Analysis of Hand Function, Upper Limb Disability, and Its Relationship with Peripheral Vascular Alterations in Raynaud’s Phenomenon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Measures
2.3.1. Vascular Assessment
Temperature Assessment and Cold Stress Test (CST)
Oxygen Saturation (SpO2)
Arterial Blood Flow
2.3.2. Functionality Assessment
Quick-DASH Questionnaire
Range of Motion (ROM) in Index Finger and Thumb
Pinch Strength
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics
3.2. Vascular Assessment
3.3. Functionality Assessment
3.4. Vascular and Functional Factors Associated with Disability in RP Participants
3.5. Final Multiple Regression Model of Predictive Factors Associated with Disability in RP Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maverakis, E.; Patel, F.; Kronenberg, D.G.; Chung, L.; Fiorentino, D.; Allanore, Y.; Guiducci, S.; Hesselstrand, R.; Hummers, L.K.; Duong, C.; et al. International consensus criteria for the diagnosis of Raynaud’s phenomenon. J. Autoimmun. 2014, 48–49, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Prete, M.; Fatone, M.C.; Favoino, E.; Perosa, F. Raynaud’s phenomenon: From molecular pathogenesis to therapy. Autoimmun. Rev. 2014, 13, 655–667. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, R.; Salaffi, F.; Grassi, W. Health-related quality of life in primary Raynaud phenomenon. J. Clin. Rheumatol. 2008, 14, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Goundry, B.; Bell, L.; Langtree, M.; Moorthy, A. Diagnosis and management of Raynaud’s phenomenon. BMJ 2012, 7, e289. [Google Scholar] [CrossRef] [PubMed]
- Demirkılıç, U.; Kadan, M.; Erol, G.; Karabacak, K.; Kaya, E.; Arslan, G.; Doğancı, S. How Can Follow-Up of Patients with Raynaud Phenomenon be Optimized? Med. Sci. Monit Basic Res. 2015, 2, 47–52. [Google Scholar] [CrossRef]
- Hughes, M.; Herrick, A.L. Raynaud’s phenomenon. Best Pract. Res. Clin. Rheumatol. 2016, 30, 112–132. [Google Scholar] [CrossRef]
- Norimatsu, Y.; Yoshizaki, A.; Kabeya, Y.; Fukasawa, T.; Omatsu, J.; Fukayama, M.; Kuzumi, A.; Ebata, S.; Yoshizaki-Ogawa, A.; Asano, Y.; et al. Expert-Level Distinction of Systemic Sclerosis from Hand Photographs Using Deep Convolutional Neural Networks. J. Investig. Dermatol. 2021, 10, 2536–2539. [Google Scholar] [CrossRef]
- Belch, J.; Carlizza, A.; Carpentier, P.H.; Constans, J.; Khan, F.; Wautrecht, J.-C.; Visona, A.; Heiss, C.; Brodeman, M.; Pécsvárady, Z.; et al. ESVM guidelines-the diagnosis and management of Raynaud’s phenomenon. Vasa 2017, 46, 413–423. [Google Scholar] [CrossRef]
- Herrick, A.L.; Dinsdale, G.; Murray, A. New Perspectives in the Imaging of Raynaud’s Phenomenon. Eur. J. Rheumatol. 2020, 7, 212–221. [Google Scholar] [CrossRef]
- Daniels, J.; Pauling, J.D.; Eccelston, C. Behaviour change interventions for the management of Raynaud’s phenomenon: A systematic review protocol. BMJ Open 2017, 7, e017039. [Google Scholar] [CrossRef]
- Sandqvist, G.; Wollmer, P.; Scheja, A.; Wildt, M.; Hesselstrand, R. Raynaud’s phenomenon and its impact on activities in daily life during one year of follow-up in early systemic sclerosis. Scand. J. Rheumatol. 2018, 47, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Hirschl, M.; Katzenschlager, R.; Francesconi, C.; Kundi, M. Low level laser therapy in primary Raynaud’s phenomenon–results of a placebo controlled, double blind intervention study. J. Rheumatol. 2004, 31, 2408–2412. [Google Scholar] [PubMed]
- Hughes, M.; Snapir, A.; Wilkinson, J.; Snapir, D.; Wigley, F.M.; Herrick, A.L. Prediction and impact of attacks of Raynaud’s phenomenon, as judged by patient perception. Rheumatology 2015, 54, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Merkel, P.A.; Herlyn, K.; Martin, R.W.; Anderson, J.J.; Mayes, M.D.; Bell, P.; Korn, J.H.; Simms, R.W.; Csuka, M.E.; Medsger, T.A.; et al. Measuring disease activity and functional status in patients with scleroderma and Raynaud’s phenomenon. Arthritis Rheum. 2002, 46, 2410–2420. [Google Scholar] [CrossRef] [PubMed]
- Giurgea, G.-A.; Mlekusch, W.; Charwat-Resl, S.; Mueller, M.; Hammer, A.; Gschwandtner, M.E.; Koppensteiner, R.; Schlager, O. Relationship of Age and Body Mass Index to Skin Temperature and Skin Perfusion in Primary Raynaud’s Phenomenon. Arthritis Rheumatol. 2015, 67, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, E.C.; Medsger, T.A. Raynaud’s phenomenon: A proposal for classification. Clin. Exp. Rheumatol. 1992, 10, 485–488. [Google Scholar] [PubMed]
- Grossi, G.; Mariotti, A.; Di Donato, L.; Amerio, P.; Tulli, A.; Romani, G.; Merla, A. Functional infrared imaging of paroxysmal ischemic events in patients with Raynaud’s phenomenon. Int. J. Immunopathol. Pharmacol. 2010, 23, 627–632. [Google Scholar] [CrossRef]
- Ismail, E.; Orlando, G.; Corradini, M.L.; Amerio, P.; Romani, G.L.; Merla, A. Differential diagnosis of Raynaud’s phenomenon based on modeling of finger thermoregulation. Physiol. Meas. 2014, 35, 703–716. [Google Scholar] [CrossRef]
- Plana, M.N.; Zamora, J.; Suresh, G.; Fernandez-Pineda, L.; Thangaratinam, S.; Ewer, A.K. Pulse oximetry screening for critical congenital heart defects. Cochrane Database Syst. Rev. 2017, 1, 1–83. [Google Scholar] [CrossRef]
- Akdogan, A.; Kilic, L.; Dogan, I.; Karadag, O.; Bilgen, S.A.; Kiraz, S.; Ertenli, I. Effect of capillaroscopic patterns on the pulse oximetry measurements in systemic sclerosis patients. Microvasc. Res. 2015, 98, 183–186. [Google Scholar] [CrossRef]
- Toprak, U.; Selvi, N.A.; Ateş, A.; Erhuner, Z.; Bostanoğlu, S.; Karademir, M.A.; Karaaslan, Y. Dynamic Doppler evaluation of the hand arteries of the patients with Raynaud’s disease. Clin. Rheumatol. 2009, 28, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Hervás, M.T.; Navarro, M.J.; Rodrigo Pérez, J.L.; López Matéu, P. Spanish version of the DASH questionnaire. Cross-cultural adaptation, reliability, validity and responsiveness. Med. Clin. 2006, 127, 441–447. [Google Scholar]
- Gummesson, C.; Ward, M.M.; Atroshi, I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): Validity and reliability based on responses within the full-length DASH. BMC Musculoskelet. Disord. 2006, 7, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Bain, G.I.; Polites, N.; Higgs, B.G.; Heptinstall, R.J.; McGrath, A.M. The functional range of motion of the finger joints. J. Hand Surg. Eur. 2015, 40, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Engstrand, C.; Krevers, B.; Kvist, J. Interrater reliability in finger joint goniometer measurement in Dupuytrens disease. Am. J. Occup. Ther. 2012, 66, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Carey, M.A.; Laird, D.E.; Murray, K.A.; Stevenson, J.R. Reliability, validity, and clinical usability of a digital goniometer. Work 2010, 36, 55–66. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Mazzer, N.; Barbieri, C.H. Analysis of the reliability and reproducibility of goniometry compared to hand photogrammetry. Acta Ortop. Bras. 2012, 20, 139–149. [Google Scholar] [CrossRef]
- Pérez-Mármol, J.M.; Ortega-Valdivieso, M.A.; Cano-Deltell, E.E.; Peralta-Ramírez, M.I.; García-Ríos, M.C.; Aguilar-Ferrándiz, M.E. Influence of upper limb disability, manual dexterity and fine motor skill on general self-efficacy in institutionalized elderly with osteoarthritis. J. Hand Ther. 2016, 29, 58–65. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Fess, E.E.; Moran, C.A. Clinical Assessment Recommendations; American Society of Hand Therapists: Mount Laurel, NJ, USA, 1981. [Google Scholar]
- Pérez-Mármol, J.M.; García-Ríos, M.C.; Ortega-Valdivieso, M.A.; Cano-Deltell, E.E.; Peralta-Ramírez, M.I.; Ickmans, K.; Aguilar-Ferrándiz, M.E. Effectiveness of a fine motor skills rehabilitation program on upper limb disability, manual dexterity, pinch strength, range of fingers motion, performance in activities of daily living, functional independency, and general self-efficacy in hand osteoarthritis: A randomized clinical trial. J. Hand Ther. 2017, 30, 262–273. [Google Scholar] [CrossRef]
- O’Reilly, D.; Taylor, L.; El-Hadidy, K.; I Jayson, M. Measurement of cold challenge responses in primary Raynaud’s phenomenon and Raynaud’s phenomenon associated with systemic sclerosis. Ann. Rheum. Dis. 1992, 51, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Roustit, M.; Blaise, S.; Millet, C.; Cracowski, J.-L. Impaired transient vasodilation and increased vasoconstriction to digital local cooling in primary Raynaud’s phenomenon. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.M.; Middaugh, S.J.; Haythornthwaite, J.A.; Bielory, L. The effects of stress, anxiety, and outdoor temperature on the frequency and severity of Raynaud’s attacks: The Raynaud’s Treatment Study. J. Behav. Med. 2001, 24, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Stoyneva, Z. Laser Doppler-recorded venoarteriolar reflex in Raynaud’s phenomenon. Auton. Neurosci. 2004, 116, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Mirbod, S.M.; Sugiura, H. A non-invasive technique for the evaluation of peripheral circulatory functions in female subjects with Raynaud’s phenomenon. Ind. Health 2017, 55, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Gaillard-Bigot, F.; Roustit, M.; Blaise, S.; Gabin, M.; Cracowski, C.; Seinturier, C.; Imbert, B.; Carpentier, P.; Cracowski, J. Abnormal amplitude and kinetics of digital postocclusive reactive hyperemia in systemic sclerosis. Microvasc. Res. 2014, 94, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Maga, P.; Henry, B.M.; Kmiotek, E.K.; Gregorczyk-Maga, I.; Kaczmarczyk, P.; Tomaszewski, K.A.; Niżankowski, R. Postocclusive Hyperemia Measured with Laser Doppler Flowmetry and Transcutaneous Oxygen Tension in the Diagnosis of Primary Raynaud’s Phenomenon: A Prospective, Controlled Study. BioMed Res. Int. 2016, 2016, 9645705. [Google Scholar] [CrossRef]
- Bello, R.J.; Cooney, C.M.; Melamed, E.; Follmar, K.; Yenokyan, G.; Leatherman, G.; Shah, A.A.; Wigley, F.M.; Hummers, L.K.; Lifchez, S.D. The Therapeutic Efficacy of Botulinum Toxin in Treating Scleroderma-Associated Raynaud’s Phenomenon: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Arthritis Rheumatol. 2017, 69, 1661–1669. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zerón, P.; Seror, R.; Bootsma, H.; Bowman, S.J.; Dörner, T. Characterization of systemic disease in primary Sjögren’s syndrome: EULAR-SS Task Force recommendations for articular, cutaneous, pulmonary and renal involvements. Rheumatology 2017, 56, 1245. [Google Scholar] [CrossRef]
- Uppal, L.; Dhaliwal, K.; Butler, P.E. A prospective study of the use of botulinum toxin injections in the treatment of Raynaud’s syndrome associated with scleroderma. J. Hand Surg. Eur. 2014, 39, 876–880. [Google Scholar] [CrossRef]
- Landim, S.F.; Bertolo, M.B.; de Abreu, M.F.M.; Del Rio, A.P.; Mazon, C.C.; Marques-Neto, J.F.; Poole, J.L.; Magalhães, E.d.P. The evaluation of a home-based program for hands in patients with systemic sclerosis. J. Hand Ther. 2017, 17, S0894–S1130. [Google Scholar] [CrossRef] [PubMed]
- Sandqvist, G.; Hesselstrand, R.; Eberhardt, K. A longitudinal follow-up of hand involvement and activities of daily living in early systemic sclerosis. Scand. J. Rheumatol. 2009, 38, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.J.; Poole, K.; Elms, J. Upper limb disability in HAVS cases–how does it relate to the neurosensory or vascular elements of HAVS? Occup. Med. 2005, 55, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Bérezné, A.; Seror, R.; Morell-Dubois, S.; de Menthon, M.; Fois, E.; Dzeing-Ella, A.; Nguyen, C.; Hachulla, E.; Guillevin, L.; Poiraudeau, S.; et al. Impact of systemic sclerosis on occupational and professional activity with attention to patients with digital ulcers. Arthritis Care Res. 2011, 63, 277–285. [Google Scholar] [CrossRef]
- Roh, Y.H.; Noh, J.H.; Gong, H.S.; Baek, G.H. Comparative study on the effectiveness of a corticosteroid injection for carpal tunnel syndrome in patients with and without Raynaud’s phenomenon. Bone Jt. J. 2017, 99-B, 1637–1642. [Google Scholar] [CrossRef]
- Palmer, K.T.; Griffin, M.J.; Syddall, H.; Cooper, C.; Coggon, D. The clinical grading of Raynaud’s phenomenon and vibration-induced white finger: Relationship between finger blanching and difficulties in using the upper limb. Int. Arch. Occup. Environ. Health 2002, 75, 29–36. [Google Scholar] [CrossRef]
- Anderson, M.E.; Moore, T.L.; Lunt, M.; Herrick, A.L. Digital iontophoresis of vasoactive substances as measured by laser Doppler imaging—A non-invasive technique by which to measure microvascular dysfunction in Raynaud’s phenomenon. Rheumatology 2004, 43, 986–991. [Google Scholar] [CrossRef]
Outcomes | PRP † n = 18 | SRP ‡ n = 19 | Controls n = 20 |
---|---|---|---|
Age in years, mean (standard deviation) | 28.4 (10.4) | 55.8 (6.2) | 40.3 (14.3) |
Sex, n (%) | |||
Male | 5/27.8 | 4/21.1 | 4/20 |
Female | 13/72.2 | 15/78.9 | 16/80 |
Hand dominance (%) | |||
Right | 18/100 | 19/100 | 18/90 |
Left | - | - | 2/10 |
RP attacks (No./week) (%) | 23.3 (7.2) | 28.0 (21.0) | - |
Associated Pathologies (%) | |||
Arterial Hypertension | - | 6/31.6 | 2/10 |
Hypercholesterolemia | - | 2/10.5 | 1/5 |
Diabetes | - | 2/10.5 | - |
Vascular Items, mean (standard deviation) | |||
Temperature pre-CST § (°C) | |||
Dominant | 26.3 (3.8) | 29.0 (4.3) | 29.8 (3.9) |
Non-Dominant | 26.6 (4.0) | 29.4 (4.0) | 30.1 (3.8) |
Both hands | 26.5 (3.9) | 29.2 (4.1) | 30.0 (3.9) |
Temperature post-CST (°C) | |||
Dominant | 24.4 (4.4) | 27.7 (5.2) | 30.3 (3.7) |
Non-Dominant | 24.1 (4.7) | 27.8 (4.9) | 29.9 (4.0) |
Both hands | 24.2 (4.6) | 27.8 (5.0) | 30.1 (3.8) |
Recovery Temperature (°C) | |||
Dominant | 1.8 (3.2) | 1.3 (3.5) | −0.4 (2.9) |
Non-Dominant | 2.6 (3.3) | 1.6 (3.1) | 0.2 (2.4) |
Both hands | 2.2 (3.2) | 1.5 (3.2) | −0.1 (2.6) |
Blood flow radial artery (cm/s−2) | |||
Dominant | 8.5 (2.7) | 8.6 (4.8) | 12.4 (5.0) |
Non-Dominant | 8.5 (2.2) | 8.8 (3.6) | 12.5 (3.9) |
Blood flow ulnar artery (cm/s−2) | |||
Dominant | 10.0 (3.6) | 10.9 (6.8) | 11.8 (3.4) |
Non-Dominant | 8.3 (2.3) | 15.0 (24.0) | 12.4 (4.2) |
Oxygen Saturation (%) | |||
Dominant | 97.5 (0.9) | 96.6 (1.1) | 97.1 (1.2) |
Non-Dominant | 97.6 (0.8) | 96.9 (0.9) | 97.0 (1.3) |
Functionality Items, mean (standard deviation) | |||
Quick-DASH || (%) | |||
Upper limb disability | 15.9 (11.4) | 57.3 (13.9) | 2.5 (7.6) |
Work Module | 21.9 (19.1) | 72.7 (24.6) | 1.9 (8.4) |
Sports/Performing Arts Module | 22.9 (25.5) | 69.7 (19.8) | 0 (0.0) |
ROM ¶ Active index finger flexion | |||
Dominant | 93.2 (6.2) | 81.5 (9.9) | 84.8 (8.9) |
Non-Dominant | 93.2 (6.8) | 81.8 (9.4) | 85.7 (9.1) |
ROM Passive index finger flexion | |||
Dominant | 103.2 (5.3) | 93.3 (8.9) | 95.7 (8.0) |
Non-Dominant | 104.2 (5.5) | 93.9 (7.6) | 96.0 (7.7) |
ROM Active index finger extension | |||
Dominant | 32.5 (6.0) | 30.5 (6.6) | 30.6 (6.1) |
Non-Dominant | 31.8 (5.6) | 30.8 (7.5) | 32.0 (5.6) |
ROM Passive index finger extension | |||
Dominant | 60.8 (9.7) | 49.7 (12.8) | 49.5 (14.4) |
Non-Dominant | 61.9 (9.1) | 49.0 (12.5) | 52.1 (12.3) |
ROM Active thumb flexion | |||
Dominant | 76.2 (4.4) | 67.2 (7.4) | 72.2 (7.2) |
Non-Dominant | 78.3 (5.4) | 69.9 (9.6) | 73.4 (7.5) |
ROM Passive thumb flexion | |||
Dominant | 87 (5) | 72.1 (18.8) | 82.3 (8.9) |
Non-Dominant | 87.9 (6.2) | 79.2 (9.9) | 84.4 (7.8) |
ROM Active thumb extension | |||
Dominant | 30.2 (5.5) | 23.4 (5.5) | 25.5 (6.5) |
Non-Dominant | 29.4 (3.4) | 21.6 (6.5) | 25.6 (5.6) |
ROM Passive thumb extension | |||
Dominant | 51.9 (8.9) | 43.9 (9.5) | 46.6 (11.3) |
Non-Dominant | 51.9 (8.6) | 44.2 (8.7) | 46.5 (12.9) |
Tip pinch strength | |||
Dominant | 4.8 (1.6) | 4.7 (2.4) | 5.1 (1.5) |
Non-Dominant | 4.5 (1.8) | 4.5 (2.4) | 4.9 (1.4) |
Lateral pinch strength | |||
Dominant | 7.5 (1.6) | 6.4 (2.0) | 7.4 (2.5) |
Non-Dominant | 7.6 (1.7) | 6.1 (2.0) | 7.1 (2.6) |
Outcomes | Controls vs. Primary RP † | p-Value | Controls vs. Secondary RP † | p-Value | Primary vs. Secondary RP † | p-Value |
---|---|---|---|---|---|---|
MD (95% CI) | MD (95% CI) | MD (95% CI) | ||||
Vascular Items | ||||||
Temperature pre-CST ‡ (°C) | ||||||
Dominant | 3.540 (0.307; 6.772) | 0.027 * | 0.818 (−2.368; 4.006) | 1.000 | −2.721 (−5.994; 0.551) | 0.134 |
Non-Dominant | 3.440 (0.288; 6.591) | 0.028 * | 0.626 (−2.481; 3.734) | 1.000 | −2.813 (−6.004; 0.377) | 0.101 |
Both hands | 3.490 (−0.317; 6.662) | 0.026 * | 0.722 (−2.405; 3.851) | 1.000 | −2.767 (−5.978; 0.444) | 0.114 |
Temperature post-CST (°C) | ||||||
Dominant | 5.918 (2.320; 9.517) | 0.000 * | 2.569 (−0.979; 6.118) | 0.238 | −3.349 (−6.992; 0.293) | 0.081 |
Non-Dominant | 5.848 (2.193; 9.503) | 0.001 * | 2.104 (−1.499; 5.708) | 0.465 | −3.743 (−7.444; −0.043) | 0.046 * |
Both hands | 5.883 (2.285; 9.482) | 0.001 * | 2.336 (−1.211; 5.885) | 0.328 | −3.546 (−7.189; 0.096) | 0.059 |
Recovery Temperature (°C) | ||||||
Dominant | −2.267 (−4.844; 0.308) | 0.102 | −1.750 (−4.291; 0.790) | 0.283 | 0.517 (−2.091; 3.125) | 1.000 |
Non-Dominant | −2.408 (−4.756; −0.060) | 0.043 * | −1.451 (−3.766; 0.863) | 0.382 | 0.957 (−1.419; 3.334) | 0.973 |
Both hands | −2.338 (−4.741; 0.065) | 0.059 | −1.600 (−3.971; 0.769) | 0.303 | 0.737 (−1.690; 3.170) | 1.000 |
Blood flow radial artery (cm;s−2) | ||||||
Dominant | 4.522 (0.707; 8.338) | 0.015 * | 2.954 (−1.050; 6.957) | 0.221 | −1.569 (−6.644; 3.507) | 1.000 |
Non-Dominant | 3.973 (0.975; 6.970) | 0.006 * | 3.694 (0.549; 6.840) | 0.016 * | −0.279 (−4.266; 3.709) | 1.000 |
Blood flow ulnar artery (cm;s−2) | ||||||
Dominant | 2.155 (−2.180; 6.490) | 0.674 | 0.423 (−4.126; 4.972) | 1.000 | −1.732 (−7.499; 4.035) | 1.000 |
Non-Dominant | 5.408 (−7.147; 17.963) | 0.875 | −4.222 (−17.396; 8.952) | 1.000 | −9.630 (−26.331; 7.071) | 0.480 |
Oxygen Saturation (%) | ||||||
Dominant | −0.129 (−1.064; 0.807) | 1.000 | 0.281 (−0.700; 1.262) | 1.000 | 0.410 (−0.834; 1.654) | 1.000 |
Non-Dominant | −0.262 (1.141; 0.617) | 1.000 | −0.353 (−1.275; 0.570) | 1.000 | −0.091 (−1.261; 1.078) | 1.000 |
Functionality Items | ||||||
Quick-DASH § (%) | ||||||
Upper limb disability | −14.330 (−24.294; −4.367) | 0.002 * | −53.596 (−64.051; −43.141) | 0.000 * | −39.266 (−52.520; −26.012) | 0.000 * |
Work Module | −17.982 (−34.354; −1.610) | 0.027 * | −73.468 (−56.289; −90.647) | 0.000 * | −55.486 (−33.707; 77.265) | 0.000 * |
Sports/Performing Arts Module | −21.885 (−38.203; −5.568) | 0.005 * | −71.089 (−88.211; −53.976) | 0.000 * | −49.203 (−70.910; 27.497) | 0.000 * |
ROM || Active index finger flexion | ||||||
Dominant | −6.612 (−14.110; 0.887) | 0.101 | −0.989 (−6.880; 8.856) | 1.000 | 7.600 (−2.375; 17.575) | 0.195 |
Non-Dominant | −5.106 (−12.455; 2.244) | 0.275 | 0.728 (−6.983; 8.440) | 1.000 | 5.834 (−3.942; 15.610) | 0.438 |
ROM Passive index finger flexion | ||||||
Dominant | −6.095 (−12.780; 0.591) | 0.085 | 0.506 (−6.509; 7.521) | 1.000 | 6.600 (−2.293; 15.493) | 0.216 |
Non-Dominant | −6.099 (−12.160; −0.038) | 0.048* | −0.619 (−6.979; 5.740) | 1.000 | 5.480 (−2.583; 13.542) | 0.296 |
ROM Active index finger extension | ||||||
Dominant | −2.080 (−7.655; 3.495) | 1.000 | 0.310 (−5.540; 6.160) | 1.000 | 2.390 (−5.026; 9.806) | 1.000 |
Non-Dominant | 0.571 (−5.310; 6.173) | 1.000 | 0.753 (−5.125; 6.631) | 1.000 | 0.182 (−7.269; 7.634) | 1.000 |
ROM Passive index finger extension | ||||||
Dominant | −11.871 (−23.052; −0.689) | 0.034 * | 0.583 (−11.150; 12.316) | 1.000 | 12.453 (−2.420; 27.327) | 0.130 |
Non-Dominant | −9.583 (−19.819; 0.652) | 0.074 | 2.926 (−7.814; 13.666) | 1.000 | 12.510 (−1.106; 26.125) | 0.082 |
ROM Active thumb flexion | ||||||
Dominant | −3.614 (−9.430; 2.201) | 0.391 | 4.696 (−1.406; 10.798) | 0.188 | 8.310 (0.574; 16.046) | 0.031 * |
Non-Dominant | −5.451 (−12.33; 1.436) | 0.167 | 4.152 (−3.074; 11.378) | 0.484 | 9.603 (0.442; 18.764) | 0.037 * |
ROM Passive thumb flexion | ||||||
Dominant | −3.351 (−14.364; 7.662) | 1.000 | 8.510 (−3.046; 20.066) | 0.223 | 11.861 (−2.789; 26.511) | 0.151 |
Non-Dominant | −2.236 (−9.403; 4.932) | 1.000 | 3.626 (−3.895; 11.147) | 0.716 | 5.862 (−3.673; 15.397) | 0.430 |
ROM Active thumb extension | ||||||
Dominant | −4.475 (−9.713; 0.762) | 0.118 | 1.828 (−3.668; 7.324) | 1.000 | 6.0303 (−0.664; 13.271) | 0.089 |
Non-Dominant | −4.538 (−9.286; 0.210) | 0.065 | 4.930 (−0.051; 9.912) | 0.053 | 9.468 (3.153; 15.784) | 0.002 * |
ROM Passive thumb extension | ||||||
Dominant | −4.790 (−13.719; 4.139) | 0.571 | 2.041 (−7.328; 11.411) | 1.000 | 6.832 (−5.046; 18.709) | 0.483 |
Non-Dominant | −5.524 (−14.742; 3.693) | 0.433 | 2.394 (−7.278; 12.066) | 1.000 | 7.919 (−4.343; 20.180) | 0.349 |
Tip pinch strength | ||||||
Dominant | 0.546 (−1.519; 1.882) | 1.000 | 0.546 (−1.238; 2.331) | 1.000 | 0.365 (−1.897; 2.627) | 1.000 |
Non-Dominant | 0.462 (−1.258; 2.182) | 1.000 | 0.359 (−1.446; 2.164) | 0.730 | −0.103 (−2.392; 2.185) | 1.000 |
Lateral pinch strength | ||||||
Dominant | −0.011 (−1.884; 1.861) | 1.000 | 0.805 (−1.160; 2.770) | 0.947 | 0.817 (−1.674; 3.307) | 0.817 |
Non-Dominant | −0.160 (−2.057; 1.736) | 1.000 | 0.651 (−1.339; 2.641) | 1.000 | 0.811(−1.711; 3.334) | 1.000 |
Outcomes Measures | Quick-DASH † Upper Limb Disability | Quick-DASH † Work Module | Quick-DASH † Sports/Arts Module | |||
---|---|---|---|---|---|---|
Pearson (r) | p-Value | Pearson (r) | p-Value | Pearson (r) | p-Value | |
RP ‡ attacks (No./week) | 0.141 | 0.406 | 0.648 | 0.078 | 0.412 | 0.139 |
Temperature pre-CST § | 0.219 | 0.193 | 0.254 | 0.129 | −0.089 | 0.602 |
Temperature post-CST | 0.293 | 0.079 | −0.348 | 0.035 * | 0.027 | 0.876 |
Recovery Temperature | −0.166 | 0.326 | −0.213 | 0.205 | −0.151 | 0.374 |
Blood flow radial artery | 0.169 | 0.318 | 0.161 | 0.341 | 0.723 | −0.060 |
Blood flow ulnar artery | 0.284 | 0.089 | 0.239 | 0.153 | 0.111 | 0.512 |
Oxygen Saturation | −0.394 | 0.016 * | −0.535 | 0.001 ** | −0.183 | 0.278 |
ROM || index finger flexion | −0.613 | 0.000 *** | −0.517 | 0.001 ** | −0.522 | 0.001 ** |
ROM index finger extension | −0.525 | 0.001 ** | −0.459 | 0.004 ** | −0.401 | 0.014 * |
ROM thumb flexion | −0.394 | 0.016 * | −0.408 | 0.012 * | −0.204 | 0.226 |
ROM thumb extension | −0.442 | 0.006 ** | −0.473 | 0.003 ** | −0.354 | 0.032 * |
Tip pinch strength | −0.046 | 0.789 | 0.107 | 0.530 | −0.079 | 0.642 |
Lateral pinch Strength | −0.459 | 0.004 ** | −0.230 | 0.171 | −0.389 | 0.017 * |
Quick-DASH †: Upper Limb Disability (r2 ‡ = 0.551) | ||||||
---|---|---|---|---|---|---|
Independent Variables | B § | 95% CI || | β ¶ | SE # | p-Value | |
Upper Limit | Lower Limit | |||||
Oxygen Saturation | −7.400 | −0.016 | −14.785 | −0.273 | 3.625 | 0.050 |
ROM †† index finger extension | −1.122 | −0.291 | −1.954 | −0.348 | 0.408 | 0.010 * |
ROM thumb flexion | −0.474 | 0.298 | −1.246 | −0.164 | 0.379 | 0.220 |
Lateral pinch strength | −5.706 | −2.400 | −9.012 | −0.427 | 1.623 | 0.001 * |
Quick-DASH †: Sports/Performing Arts Disability (r2 ‡ = 0.275) | ||||||
---|---|---|---|---|---|---|
Independent Variables | B § | 95% CI || | β ¶ | SE # | p-Value | |
Upper Limit | Lower Limit | |||||
ROM †† index finger extension | −1.530 | −0.242 | −2.817 | −0.356 | 0.634 | 0.021 * |
Lateral pinch strength | −6.095 | −0.755 | −11.43 | −0.342 | 2.627 | 0.026 * |
Quick-DASH †: Work Disability (r2 ‡ = 0.418) | ||||||
---|---|---|---|---|---|---|
Independent Variables | B § | 95% CI || | β ¶ | SE # | p-Value | |
Upper Limit | Lower Limit | |||||
Temperature post-CST †† | −0.419 | 2.239 | −3.078 | −0.063 | 1.305 | 0.750 |
Oxygen Saturation | −15.532 | −0.696 | −30.368 | −0.416 | 7.283 | 0.041 * |
ROM ‡‡ index finger extension | −1.319 | −0.011 | −2.627 | 0.642 | −0.297 | 0.048 * |
ROM thumb flexion | −0.791 | 0.466 | −2.048 | 0.617 | −0.199 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia-Haro, R.M.; García-Ríos, M.C.; Castro-Sánchez, A.M.; Toledano-Moreno, S.; Casas-Barragán, A.; Aguilar-Ferrándiz, M.E. Analysis of Hand Function, Upper Limb Disability, and Its Relationship with Peripheral Vascular Alterations in Raynaud’s Phenomenon. Diagnostics 2024, 14, 93. https://doi.org/10.3390/diagnostics14010093
Tapia-Haro RM, García-Ríos MC, Castro-Sánchez AM, Toledano-Moreno S, Casas-Barragán A, Aguilar-Ferrándiz ME. Analysis of Hand Function, Upper Limb Disability, and Its Relationship with Peripheral Vascular Alterations in Raynaud’s Phenomenon. Diagnostics. 2024; 14(1):93. https://doi.org/10.3390/diagnostics14010093
Chicago/Turabian StyleTapia-Haro, Rosa Mª, Mª Carmen García-Ríos, Adelaida Mª Castro-Sánchez, Sonia Toledano-Moreno, Antonio Casas-Barragán, and Mª Encarnación Aguilar-Ferrándiz. 2024. "Analysis of Hand Function, Upper Limb Disability, and Its Relationship with Peripheral Vascular Alterations in Raynaud’s Phenomenon" Diagnostics 14, no. 1: 93. https://doi.org/10.3390/diagnostics14010093
APA StyleTapia-Haro, R. M., García-Ríos, M. C., Castro-Sánchez, A. M., Toledano-Moreno, S., Casas-Barragán, A., & Aguilar-Ferrándiz, M. E. (2024). Analysis of Hand Function, Upper Limb Disability, and Its Relationship with Peripheral Vascular Alterations in Raynaud’s Phenomenon. Diagnostics, 14(1), 93. https://doi.org/10.3390/diagnostics14010093