The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease
Abstract
:1. Introduction
2. Results
2.1. Association of RB1, TERT, E2F1, E2F2, and E2F3 Gene Expressionswith Clinical Outcome in Stage 4S Neuroblastoma Patients
2.2. E2F3 Protein Expression in Primary Stage 4S Neuroblastoma Tissue Sections
3. Discussion
4. Materials and Methods
4.1. R2 Genomic Analysis and Visualization Platform
4.2. Immunofluorescence Analysis
4.3. Patients and Tumor Samples
4.4. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NB | Neuroblastoma |
TERT | telomerase reverse transcriptase |
RB1 | retinoblastoma tumor suppressor |
EFS | event-free survival |
HR | hazard ratio |
mHR | meta-analytic HR |
ALT | alternative lengthening of telomeres |
MYCN | v-mycmyelocytomatosis viral related oncogene neuroblastoma derived |
GWAS | genome-wide association studies |
INSS | International Neuroblastoma Staging System |
INBR | Italian Neuroblastoma Registry |
SIOPEN | International Society of Paediatric Oncology European Neuroblastoma |
AIEOP | Italian Association of Pediatric Hematology and Oncology |
References
- Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primers 2016, 2, 16078. [Google Scholar] [CrossRef]
- Cheung, N.K.; Dyer, M.A. Neuroblastoma: Developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 2013, 13, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, J.I.; Dyberg, C.; Wickström, M. Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019, 12, 9. [Google Scholar] [CrossRef]
- Speleman, F.; Park, J.R.; Henderson, T.O. Neuroblastoma: A Tough Nut to Crack. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e548–e557. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.E.; D’Angio, G.J.; Randolph, J. A proposed staging for children with neuroblastoma. Children’s cancer study group A. Cancer 1971, 27, 374–378. [Google Scholar] [CrossRef]
- Brodeur, G.M.; Pritchard, J.; Berthold, F.; Carlsen, N.L.; Castel, V.; Castelberry, R.P.; De Bernardi, B.; Evans, A.E.; Favrot, M.; Hedborg, F.; et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 1993, 11, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Ablin, A.R.; Miller, C.; Zoger, S.; Matthay, K.K. Complete pathologic maturation and regression of stage IVS neuroblastoma without treatment. Cancer 1988, 62, 818–825. [Google Scholar] [CrossRef]
- Tas, M.L.; Nagtegaal, N.; Kraal, K.C.J.M.; Tytgat, G.A.M.; Abeling, N.G.G.; Koster, J.; Pluijm, S.M.F.; Zwaan, C.M.; Keizer, B.; Molenaar, J.J.; et al. Neuroblastoma stage 4S: Tumor regression rate and risk factors of progressive disease. Pediatr. Blood Cancer 2019, 67, e28061. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, H.J.; Matthay, K.K.; Seeger, R.C.; Brodeur, G.M.; Shimada, H.; Perez, C.; Atkinson, J.B.; Selch, M.; Gerbing, R.B.; Stram, D.O.; et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: A Children’s Cancer Group study. J. Clin. Oncol. 2000, 18, 477–486. [Google Scholar] [CrossRef]
- Taggart, D.R.; London, W.B.; Schmidt, M.L.; DuBois, S.G.; Monclair, T.F.; Nakagawara, A.; De Bernardi, B.; Ambros, P.F.; Pearson, A.D.; Cohn, S.L.; et al. Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J. Clin. Oncol. 2011, 29, 4358–4364. [Google Scholar] [CrossRef]
- Twist, C.J.; Naranjo, A.; Schmidt, M.L.; Tenney, S.C.; Cohn, S.L.; Meany, H.J.; Mattei, P.; Adkins, E.S.; Shimada, H.; London, W.B.; et al. Defining Risk Factors for Chemotherapeutic Intervention in Infants with Stage4SNeuroblastoma: A Report from Children’s Oncology Group Study ANBL0531. J. Clin. Oncol. 2019, 37, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Lavarino, C.; Cheung, N.K.; Garcia, I.; Domenech, G.; de Torres, C.; Alaminos, M.; Rios, J.; Gerald, W.L.; Kushner, B.; LaQuaglia, M.; et al. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 2009, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decock, A.; Ongenaert, M.; De Wilde, B.; Brichard, B.; Noguera, R.; Speleman, F.; Vandesompele, J. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics 2016, 11, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodeur, G.M. Spontaneousregression of neuroblastoma. Cell Tissue Res. 2018, 372, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M.; Bagatell, R. Mechanisms of neuroblastomaregression. Nat. Rev. Clin. Oncol. 2014, 11, 704–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, M.M.; Fueyo, J.; Shay, J.W.; Aldape, K.D.; Jiang, H.; Lee, O.H.; Johnson, D.G.; Xu, J.; Kondo, Y.; Kanzawa, T.; et al. Expression of transcription factor E2F1 and telomerase in glioblastomas: Mechanistic linkage and prognostic significance. J. Natl. Cancer Inst. 2005, 97, 1589–1600. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Cruz, R.; Johnson, D.G. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int. J. Mol. Sci. 2017, 18, 1776. [Google Scholar] [CrossRef]
- Pezzolo, A.; Pistorio, A.; Gambini, C.; Haupt, R.; Ferraro, M.; Erminio, G.; De Bernardi, B.; Garaventa, A.; Pistoia, V. Intratumoral diversity of telomere length in individual neuroblastoma tumors. Oncotarget 2015, 6, 7493–7503. [Google Scholar] [CrossRef]
- Talluri, S.; Dick, F.A. Regulation of transcription and chromatin structure by pRB: Here, there and everywhere. Cell Cycle 2012, 11, 3189–3198. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.J.; Dyson, N.J. Retinoblastoma protein partners. Adv. Cancer Res. 2001, 82, 1–54. [Google Scholar]
- Strieder, V.; Lutz, W. E2F proteins regulate MYCN expression in neuroblastomas. Biol. Chem. 2003, 278, 2983–2989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, R.R.; Otero, J.H.; Garcia-Lopez, J.; Wallace, K.; Finkelstein, D.; Rehg, J.E.; Yin, Z.; Wang, Y.D.; Freeman, K.W. MYCN induces neuroblastoma in primary neural crest cells. Oncogene 2017, 36, 5075–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degregori, J.; Johnson, D.G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 2006, 6, 739–748. [Google Scholar] [CrossRef] [PubMed]
- McNair, C.; Xu, K.; Mandigo, A.C.; Benelli, M.; Leiby, B.; Rodrigues, D.; Lindberg, J.; Gronberg, H.; Crespo, M.; De Laere, B.; et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Investig. 2018, 128, 341–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, C.; Chen, Y.; Stallings, R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007, 26, 5017–5022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocak, H.; Ackermann, S.; Hero, B.; Kahlert, Y.; Oberthuer, A.; Juraeva, D.; Roels, F.; Theissen, J.; Westermann, F.; Deubzer, H.; et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis. 2013, 4, e586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberthuer, A.; Berthold, F.; Warnat, P.; Hero, B.; Kahlert, Y.; Spitz, R.; Ernestus, K.; König, R.; Haas, S.; Eils, R.; et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J. Clin. Oncol. 2006, 24, 5070–5078. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yu, Y.; Hertwig, F.; Thierry-Mieg, J.; Thierry-Mieg, D.; Wang, J.; Furlanello, C.; Devanarayan, V.; Cheng, J.; Deng, Y.; et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 2015, 16, 133. [Google Scholar] [CrossRef] [Green Version]
- Brinkschmidt, C.; Poremba, C.; Christiansen, H.; Simon, R.; Schäfer, K.L.; Terpe, H.J.; Lampert, F.; Boecker, W.; Dockhorn-Dworniczak, B. Comparative genomic hybridization and telomerase activity analysis identify 2 biologically different groups of 4s neuroblastomas. Br. J. Cancer 1998, 77, 2223–2229. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, S.; Cartolano, M.; Hero, B.; Welte, A.; Kahlert, Y.; Roderwieser, A.; Bartenhagen, C.; Walter, E.; Gecht, J.; Kerschke, L.; et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018, 362, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, D. E2F3-a novel repressor of the ARF/p53 pathway. Dev. Cell 2004, 6, 742–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, W.O.; Tschöp, K.; Herr, A.; Ji, J.Y.; Dyson, N.J. Pumilio facilitates miRNA regulation of the E2F3 oncogene. Genes Dev. 2012, 26, 356–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamper, I.; Burkhart, D.L.; Bywater, M.J.; Garcia, D.; Wilson, C.H.; Kreuzaler, P.A.; Arends, M.J.; Zheng, Y.W.; Perfetto, A.; Littlewood, T.D.; et al. Determination of the physiological and pathological roles of E2F3 in adult tissues. Sci. Rep. 2017, 7, 9932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tordai, A.; Wang, J.; Andre, F.; Liedtke, C.; Yan, K.; Sotiriou, C.; Hortobagyi, G.N.; Symmans, W.F.; Pusztai, L. Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res. 2008, 10, R37. [Google Scholar] [CrossRef]
- Olsson, A.Y.; Feber, A.; Edwards, S.; TePoele, R.; Giddings, I.; Merson, S.; Cooper, C.S. Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 2007, 26, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Feber, A.; Clark, J.; Goodwin, G.; Dodson, A.R.; Smith, P.H.; Fletcher, A.; Edwards, S.; Flohr, P.; Falconer, A.; Roe, T.; et al. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 2004, 23, 1627–1630. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.S.; Nicholson, A.G.; Foster, C.; Dodson, A.; Edwards, S.; Fletcher, A.; Roe, T.; Clark, J.; Joshi, A.; Norman, A.; et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 2006, 54, 155–162. [Google Scholar] [CrossRef]
- Bosse, K.R.; Maris, J.M. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer 2016, 122, 20–33. [Google Scholar] [CrossRef]
- Maris, J.M.; Mosse, Y.P.; Bradfield, J.P.; Hou, C.; Monni, S.; Scott, R.H.; Asgharzadeh, S.; Attiyeh, E.F.; Diskin, S.J.; Laudenslager, M.; et al. A genome-wide association study identifies a susceptibility locus to clinically aggressive neuroblastoma at 6p22. N. Engl. J. Med. 2008, 358, 2585–2593. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.R.; Penikis, A.; Oldridge, D.A.; Alvarez-Dominguez, J.R.; McDaniel, L.; Diamond, M.; Padovan, O.; Raman, P.; Li, Y.; Wei, J.S.; et al. CASC15-S Is a Tumor Suppressor lncRNA at the 6p22 Neuroblastoma Susceptibility Locus. Cancer Res. 2015, 75, 3155–3166. [Google Scholar] [CrossRef] [Green Version]
- Hurst, C.D.; Tomlinson, D.C.; Williams, S.V.; Platt, F.M.; Knowles, M.A. Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 2008, 27, 2716–2727. [Google Scholar] [CrossRef] [Green Version]
- Ognibene, M.; Podestà, M.; Garaventa, A.; Pezzolo, A. Role of GOLPH3 and TPX2 in Neuroblastoma DNA Damage Response and Cell Resistance to Chemotherapy. Int. J. Mol. Sci. 2019, 20, 4764. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Facio, C.S.; Milito, C.; Botafogo, V.; Fontana, M.; Thiago, L.S.; Oliveira, E.; da Rocha-Filho, A.S.; Werneck, F.; Forny, D.N.; Dekermacher, S.; et al. Contribution of multiparameter flow cytometryimmunophenotyping to the diagnostic screening and classification of pediatric cancer. PLoS ONE 2013, 8, e55534. [Google Scholar] [CrossRef] [Green Version]
- De Bernardi, B.; Di Cataldo, A.; Garaventa, A.; Massirio, P.; Viscardi, E.; Podda, M.G.; Castellano, A.; D’Angelo, P.; Tirtei, E.; Melchionda, F.; et al. Stage4sneuroblastoma: Features, management and outcome of 268 cases from the Italian Neuroblastoma Registry. Ital. J. Pediatr. 2019, 45, 8. [Google Scholar] [CrossRef] [PubMed]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Der Simonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
Data Set | N/E | HR | 95% CI | p |
---|---|---|---|---|
RB1 | ||||
Kocak-649 | 56/13 | 1.2 | 0.39–3.4 | 0.795 |
Oberthuer-251 | 30/7 | 0.06 | 0.00–0.47 | 0.003 |
SEQC-RPM | 48/12 | 1.4 | 0.45–4.5 | 0.546 |
mHR | 134/32 | 0.87 | 0.27–2.8 | 0.821 |
TERT | ||||
Kocak-649 | 56/13 | 0.82 | 0.27–2.4 | 0.719 |
Oberthuer-251 | 30/7 | 2.5 | 0.48–12.7 | 0.266 |
SEQC-RPM | 48/12 | 0.33 | 0.09–1.2 | 0.082 |
mHR | 134/32 | 0.80 | 0.29–2.2 | 0.666 |
E2F1 | ||||
Kocak-649 | 56/13 | 1.9 | 0.61–5.7 | 0.268 |
Oberthuer-251 | 30/7 | 1.3 | 0.30–6.0 | 0.705 |
SEQC-RPM | 48/12 | 1.6 | 0.50–5.0 | 0.429 |
mHR | 134/32 | 1.6 | 0.80–3.3 | 0.177 |
E2F2 | ||||
Kocak-649 | 56/13 | 2.0 | 0.64–6.0 | 0.233 |
Oberthuer-251 | 30/7 | 1.4 | 0.31–6.1 | 0.675 |
SEQC-RPM | 48/12 | 1.0 | 0.34–3.2 | 0.942 |
mHR | 134/32 | 1.4 | 0.70–2.9 | 0.330 |
E2F3 | ||||
Kocak-649 | 56/13 | 3.8 | 1.0–13.7 | 0.031 |
Oberthuer-251 | 30/7 | 6.8 | 0.81–56.2 | 0.040 |
SEQC-RPM | 48/12 | 3.3 | 0.89–12.2 | 0.058 |
mHR | 134/32 | 3.9 | 1.7–9.1 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parodi, S.; Ognibene, M.; Haupt, R.; Pezzolo, A. The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease. Diagnostics 2020, 10, 315. https://doi.org/10.3390/diagnostics10050315
Parodi S, Ognibene M, Haupt R, Pezzolo A. The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease. Diagnostics. 2020; 10(5):315. https://doi.org/10.3390/diagnostics10050315
Chicago/Turabian StyleParodi, Stefano, Marzia Ognibene, Riccardo Haupt, and Annalisa Pezzolo. 2020. "The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease" Diagnostics 10, no. 5: 315. https://doi.org/10.3390/diagnostics10050315
APA StyleParodi, S., Ognibene, M., Haupt, R., & Pezzolo, A. (2020). The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease. Diagnostics, 10(5), 315. https://doi.org/10.3390/diagnostics10050315