Intra-Observer and Inter-Observer Variability of Intraocular Lens Measurements Using an Interferometry Metrology Device
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the NIMO TEMPO Device
2.2. Measurement Principle
2.3. NIMO TEMPO Results
2.3.1. Through-Focus MTF Results
2.3.2. Residual High Order Aberrations and Diffractive Steps Reconstruction
2.4. Intra-Observer and Inter-Observer Variability Method of Assessment
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rampat, R.; Gatinel, D. Multifocal and Extended Depth-of-Focus Intraocular Lenses in 2020. Ophthalmology 2021, 128, e164–e185. [Google Scholar] [CrossRef] [PubMed]
- Megiddo-Barnir, E.; Alió, J.L. Latest Development in Extended Depth-of-Focus Intraocular Lenses: An Update. Asia-Pacific J. Ophthalmol. 2023, 12, 58–79. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Smith, G. Optics of the Human Eye: Second Edition (Multidisciplinary and Applied Optics); CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2023. [Google Scholar]
- Popovic, Z.B.; Thomas, J.D. Assessing Observer Variability: A User’s Guide. Cardiovasc. Diagn. Ther. 2017, 7, 317–324. [Google Scholar] [CrossRef]
- Marín, J.M.; Hervella, L.; Villegas, E.; Robles, C.; Alcón, E.; Yago, I.; Artal, P. Visual Performance at All Distances and Patient Satisfaction with a New Aspheric Inverted Meniscus Intraocular Lens. J. Refract. Surg. 2023, 39, 582–588. [Google Scholar] [CrossRef]
- Brodie, S.E. 2020–2021 Basic and Clinical Science Course, Section 03: Clinical Optics; American Academy of Ophthalmology: San Francisco, CA, USA, 2020. [Google Scholar]
- Ordiñaga-Monreal, E.; Castanera-Gratacós, D.; Castanera, F.; Fambuena-Muedra, I.; Vega, F.; Millán, M.S. Pupil Size Differences between Female and Male Patients after Cataract Surgery. J. Optom. 2022, 15, 179–185. [Google Scholar] [CrossRef] [PubMed]
- (ISO) 11979-2:2014; Ophthalmic Implants-Intraocular Lenses-Part 2: Optical Properties and Test Methods. International Standardization Organization: Geneva, Switzerland, 2014.
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Burguera, N.; Piñero, D.P. Prediction of Visual Acuity and Contrast Sensitivity from Optical Simulations with Multifocal Intraocular Lenses. J. Refract. Surg. 2019, 35, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Millán, M.S.; Garzón, N.; Altemir, I.; Poyales, F.; Larrosa, J.M. Visual Acuity of Pseudophakic Patients Predicted from In-Vitro Measurements of Intraocular Lenses with Different Design. Biomed. Opt. Express 2018, 9, 4893–4906. [Google Scholar] [CrossRef]
- Hessing, T. Six Sigma Study Guide. Available online: https://sixsigmastudyguide.com/repeatability-and-reproducibility-rr/ (accessed on 1 March 2023).
- Alio, J.L.; Plaza-Puche, A.B.; Férnandez-Buenaga, R.; Pikkel, J.; Maldonado, M. Multifocal Intraocular Lenses: An Overview. Surv. Ophthalmol. 2017, 62, 611–634. [Google Scholar] [CrossRef]
- Olsen, T.; Cooke, D.L.; Findl, O.; Gatinel, D.; Koch, D.; Langenbucher, A.; Melles, R.B.; Yeo, T.K. Surgeons Need to Know More about Intraocular Lens Design for Accurate Power Calculation. J. Cataract Refract. Surg. 2023, 49, 556–557. [Google Scholar] [CrossRef]
- Norrby, N.E.; Grossman, L.W.; Geraghty, E.P.; Kreiner, C.F.; Mihori, M.; Patel, A.S.; Portney, V.; Silberman, D.M. Accuracy in Determining Intraocular Lens Dioptric Power Assessed by Interlaboratory Tests. J. Cataract Refract. Surg. 1996, 22, 983–993. [Google Scholar] [CrossRef]
- Khoramnia, R.; Auffarth, G.; Łabuz, G.; Pettit, G.; Suryakumar, R. Refractive Outcomes after Cataract Surgery. Diagnostics 2022, 12, 243. [Google Scholar] [CrossRef] [PubMed]
- Trioptics Official Website. Available online: https://trioptics.com/products/optispheric-focal-length-and-radius-measurement// (accessed on 10 March 2023).
- Alarcon, A.; Canovas, C.; Koopman, B.; Pande, M.V.; Koch, D.D.; Piers, P. Optical Bench Evaluation of the Effect of Pupil Size in New Generation Monofocal Intraocular Lenses. BMC Ophthalmol. 2023, 23, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Van der Mooren, M.; Alarcon, A.; Jenkins Sanchez, M.D.; Chang, D.H. Effect of Violet Light-Filtering and Manufacturing Improvements in an Extended Depth-of-Focus Intraocular Lens on Visual Performance. Clin. Ophthalmol. 2023, 17, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Borkenstein, A.F.; Borkenstein, E.M.; Luedtke, H.; Schmid, R. Impact of Decentration and Tilt on Spherical, Aberration Correcting, and Specific Aspherical Intraocular Lenses: An Optical Bench Analysis. Ophthalmic Res. 2022, 65, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Luedtke, H.; Borkenstein, A.F. Effect of Decentration and Tilt on Four Novel Extended Range of Vision Intraocular Lenses Regarding Far Distance. Eur. J. Ophthalmol. 2023, 33, 933–942. [Google Scholar] [CrossRef] [PubMed]
Piece # | IOL Brand Name | IOL Type | Power (D) | IOL Refractive Index | Approx. Thickness (mm) |
---|---|---|---|---|---|
1 | Johnson and Johnson Tecnis DCB00 | Monofocal | +20.0 | 1.47 | 0.6 |
2 | Johnson and Johnson Tecnis DCB00 | Monofocal | +34.0 | 1.47 | 0.9 |
3 | Alcon Acrysof IQ Vivity | EDOF | +21.5 | 1.55 | 0.7 |
4 | Alcon Acrysof Restor Toric | Diffractive Bifocal Toric | +28.0/Cyl 1.0 Add +3.0 | 1.55 | 0.7 |
5 | Alcon Acrysof SN60T3 | Monofocal toric | +22.0/Cyl 1.50 | 1.55 | 0.7 |
6 | Johnson and Johnson Tecnis Eyhance | Enhanced monofocal | +8.0 | 1.47 | 0.5 |
7 | BVI PhysIOL Finevision MicroF | Diffractive Trifocal | +19.0 | 1.46 | 0.85 |
8 | BVI PhysIOL Finevision MicroF | Diffractive Trifocal | +19.0 Add +3.5 | 1.46 | 1 |
Parameters | Intra-Observer SEM (CI 95%) | Inter-Observer SEM | Gage R&R | Manufacturer Inter-Observer SEM | Minimum Detectable Difference (MDD) |
---|---|---|---|---|---|
SE Power (D) | 0.066 (0.047–0.085) | 0.078 | 0.01% | <0.04 | 0.216 |
Cylinder (D) | 0.046 (0.042–0.050) | 0.046 | 0.6% | <0.02 | 0.127 |
Add Power (D) | 0.012 (0.010–0.013) | 0.012 | 0.02% | <0.03 | 0.034 |
Far Focus MTF50 | 0.018 (0.015–0.022) | 0.019 | 1.5% | 0.015 | 0.053 |
Add Focus MTF50 | 0.0034 (0.0026–0.0043) | 0.004 | 1.5% | 0.015 | 0.012 |
Far Focus MTF25 | 0.026 (0.024–0.028) | 0.026 | 1.2% | 0.015 | 0.072 |
Add Focus MTF25 | 0.007 (0.0064–0.0076) | 0.007 | 2.6% | 0.015 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stern, B.; Saad, A.; Flamant, R.; Joannes, L.; Gatinel, D. Intra-Observer and Inter-Observer Variability of Intraocular Lens Measurements Using an Interferometry Metrology Device. Diagnostics 2024, 14, 216. https://doi.org/10.3390/diagnostics14020216
Stern B, Saad A, Flamant R, Joannes L, Gatinel D. Intra-Observer and Inter-Observer Variability of Intraocular Lens Measurements Using an Interferometry Metrology Device. Diagnostics. 2024; 14(2):216. https://doi.org/10.3390/diagnostics14020216
Chicago/Turabian StyleStern, Benjamin, Alain Saad, Roxane Flamant, Luc Joannes, and Damien Gatinel. 2024. "Intra-Observer and Inter-Observer Variability of Intraocular Lens Measurements Using an Interferometry Metrology Device" Diagnostics 14, no. 2: 216. https://doi.org/10.3390/diagnostics14020216
APA StyleStern, B., Saad, A., Flamant, R., Joannes, L., & Gatinel, D. (2024). Intra-Observer and Inter-Observer Variability of Intraocular Lens Measurements Using an Interferometry Metrology Device. Diagnostics, 14(2), 216. https://doi.org/10.3390/diagnostics14020216