy, J.; Burns, P.N. Correlation of peak systolic velocity and angiographic measurement of carotid stenosis revisited. Stroke 1997, 28, 339–342. [Google Scholar] [CrossRef]
- Grant, E.G.; Duerinckx, A.J.; El Saden, S.M.; Melany, M.L.; Hathout, G.M.; Zimmerman, P.T.; Marumoto, A.K.; Cohen, S.N.; Baker, J.D. Ability to use duplex US to quantify internal carotid arterial stenoses: Fact or fiction? Radiology 2000, 214, 247–252. [Google Scholar] [CrossRef]
- Jahromi, A.S.; Cinà, C.S.; Liu, Y.; Clase, C.M. Sensitivity and specificity of color duplex ultrasound measurement in the estimation of internal carotid artery stenosis: A systematic review and meta-analysis. J. Vasc. Surg. 2005, 41, 962–972. [Google Scholar] [CrossRef]
- Von Reutern, G.M.; Goertler, M.W.; Bornstein, N.M.; Del Sette, M.; Evans, D.H.; Hetzel, A.; Kaps, M.; Perren, F.; Razumovky, A.; von Reutern, M.; et al. Grading carotid stenosis using ultrasonic methods. Stroke 2012, 43, 916–921. [Google Scholar] [CrossRef]
- Bluth, E.I.; Stavros, A.T.; Marich, K.W.; Wetzner, S.M.; Aufrichtig, D.; Baker, J.D. Carotid duplex sonography: A multicenter recommendation for standardized imaging and Doppler criteria. Radiographics 1988, 8, 487–506. [Google Scholar] [CrossRef]
- Filis, K.A.; Arko, F.R.; Johnson, B.L.; Pipinos, I.I.; Harris, E.J.; Olcott, C., 4th; Zarins, C.K. Duplex ultrasound criteria for defining the severity of carotid stenosis. Ann. Vasc. Surg. 2002, 16, 413–421. [Google Scholar] [CrossRef]
- Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I.; Carroll, B.A.; Eliasziw, M.; Gocke, J.; Hertzberg, B.S.; et al. Carotid Artery Stenosis: Gray-Scale and Doppler US Diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003, 229, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Oates, C.P.; Naylor, A.R.; Hartshorne, T.; Charles, S.M.; Fail, T.; Humphries, K.; Aslam, M.; Khodabakhsh, P. Joint Recommendations for Reporting Carotid Ultrasound Investigations in the United Kingdom. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 251–261. [Google Scholar] [CrossRef]
- Beach, K.W.; Leotta, D.F.; Zierler, R.E. Carotid Doppler velocity measurements and anatomic stenosis: Correlation is futile. Vasc. Endovasc. Surg. 2012, 46, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Pugh, N.; Coleman, D.; Morris, R.; Williams, P.; Humphries, K. Comparison of Doppler ultrasound velocity parameters in the determination of internal carotid artery stenosis. Ultrasound 2013, 21, 124–131. [Google Scholar] [CrossRef]
- Jogestrand, T.; Fredén-Lindqvist, J.; Lindqvist, M.; Lundgren, S.; Tillman, A.S.; Zachrisson, H. Discrepancies in recommended criteria for grading of carotid stenosis with ultrasound. Clin. Physiol. Funct. Imaging 2016, 36, 326–329. [Google Scholar] [CrossRef]
- Simaan, N.; Jubeh, T.; Wiegler, K.B.; Sharabi-Nov, A.; Honig, A.; Shahien, R. Comparison of Doppler Ultrasound and Computerized Tomographic Angiography in Evaluation of Cervical Arteries Stenosis in Stroke Patients, a Retrospective Single-Center Study. Diagnostics 2023, 13, 459. [Google Scholar] [CrossRef]
- Arous, E.J.; Judelson, D.R.; Malka, K.T.; Wyman, A.S.; Simons, J.P.; Aiello, F.A.; Arous, E.J.; Schanzer, A. Carotid Duplex Velocity Criteria Recommended by the Society of Radiologists in Ultrasound and Endorsed by the Intersocietal Accreditation Commission Lack Predictive Ability for Identifying High-Grade Carotid Artery Stenosis. Ann. Vasc. Surg. 2019, 61, 227–232. [Google Scholar] [CrossRef]
- Lipscomb, K.; Hooten, S. Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses. Am. J. Cardiol. 1978, 42, 781–792. [Google Scholar] [CrossRef]
- Azar, D.; Torres, W.M.; Davis, L.A.; Shaw, T.; Eberth, J.F.; Kolachalama, V.B.; Lessner, S.M.; Shazly, T. Geometric determinants of local hemodynamics in severe carotid artery stenosis. Comput. Biol. Med. 2019, 114, 103436. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, G.; Wang, X.; An, X.; Wang, F. The relationship between geometry and hemodynamics of the stenotic carotid artery based on computational fluid dynamics. Clin. Neurol. Neurosurg. 2023, 231, 107860. [Google Scholar] [CrossRef] [PubMed]
- Siogkas, P.K.; Pleouras, D.; Pezoulas, V.; Kigka, V.; Tsakanikas, V.; Fotiou, E.; Potsika, V.; Charalampopoulos, G.; Galyfos, G.; Sigala, F.; et al. Combining Computational Fluid Dynamics, Structural Analysis, and Machine Learning to Predict Cerebrovascular Events: A Mild ML Approach. Diagnostics 2024, 14, 2204. [Google Scholar] [CrossRef]
- Van Everdingen, K.J.; Van der Grond, J.; Kappelle, L.J. Overestimation of a stenosis in the internal carotid artery by duplex sonography caused by an increase in volume flow. J. Vasc. Surg. 1998, 27, 479–485. [Google Scholar] [CrossRef]
- Schreuder, F.H.; Mess, W.H.; Hoeks, A.P. Ageing affects the accuracy of duplex ultrasonography in grading carotid artery stenosis. Cerebrovasc. Dis. 2009, 27, 75–83. [Google Scholar] [CrossRef]
- Feldman, R.L.; Nichols, W.W.; Pepine, C.J.; Conti, C.R. Hemodynamic significance of the length of a coronary arterial narrowing. Am. J. Cardiol. 1978, 41, 865–871. [Google Scholar] [CrossRef]
- Mohebali, J.; Patel, V.I.; Romero, J.M.; Hannon, K.M.; Jaff, M.R.; Cambria, R.P.; LaMuraglia, G.M. Acoustic shadowing impairs accurate characterization of stenosis in carotid ultrasound examinations. J. Vasc. Surg. 2015, 62, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, A.; Partyka, L.; Trystula, M.; Jakala, J.; Proniewska, K.; Borratynska, A.; Tomaszewski, T.; Slezak, M.; Malinowski, K.P.; Drazkiewicz, T.; et al. Highly-calcific carotid lesions endovascular management in symptomatic and increased-stroke-risk asymptomatic patients using the CGuard dual-layer carotid stent system: Analysis from the PARADIGM study. Catheter. Cardiovasc. Interv. 2019, 94, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.M.; Anacleto, A.; Filho, C.M.; Ledesma, S.; Aldrovani, M.; Wolosker, N. Peak Systolic Velocity for Calcified Plaques Fails to Estimate Carotid Stenosis Degree. Ann. Vasc. Surg. 2019, 59, 1–4. [Google Scholar] [CrossRef]
- Fujitani, R.M.; Mills, J.L.; Wang, L.M.; Taylor, S.M. The effect of unilateral internal carotid arterial occlusion upon contralateral duplex study: Criteria for accurate interpretation. J. Vasc. Surg. 1992, 16, 459–467. [Google Scholar] [CrossRef]
- AbuRahma, A.F.; Richmond, B.K.; Robinson, P.A.; Khan, S.; Pollack, J.A.; Alberts, S. Effect of contralateral severe stenosis or carotid occlusion on duplex criteria of ipsilateral stenoses: Comparative study of various duplex parameters. J. Vasc. Surg. 1995, 22, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.D.; Steinman, D.A.; Eliasziw, M.; Barnett, H.J. Effect of contralateral carotid artery stenosis on carotid ultrasound velocity measurements. Stroke 2000, 31, 2636–2640. [Google Scholar] [CrossRef]
- Nicolaides, A.N.; Shifrin, E.G.; Bradbury, A.; Dhanjil, S.; Griffin, M.; Belcaro, G.; Williams, M. Angiographic and duplex grading of internal carotid stenosis: Can we overcome the confusion? J. Endovasc. Surg. 1996, 3, 158–165. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Bladin, C.F.; Maggisano, R.; Norris, J.W. Measuring carotid stenosis. Time for a reappraisal. Stroke 1993, 24, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Tekieli, L.; Kablak-Ziembicka, A.; Dabrowski, W.; Dzierwa, K.; Moczulski, Z.; Urbanczyk-Zawadzka, M.; Mazurek, A.; Stefaniak, J.; Paluszek, P.; Krupinski, M.; et al. Imaging modality-dependent carotid stenosis severity variations against intravascular ultrasound as a reference: Carotid Artery intravasculaR Ultrasound Study (CARUS). Int. J. Cardiovasc. Imaging 2023, 39, 1909–1920. [Google Scholar] [CrossRef]
- Waller, B.F.; Pinkerton, C.A.; Slack, J.D. Intravascular ultrasound: A histological study of vessels during life. The new “gold standard” for vascular imaging. Circulation 1992, 85, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; White, R.A. Basics of intravascular ultrasound: An essential tool for the endovascular surgeon. Semin. Vasc. Surg. 2004, 17, 110–118. [Google Scholar] [CrossRef]
- Zacharatos, H.; Hassan, A.E.; Qureshi, A.I. Intravascular ultrasound: Principles and cerebrovascular applications. Am. J. Neuroradiol. 2010, 31, 586–597. [Google Scholar] [CrossRef]
- Musialek, P.; Pieniazek, P.; Tracz, W.; Tekieli, L.; Przewlocki, T.; Kablak-Ziembicka, A.; Motyl, R.; Moczulski, Z.; Stepniewski, J.; Trystula, M.; et al. Safety of embolic protection device-assisted and unprotected intravascular ultrasound in evaluating carotid artery atherosclerotic lesions. Med. Sci. Monit. 2012, 18, 2. [Google Scholar] [CrossRef]
- Musialek, P.; Dabrowski, W.; Mazurek, A.; Tekieli, L.; Banys, R.P.; Rigla Cros, J.J.; Stefaniak, J. Quantitative Virtual Histology for In Vivo Evaluation of Human Atherosclerosis—A Plaque Biomechanics-Based Novel Image Analysis Algorithm: Validation and Applications to Atherosclerosis Research. In Intravascular Ultrasound; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–96. [Google Scholar]
- Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995, 273, 1421–1428. [Google Scholar] [CrossRef]
- Halliday, A.; Mansfield, A.; Marro, J.; Peto, C.; Peto, R.; Potter, J.; Thomas, D. MRC Asymptomatic Carotid Surgery Trial (ACST) Collaborative Group. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004, 363, 1491–1502. [Google Scholar] [PubMed]
- Dzierwa, K.; Capoccia, L.; Knapik, M.; Tekieli, L.; Podlasek, A.; Mazgaj, M.; Sanczuk, T.; Afanasiev, A.; Zidan, M.; Mansour, W.; et al. Saving the brain in carotid-related stroke: Patient pathways, treatment strategies. J. Cardiovasc. Surg. 2025; in press. [Google Scholar]
- Forjoe, T.; Asad Rahi, M. Systematic review of preoperative carotid duplex ultrasound compared with computed tomography carotid angiography for carotid endarterectomy. Ann. R Coll. Surg. Engl. 2019, 101, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, B.; Magyar-Stang, R.; Pál, H.; Debreczeni, R.; Sándor, Á.D.; Székely, A.; Gyürki, D.; Csippa, B.; István, L.; Kovács, I.; et al. Non-Invasive Tools in Perioperative Stroke Risk Assessment for Asymptomatic Carotid Artery Stenosis with a Focus on the Circle of Willis. J. Clin. Med. 2024, 13, 2487. [Google Scholar] [CrossRef]
- Maguida, G.; Shuaib, A. Collateral Circulation in Ischemic Stroke: An Updated Review. J. Stroke 2023, 25, 179–198. [Google Scholar] [CrossRef] [PubMed]
- Mangiardi, M.; Bonura, A.; Iaccarino, G.; Alessiani, M.; Bravi, M.C.; Crupi, D.; Pezzella, F.R.; Fabiano, S.; Pampana, E.; Stilo, F.; et al. The Pathophysiology of Collateral Circulation in Acute Ischemic Stroke. Diagnostics 2023, 13, 2425. [Google Scholar] [CrossRef]
- Miralles, M.; Dolz, J.L.; Cotillas, J.; Aldoma, J.; Santiso, M.A.; Giménez, A.; Capdevila, A.; Cairols, M.A. The role of the circle of Willis in carotid occlusion: Assessment with phase contrast MR angiography and transcranial duplex. Eur. J. Vasc. Endovasc. Surg. 1995, 10, 424–430. [Google Scholar] [CrossRef]
- Murray, C.S.G.; Nahar, T.; Kalashyan, H.; Becher, H.; Nanda, N.C. Ultrasound assessment of carotid arteries: Current concepts, methodologies, diagnostic criteria, and technological advancements. Echocardiography 2018, 35, 2079–2091. [Google Scholar] [CrossRef]
- Širvinskas, A.; Lengvenis, G.; Ledas, G.; Mosenko, V.; Lukoševičius, S. Circle of Willis Configuration and Thrombus Localization Impact on Ischemic Stroke Patient Outcomes: A Systematic Review. Medicina 2023, 59, 2115. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, B.; Xu, G.; Dong, Y.; Dong, Q.; Cao, W. Collateral grade of the Willis circle predicts outcomes of acute intracranial internal carotid artery occlusion before thrombectomy. Brain Behav. 2019, 12, e01452. [Google Scholar] [CrossRef]
- Sorteberg, A.; Sorteberg, W.; Lindegaard, K.F.; Bakke, J.S.; Nornes, H. Haemodynamic classification of symptomatic obstructive carotid artery disease. Acta Neurochir. 1996, 138, 1079–1086. [Google Scholar] [CrossRef]
- Keunen, R.W.; Tavy, D.L.; Visée, H.F.; Muskens, E.B.; Edelenbosch, R. A transcranial Doppler study of basilar hemodynamics in progressive carotid artery disease. Neurol. Res. 1998, 20, 493–498. [Google Scholar] [PubMed]
- Badacz, R.; Przewłocki, T.; Karch, I.; Pieniążek, P.; Rosławiecka, A.; Mleczko, S.; Brzychczy, A.; Trystuła, M.; Żmudka, K.; Kabłak-Ziembicka, A. Low prevalence of collateral cerebral circulation in the circle of Willis in patients with severe carotid artery stenosis and recent ischemic stroke. Adv. Interv. Cardiol. 2015, 11, 312–317. [Google Scholar] [CrossRef]
- Varga, A.; Di Leo, G.; Banga, P.V.; Csobay-Novák, C.; Kolossváry, M.; Maurovich-Horvat, P.; Hüttl, K. Multidetector CT angiography of the Circle of Willis: Association of its variants with carotid artery disease and brain ischemia. Eur. Radiol. 2019, 29, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Beard, D.J.; Murtha, L.A.; McLeod, D.D.; Spratt, N.J. Intracranial Pressure and Collateral Blood Flow. Stroke 2016, 47, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Derdeyn, C.P.; Videen, T.O.; Yundt, K.D.; Fritsch, S.M.; Carpenter, D.A.; Grubb, R.L.; Powers, W.J. Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited. Brain 2002, 125, 595–607. [Google Scholar] [CrossRef]
- Lun, R.; Sreekrishnan, A.; Liu, H.Y.; Albers, G.W. Ischemic core volumes and collateral status have diurnal fluctuations—A retrospective cohort study of 18,137 patients. J. Stroke Cerebrovasc. Dis. 2024, 33, 107965. [Google Scholar] [CrossRef]
- Peikert, K.; Rutović, S.; Malojčić, B.; Walter, U. Duplex Ultrasound in the Modern Neuroimaging Era: A Practical Approach for Early Careers. Stroke 2024, 55, e336–e339. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Goldstein, L.B. Carotid endarterectomy for asymptomatic carotid stenosis: Asymptomatic carotid surgery trial. Stroke 2004, 35, 2425–2427. [Google Scholar] [CrossRef]
- Chappell, F.M.; Wardlaw, J.M.; Young, G.R.; Gillard, J.H.; Roditi, G.H.; Yip, B.; Pell, J.P.; Rothwell, P.M.; Brown, M.M.; Gough, M.J.; et al. Carotid artery stenosis: Accuracy of noninvasive tests--individual patient data meta-analysis. Radiology 2009, 251, 493–502. [Google Scholar] [CrossRef]
- Rothwell, P.M. For severe carotid stenosis found on ultrasound, further arterial evaluation prior to carotid endarterectomy is unnecessary: The argument against. Stroke 2003, 34, 1817–1819. [Google Scholar] [CrossRef]
- Klabunde, R.E. Cardiovascular Physiology Concepts; Lippincott Williams & Wilkins: Bradenton, FL, USA, 2022. [Google Scholar]
- Seeley, B.D.; Young, D.F. Effect of geometry on pressure losses across models of arterial stenoses. J. Biomech. 1977, 9, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Streeter, V.L.; Wylie, E.B. Fluid Mechanics; McGraw-Hill: New York, NY, USA, 1975; pp. 109–701. [Google Scholar]
- Berger, R.; Wang, N.H.C. Critical arterial stenosis: A theoretical and experimental solution. Ann. Surg. 1974, 180, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Brosh, D.; Higano, S.T.; Lennon, R.J.; Holmes, D.R., Jr.; Lerman, A. Effect of lesion length on fractional flow reserve in intermediate coronary lesions. Am. Heart J. 2005, 150, 338–343. [Google Scholar] [CrossRef]
- Alghamdi, A.; Balgaith, M.; Alkhaldi, A. Influence of the length of coronary artery lesions on fractional flow reserve across intermediate coronary obstruction. Eur. Heart J. Suppl. 2014, 16 (Suppl. B), B76–B79. [Google Scholar] [CrossRef]
- Kristensen, T.S.; Engstrøm, T.; Kelbæk, H.; von der Recke, P.; Nielsen, M.B.; Kofoed, K.F. Correlation between coronary computed tomographic angiography and fractional flow reserve. Int. J. Cardiol. 2010, 144, 200–205. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Pan, J.; Lu, Z. Coronary stenosis: Morphologic index characterized by using CT angiography correlates with fractional flow reserve and is associated with hemodynamic status. Radiology 2013, 269, 713–721. [Google Scholar] [CrossRef]
- Opolski, M.P.; Kepka, C.; Achenbach, S.; Pregowski, J.; Kruk, M.; Staruch, A.D.; Kadziela, J.; Ruzyllo, W.; Witkowski, A. Advanced computed tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions. Eur. J. Radiol. 2014, 83, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Baumann, S.; Schoepf, U.J.; Meinel, F.G.; Rier, J.D.; Morris, J.Z.; Möllmann, H.; Hamm, C.W.; Steinberg, D.H.; Renker, M. Comparison of quantitative stenosis characteristics at routine coronary computed tomography angiography with invasive fractional flow reserve for assessing lesion-specific ischemia. J. Cardiovasc. Comput. Tomogr. 2015, 9, 546–552. [Google Scholar] [CrossRef]
- Velangi, P.S.; Maharaj, V.; Athwal, S.S.; Bartos, J.A.; Markowitz, J.; Duval, S.; Nijjar, P.S. Computed Tomography Coronary Plaque Characteristics Predict Ischemia Detected by Invasive Fractional Flow Reserve. J. Thorac. Imaging 2021, 36, 360–366. [Google Scholar] [CrossRef]
- Wang, C.; Leng, S.; Tan, R.S.; Chai, P.; Fam, J.M.; Teo, L.L.S.; Chin, C.Y.; Ong, C.C.; Baskaran, L.; Keng, Y.J.F.; et al. Coronary CT Angiography-based Morphologic Index for Predicting Hemodynamically Significant Coronary Stenosis. Radiol. Cardiothorac. Imaging 2023, 5, e230064. [Google Scholar] [CrossRef]
- Bullock, R.; Mendelow, A.D.; Bone, I.; Patterson, J.; Macleod, W.N.; Allardice, G. Cerebral blood flow and CO2 responsiveness as an indicator of collateral reserve capacity in patients with carotid arterial disease. Br. J. Surg. 1985, 72, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Ringelstein, E.B.; Sievers, C.; Ecker, S.; Schneider, P.A.; Otis, S.M. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988, 19, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Harrison, M.J. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef]
- Bruce, C.D.; Steinback, C.D.; Chauhan, U.V.; Pfoh, J.R.; Abrosimova, M.; Vanden Berg, E.R.; Skow, R.J.; Davenport, M.H.; Day, T.A. Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding. Exp. Physiol. 2016, 101, 1517–1527. [Google Scholar] [CrossRef]
- Kleiser, B.; Widder, B.; Hackspacher, J.; Schmid, P. Comparison of Doppler CO2 test, patterns of infarction in CCT, and clinical symptoms in carotid artery occlusions. Neurosurg. Rev. 1991, 14, 267–269. [Google Scholar] [CrossRef]
- Kleiser, B.; Krapf, H.; Widder, B. Carbon dioxide reactivity and patterns of cerebral infarction in patients with carotid artery occlusion. J. Neurol. 1991, 238, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Kablak-Ziembicka, A.; Przewlocki, T.; Pieniazek, P.; Musialek, P.; Motyl, R.; Moczulski, Z.; Tracz, W. Assessment of flow changes in the circle of Willis after stenting for severe internal carotid artery stenosis. J. Endovasc. Ther. 2006, 13, 205–213. [Google Scholar] [CrossRef]
- Sayeed, S.; Stanziale, S.F.; Wholey, M.H.; Makaroun, M.S. Angiographic lesion characteristics can predict adverse outcomes after carotid artery stenting. J. Vasc. Surg. 2008, 47, 81–87. [Google Scholar] [CrossRef]
- Setacci, C.; Chisci, E.; Setacci, F.; Iacoponi, F.; de Donato, G.; Rossi, A. Siena carotid artery stenting score: A risk modelling study for individual patients. Stroke 2010, 41, 1259–1265. [Google Scholar] [CrossRef]
- Moore, W.S.; Popma, J.J.; Roubin, G.S.; Voeks, J.H.; Cutlip, D.E.; Jones, M.; Howard, G.; Brott, T.G.; CREST Investigators. Carotid angiographic characteristics in the CREST trial were major contributors to periprocedural stroke and death differences between carotid artery stenting and carotid endarterectomy. J. Vasc. Surg. 2016, 63, 851–857. [Google Scholar] [CrossRef]
- Horev, A.; Honig, A.; Cohen, J.E.; Goldbart, A.; Dizitzer, Y.; Star, M.; Gomori, J.M.; Zlotnik, Y.; Ifergane, G.; Borodetsky, V.; et al. Overestimation of carotid stenosis on CTA—Real world experience. J. Clin. Neurosci. 2021, 85, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Tekieli, L.; Mazurek, A.; Dzierwa, K.; Stefaniak, J.; Kablak-Ziembicka, A.; Knapik, M.; Moczulski, Z.; Banys, R.P.; Urbanczyk-Zawadzka, M.; Dabrowski, W.; et al. Misclassification of carotid stenosis severity with area stenosis-based evaluation by computed tomography angiography: Impact on erroneous indication to revascularization or patient (lesion) migration to a higher guideline recommendation class as per ESC/ESVS/ESO/SVS and CMS-FDA thresholds. Adv. Interv. Cardiol. 2022, 18, 500–513. [Google Scholar]
- Musialek, P.; Mazurek, A.; Trystula, M.; Borratynska, A.; Lesniak-Sobelga, A.; Urbanczyk, M.; Banys, R.P.; Brzychczy, A.; Zajdel, W.; Partyka, L.; et al. Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard MicroNet-covered embolic prevention stent system. EuroIntervention 2016, 12, e658–e670. [Google Scholar] [CrossRef] [PubMed]
- Trystula, M.; Musiałek, P. Transient flow reversal combined with sustained embolic prevention in transcervical revascularization of symptomatic and highly-emboligenic carotid stenoses for optimized endovascular lumen reconstruction and improved peri- and post-procedural outcomes. Adv. Interv. Cardiol. 2020, 16, 495–506. [Google Scholar]
- Dzierwa, K.; Kedziora, A.; Tekieli, L.; Mazurek, A.; Musial, R.; Dobrowolska, E.; Stefaniak, J.; Pieniazek, P.; Paluszek, P.; Konstanty-Kalandyk, J.; et al. Endovascular carotid revascularization under open-chest extracorporeal circulation combined with cardiac surgery in unstable patients at increased risk of carotid-related stroke: SIMultaneous urgent cardiac surgery and MicroNet-covered stent carotid revascularization in extreme-risk patients-SIMGUARD Study. J. Cardiovasc. Surg. 2023, 64, 591–607. [Google Scholar]
- Trystula, M.; Van Herzeele, I.; Kolvenbach, R.; Tekieli, L.; Fonteyne, C.; Mazurek, A.; Dzierwa, K.; Chmiel, J.; Lindsay, J.; Kwiatkowski, T.; et al. Next-generation transcarotid artery revascularization: TransCarotid flOw Reversal Cerebral Protection And CGUARD MicroNET-Covered Embolic Prevention Stent System To Reduce Strokes—TOPGUARD Study. J. Cardiovasc. Surg. 2024, 65, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Cassola, N.; Baptista-Silva, J.C.; Nakano, L.C.; Flumignan, C.D.; Sesso, R.; Vasconcelos, V.; Carvas Junior, N.; Flumignan, R.L. Duplex ultrasound for diagnosing symptomatic carotid stenosis in the extracranial segments. Cochrane Database Syst. Rev. 2022, 7, CD013172. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Suri, M.F.; Ali, Z.; Kim, S.H.; Fessler, R.D.; Ringer, A.J.; Guterman, L.R.; Budny, J.L.; Hopkins, L.N. Role of conventional angiography in evaluation of patients with carotid artery stenosis demonstrated by Doppler ultrasound in general practice. Stroke 2001, 32, 2287–2291. [Google Scholar] [CrossRef]
- Brouwers, J.J.W.M.; Versluijs, Y.; van Walderveen, M.A.A.; Hamming, J.F.; Schepers, A. Imaging Assessment of Carotid Artery Stenosis Varies in Clinical Practice. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 632–633. [Google Scholar] [CrossRef]
- Musialek, P.; Hopf-Jensen, S. Carotid Artery Revascularization for Stroke Prevention: A New Era. J. Endovasc. Ther. 2017, 24, 138–148. [Google Scholar] [CrossRef]
- Heijenbrok-Kal, M.H.; Buskens, E.; Nederkoorn, P.J.; van der Graaf, Y.; Hunink, M.G. Optimal peak systolic velocity threshold at duplex us for determining the need for carotid endarterectomy: A decision analytic approach. Radiology 2006, 238, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Farmilo, R.W.; Scott, D.J.; Cole, S.E.; Jeans, W.D.; Horrocks, M. Role of duplex scanning in the selection of patients for carotid endarterectomy. Br. J. Surg. 1990, 77, 388–390. [Google Scholar] [CrossRef]
- Ranaboldo, C.; Davies, J.; Chant, A. Duplex scanning alone before carotid endarterectomy: A 5-year experience. Eur. J. Vasc. Surg. 1991, 5, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Norris, J.W.; Halliday, A. Is ultrasound sufficient for vascular imaging prior to carotid endarterectomy? Stroke 2004, 35, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.S. For severe carotid stenosis found on ultrasound, further arterial evaluation is unnecessary. Stroke 2003, 34, 1816–1817. [Google Scholar] [CrossRef]
- Penton, A.; Driscoll, M.; Li, R.; DeJong, M.; Blecha, M. Carotid Endarterectomy for Asymptomatic Stenosis Based on Duplex Ultrasound Alone Achieves Equivalent Perioperative and Long-Term Outcomes Relative to Advanced Imaging Based Endarterectomy. Ann. Vasc. Surg. 2024, 98, 44–57. [Google Scholar] [CrossRef]
- Trochowski, S.; Akhtar, A.; Bond, K.; Corby, A.; Hiscocks, C.; Howard, D.; Potter, R.; Rothwell, P.; Waldegrave, E.; Webb, A.; et al. Current practice in ultrasound grading of carotid artery stenosis in the UK and Ireland. J. Vasc. Soc. G B Irel. 2024, 4, 41–47. [Google Scholar] [CrossRef]
- Yeh, C.Y.; Lee, H.H.; Islam, M.M.; Chien, C.H.; Atique, S.; Chan, L.; Lin, M.C. Development and Validation of Machine Learning Models to Classify Artery Stenosis for Automated Generating Ultrasound Report. Diagnostics 2022, 12, 3047. [Google Scholar] [CrossRef]
- Moubark, M.A.; Nie, L.; Mohd Zaman, M.H.; Islam, M.T.; Zulkifley, M.A.; Baharuddin, M.H.; Alomari, Z.; Freear, S. Enhancement of Ultrasound B-Mode Image Quality Using Nonlinear Filtered-Multiply-and-Sum Compounding for Improved Carotid Artery Segmentation. Diagnostics 2023, 13, 1161. [Google Scholar] [CrossRef]
- Reiber, J.H.C. Editor’s choice to the October 2023 issue. Intern. J. Cardiovasc. Imaging 2023, 39, 1841–1843. [Google Scholar] [CrossRef]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985, 5, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Lees, R.S.; Dewey, C.F., Jr. Phonoangiography: A new noninvasive diagnostic method for studying arterial disease. Proc. Natl. Acad. Sci. USA 1970, 67, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Endean, E.D.; Steffen, G.; Chmura, C.; Gupta, S.R.; Littooy, F.N. Outcome of asymptomatic cervical bruits in a veteran population. J. Cardiovasc. Surg. 1991, 32, 620–626. [Google Scholar]
- Davies, K.N.; Humphrey, P.R. Do carotid bruits predict disease of the internal carotid arteries? Postgrad. Med. J. 1994, 70, 433–435. [Google Scholar] [CrossRef]
- Pickett, C.A.; Jackson, J.L.; Hemann, B.A.; Atwood, J.E. Carotid bruits as a prognostic indicator of cardiovascular death and myocardial infarction: A meta-analysis. Lancet 2008, 371, 1587–1594. [Google Scholar] [CrossRef]
- Ramnarine, K.V.; Hartshorne, T.; Sensier, Y.; Naylor, M.; Walker, J.; Naylor, A.R.; Panerai, R.B.; Evans, D.H. Tissue Doppler imaging of carotid plaque wall motion: A pilot study. Cardiovasc. Ultrasound. 2003, 1, 17. [Google Scholar] [CrossRef]
- Kanber, B.; Hartshorne, T.C.; Horsfield, M.A.; Naylor, A.R.; Robinson, T.G.; Ramnarine, K.V. Wall motion in the stenotic carotid artery: Association with greyscale plaque characteristics, the degree of stenosis and cerebrovascular symptoms. Cardiovasc. Ultrasound. 2013, 11, 37. [Google Scholar] [CrossRef]
Age, years | 66 (60–72) |
Gender = men, n (%) | 188 (64.2) |
Symptomatic, n (%) | 187 (63.8) |
Diabetes, n (%) | 94 (32.1) |
Insulin, n (%) | 31 (10.6) |
Smoking (current or past), n (%) | 156 (53.2) |
Arterial hypertension, n (%) | 260 (88.7) |
on hypotensive pharmacotherapy | 260 (88.7) |
SBP, mmHg | 132 (125–137) |
DBP, mmHg | 78 (70–84) |
h/o myocardial infarction, n (%) | 74 (25.2) |
CAD, n (%) | 196 (66.9) |
PAD, n (%) | 44 (15.0) |
BMI, kg/m2 | 27.7 (25.7–30.1) |
Creatinine, μmol/L | 85 (74–101) |
eGFR < 60, mL/min, n (%) | 65 (22.2) |
PSV (m/s) | 2.5 (1.9–3.3) |
EDV (m/s) | 0.9 (0.6–1.2) |
(total) LL (mm) | 10.5 (7.2–14.4) |
LL ≥ 50% DS (mm) # | 2.4 (1.5–3.7) |
QA-DS (NASCET, %) | 59.0 (54.0–67.0) |
QA (circumferential) MLA (mm2) | 3.3 (2.3–4.4) |
QADENSITOM-MLA (mm2) | 5.9 (4.2–7.7) |
IVUS-MLA (mm2) | 6.1 (4.6–8.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabrowski, W.; Tekieli, L.; Kablak-Ziembicka, A.; Stefaniak, J.; Dzierwa, K.; Mazurek, A.; Paluszek, P.; Zmudka, K.; Pieniazek, P.; Musialek, P. The Effect of Lesion Length on Doppler Velocities Used Routinely to Determine Carotid Stenosis Cross-Sectional Severity. Diagnostics 2025, 15, 1259. https://doi.org/10.3390/diagnostics15101259
Dabrowski W, Tekieli L, Kablak-Ziembicka A, Stefaniak J, Dzierwa K, Mazurek A, Paluszek P, Zmudka K, Pieniazek P, Musialek P. The Effect of Lesion Length on Doppler Velocities Used Routinely to Determine Carotid Stenosis Cross-Sectional Severity. Diagnostics. 2025; 15(10):1259. https://doi.org/10.3390/diagnostics15101259
Chicago/Turabian StyleDabrowski, Wladyslaw, Lukasz Tekieli, Anna Kablak-Ziembicka, Justyna Stefaniak, Karolina Dzierwa, Adam Mazurek, Piotr Paluszek, Krzysztof Zmudka, Piotr Pieniazek, and Piotr Musialek. 2025. "The Effect of Lesion Length on Doppler Velocities Used Routinely to Determine Carotid Stenosis Cross-Sectional Severity" Diagnostics 15, no. 10: 1259. https://doi.org/10.3390/diagnostics15101259
APA StyleDabrowski, W., Tekieli, L., Kablak-Ziembicka, A., Stefaniak, J., Dzierwa, K., Mazurek, A., Paluszek, P., Zmudka, K., Pieniazek, P., & Musialek, P. (2025). The Effect of Lesion Length on Doppler Velocities Used Routinely to Determine Carotid Stenosis Cross-Sectional Severity. Diagnostics, 15(10), 1259. https://doi.org/10.3390/diagnostics15101259