Two-Step Image Registration for Dual-Layer Flat-Panel Detectors
Abstract
:1. Introduction
- Spatial translation while stacking the layers;
- Scale due to the X-ray projection.
2. Methods
2.1. Two-Step Registration for the Dual-Layer Flat-Panel Detector
- (0)
- Find the translation of the lower image based on a subpixel registration; calculate the scale factor for a given SID.
- (1)
- Translate the lower image using the translation estimate based on the Fourier shift theorem.
- (2)
- Transform the lower image using the scale factor based on a cubic interpolation.
2.2. Modulation Transfer Function of the Convex Combination Image
2.3. Noise Power Spectrum and the Detective Quantum Efficiency
2.4. Projection and a Scale Translation with Interpolation
3. Results and Discussion
3.1. Numerical Performance Observation
3.2. Registration Example of the Chest X-Ray Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DFD | Dual-layer flat-panel detector |
DQE | Detective quantum efficiency |
MTF | Modulation transfer function |
NNPS | Normalized noise power spectrum |
NPS | Noise power spectrum |
TFT | Thin-film transistor |
SID | Source-to-image distance |
References
- Ishigaki, T.; Sakuma, S.; Horikawa, Y.; Ikeda, M.; Yamaguchi, H. One-shot dual-energy subtraction imaging. Radiology 1986, 161, 271–273. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lu, M.; Bennett, N.R.; Shapiro, E.; Zhang, J.; Colbeth, R.; Star-Lack, J.; Wang, A.S. Characterization and potential applications of a dual-layer flat-panel detector. Med. Phys. 2020, 47, 3332–3343. [Google Scholar] [CrossRef] [PubMed]
- van Hamersvelt, R.; Schilham, A.; Engelke, K.; den Harder, A.; de Keizer, B.; Verhaar, H.; Leiner, T.; de Jong, P.; Willemink, M. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: A phantom study. Eur Radiol. 2017, 27, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, H.; Gu, S.; Xia, Y.; Liao, H.; Deng, Y.; Gao, H. Dual-energy head cone-beam CT using a dual-layer flat-panel detector: Hybrid material decomposition and a feasibility study. Med. Phys. 2023, 50, 6762–6778. [Google Scholar] [CrossRef]
- Lu, M.; Wang, A.; Shapiro, E.; Shiroma, A.; Zhang, J.; Steiger, J.; Star-Lack, J. Dual energy imaging with a dual-layer flat panel detector. In Proceedings of the Medical Imaging 2019: Physics of Medical Imaging, San Diego, CA, USA, 16–21 February 2019; SPIE: Bellingham, WC, USA, 2019; Volume 10948, pp. 269–278. [Google Scholar] [CrossRef]
- Engel, K.J.; Menser, B.; Rohr, P.; Ruetten, W.; Simon, M.; Thran, A. Dual layer X-ray detector simulation. In Proceedings of the Medical Imaging 2020: Physics of Medical Imaging, Houston, TX, USA, 15–20 February 2020; SPIE: Bellingham, WC, USA, 2020; Volume 11312, pp. 398–409. [Google Scholar] [CrossRef]
- Kim, D.S. Convex combination of images from dual-layer detectors for high detective quantum efficiencies. IEEE Trans. Biomed. Eng. 2023, 70, 1804–1814. [Google Scholar] [CrossRef]
- Kim, D.S. Measurements of the noise power spectrum for digital X-ray imaging devices. Phys. Med. Biol. 2024, 69, 03TR01. [Google Scholar] [CrossRef]
- Su, T.; Zhu, J.; Zhang, X.; Tan, Y.; Cui, H.; Zeng, D.; Guo, J.; Zheng, H.; Ma, J.; Liang, D.; et al. Super resolution dual-energy cone-beam CT imaging with dual-layer flat-panel detector. IEEE Trans. Med. Imag. 2024, 43, 734–744. [Google Scholar] [CrossRef]
- Lee, D.; Kim, D.S. Subpixel registration for dual-layer detectors based on the amplitude response. IEEE Access 2024, 12, 153019–153029. [Google Scholar] [CrossRef]
- Alvarez, R.E.; Seibert, J.A.; Thompson, S.K. Comparison of dual energy detector system performance. Med. Phys. 2004, 31, 556–565. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall: New York, NY, USA, 2008. [Google Scholar]
- Maintz, J.; Viergever, M.A. A survey of medical image registration. Med. Image Anal. 1998, 2, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Goyal, A. Classification based survey of image registration methods. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–7. [Google Scholar] [CrossRef]
- HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M. Subpixel phase-based image registration using Savitzky-Golay differentiators in gradient-correlation. Comput. Vis. Image Underst. 2018, 170, 28–39. [Google Scholar] [CrossRef]
- Tong, X.; Ye, Z.; Xu, Y.; Gao, S.; Xie, H.; Du, Q.; Liu, S.; Xu, X.; Liu, S.; Luan, K.; et al. Image registration with Fourier-based image correlation: A comprehensive review of developments and applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4062–4081. [Google Scholar] [CrossRef]
- Zhang, D.; Hou, W.; Guo, J.; Zhang, X. Efficient subpixel image registration algorithm for high precision visual vibrometry. Measurement 2021, 173, 108538. [Google Scholar] [CrossRef]
- Hikosaka, S.; Tonooka, H. Image-to-image subpixel registration based on template matching of road network extracted by deep learning. Remote Sens. 2022, 14, 5360. [Google Scholar] [CrossRef]
- Du, W.; Gao, S.; Jiang, W.; Kudchadker, R.J. Independent evaluation of the effectiveness of IsoCal in improving image center accuracy on Varian TrueBeam and Clinac machines. J. Appl. Clin. Med. Phys. 2018, 19, 483–490. [Google Scholar] [CrossRef]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Tian, Q.; Huhns, M.N. Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 1986, 35, 220–233. [Google Scholar] [CrossRef]
- Kim, S.; Su, W. Subpixel accuracy image registration by spectrum cancellation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, 27–30 April 1993; Volume 5, pp. 153–156. [Google Scholar] [CrossRef]
- Efrat, A.; Gotsman, C. Subpixel image registration using circular fiducials. In Proceedings of the 2nd Israel Symposium on Theory and Computing Systems, Natanya, Israel, 7–9 June 1993; pp. 49–58. [Google Scholar] [CrossRef]
- Shekarforoush, H.; Berthod, M.; Zerubia, J. Subpixel image registration by estimating the polyphase decomposition of cross power spectrum. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 532–537. [Google Scholar] [CrossRef]
- Foroosh, H.; Zerubia, J.; Berthod, M. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar] [CrossRef]
- Argyriou, V.; Vlachos, T. Sub-pixel motion estimation using gradient cross-correlation. In Proceedings of the 7th International Symposium on Signal Processing and Its Applications, Paris, France, 4 July 2003; Volume 2, pp. 215–218. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef]
- Rohde, G.K.; Aldroubi, A.; Healy, D.M. Interpolation artifacts in sub-pixel image registration. IEEE Trans. Image Process. 2009, 18, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Tzimiropoulos, G.; Argyriou, V.; Stathaki, T. Subpixel registration with gradient correlation. IEEE Trans. Image Process. 2011, 20, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Proakis, J.G.; Manolakis, D. Digital Signal Processing, 4th ed.; Prentice Hall: New York, NY, USA, 2007. [Google Scholar]
- IEC 62220-1-1; Medical Electrical Equipment Characteristics of Digital X-Ray Imaging Devices-Part1-1: Determination of the Detective Quantum Efficiency Detectors Used in Radiographic Imaging. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- Fujita, H.; Tsai, D.Y.; Itoh, T.; Doi, K.; Morishita, J.; Ueda, K.; Ohtsuka, A. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans. Med. Imag. 1992, 11, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Unser, M. Splines: A perfect fit for signal and image processing. IEEE Signal Process. Mag. 1999, 16, 22–38. [Google Scholar] [CrossRef]
- Catmull, E.E.; Rom, R. A class of local interpolating splines. In Computer Aided Geometric Design; Academic Press: Cambridge, MA, USA, 1974; pp. 317–326. [Google Scholar] [CrossRef]
- Lucas, B.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the Imaging Understanding Workshop, Vancouver, BC, Canada, 24–28 August 1981; pp. 121–130. [Google Scholar]
- Viola, P.; Wells, W. Alignment by maximization of mutual information. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20 June 1995; pp. 16–23. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, K. Block-coordinate Gauss-Newton optimization and constrained monotone regression for image registration in the presence of outlier objects. IEEE Trans. Image Process. 2008, 17, 798–810. [Google Scholar] [CrossRef]
- Harris, C.G.; Stephens, M.J. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988. [Google Scholar]
- Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE features. In Proceedings of the Computer Vision—ECCV 2012, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 214–227. [Google Scholar]
- Kim, D.S. Noise power spectrum measurements in digital imaging with gain nonuniformilty correction. IEEE Trans. Image Process. 2016, 25, 3712–3722. [Google Scholar] [CrossRef]
Distance | CsI(Tl) Scintillator | Intermediate | TFT | ||||
---|---|---|---|---|---|---|---|
Detector | Filter | Photodiode | Stacking | Company | |||
Lu et al. [6], 2019 | 2.5 | 0.2 | 0.55 | 1 Cu | a-Si | Normal | Varex Imaging, Salt Lake, UT, USA |
Shi et al. [3], 2020 | 2.5 | 0.2 | 0.55 | 1 Cu | a-Si | Normal | Varex Imaging, Salt Lake, UT, USA |
Kim [8], 2023 | 1.3–2.2 | 0.5 | 0.5 | No filter, 0.5 Cu | a-Si/IGZO | Normal, inverted upper/lower | DRTECH, Seongnam, Republic of Korea |
Wang et al. [5], 2023 | - | 0.2–0.55 | 0.55 | No filter, 1 Cu | a-Si | Normal | Varex Imaging, Salt Lake, UT, USA |
Su et al. [10], 2024 | 6.6 | 0.26 | 0.55 | 1 Cu | a-Si | Normal | CareRay, Suzhou, China |
Lee & Kim [11], 2024 | 1.1 | 0.35–0.5 | 0.5 | No filter | a-IGZO | Inverted lower | DRTECH, Seongnam, Republic of Korea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.S.; Lee, D. Two-Step Image Registration for Dual-Layer Flat-Panel Detectors. Diagnostics 2024, 14, 2742. https://doi.org/10.3390/diagnostics14232742
Kim DS, Lee D. Two-Step Image Registration for Dual-Layer Flat-Panel Detectors. Diagnostics. 2024; 14(23):2742. https://doi.org/10.3390/diagnostics14232742
Chicago/Turabian StyleKim, Dong Sik, and Dayeon Lee. 2024. "Two-Step Image Registration for Dual-Layer Flat-Panel Detectors" Diagnostics 14, no. 23: 2742. https://doi.org/10.3390/diagnostics14232742
APA StyleKim, D. S., & Lee, D. (2024). Two-Step Image Registration for Dual-Layer Flat-Panel Detectors. Diagnostics, 14(23), 2742. https://doi.org/10.3390/diagnostics14232742