New Perspectives on Lung Cancer Screening and Artificial Intelligence
Abstract
:1. Introduction
2. Methods
Query Strategy of Reivew of AI and Lung Cancer Screening
3. Results
3.1. Artificial Intelligence in Lung Cancer Screening
3.2. The Role of Artificial Intelligence in Lung Cancer Imaging and in Lung Cancer Screening
3.3. Biomarker-Driven Screening: Liquid Biopsy
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90, Erratum in CA Cancer J. Clin. 2011, 61, 134. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, Erratum in CA Cancer J. Clin. 2020, 70, 313. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chamberlin, J.; Kocher, M.R.; Waltz, J.; Snoddy, M.; Stringer, N.F.C.; Stephenson, J.; Sahbaee, P.; Sharma, P.; Rapaka, S.; Schoepf, U.J.; et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: Accuracy and prognostic value. BMC Med. 2021, 19, 55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Lung Screening Trial Research Team. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J. Thorac. Oncol. 2019, 14, 1732–1742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Field, J.K.; Vulkan, D.; Davies, M.P.A.; Baldwin, D.R.; Brain, K.E.; Devaraj, A.; Eisen, T.; Gosney, J.; Green, B.A.; Holemans, J.A.; et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis. Lancet Reg. Health Eur. 2021, 10, 100179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Croswell, J.M.; Baker, S.G.; Marcus, P.M.; Clapp, J.D.; Kramer, B.S. Cumulative incidence of false-positive test results in lung cancer screening: A randomized trial. Ann. Intern. Med. 2010, 152, 505–512, Erratum in Ann. Intern. Med. 2010, 152, 759. [Google Scholar] [CrossRef] [PubMed]
- Croswell, J.M.; Kramer, B.S.; Kreimer, A.R.; Prorok, P.C.; Xu, J.L.; Baker, S.G.; Fagerstrom, R.; Riley, T.L.; Clapp, J.D.; Berg, C.D.; et al. Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann. Fam. Med. 2009, 7, 212–222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhao, Y.; Liu, B. The effectiveness of deep learning model in differentiating benign and malignant pulmonary nodules on spiral CT. Technol. Health Care 2024, 32, 5129–5140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Jiang, B.; Zhang, L.; Greuter, M.J.W.; de Bock, G.H.; Zhang, H.; Xie, X. Lung Nodule Detectability of Artificial Intelligence-assisted CT Image Reading in Lung Cancer Screening. Curr. Med. Imaging 2022, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wei, Y.; Shi, F.; Ren, J.; Zhou, Q.; Li, W.; Chen, B. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images. BMC Cancer 2022, 22, 1118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maki, K.G.; Talluri, R.; Toumazis, I.; Shete, S.; Volk, R.J. Impact of U.S. Preventive Services Task Force lung cancer screening update on drivers of disparities in screening eligibility. Cancer Med. 2023, 12, 4647–4654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomonaga, Y.; Ten Haaf, K.; Frauenfelder, T.; Kohler, M.; Kouyos, R.D.; Shilaih, M.; Lorez, M.; de Koning, H.J.; Schwenkglenks, M.; Puhan, M.A. Cost-effectiveness of low-dose CT screening for lung cancer in a European country with high prevalence of smoking-A modelling study. Lung Cancer 2018, 121, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Behr, C.M.; Oude Wolcherink, M.J.; IJzerman, M.J.; Vliegenthart, R.; Koffijberg, H. Population-Based Screening Using Low-Dose Chest Computed Tomography: A Systematic Review of Health Economic Evaluations. Pharmacoeconomics 2023, 41, 395–411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grover, H.; King, W.; Bhattarai, N.; Moloney, E.; Sharp, L.; Fuller, L. Systematic review of the cost-effectiveness of screening for lung cancer with low dose computed tomography. Lung Cancer 2022, 170, 20–33. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Cancer statistics for African Americans, 2019. CA Cancer J. Clin. 2019, 69, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Tammemägi, M.C.; Katki, H.A.; Hocking, W.G.; Church, T.R.; Caporaso, N.; Kvale, P.A.; Chaturvedi, A.K.; Silvestri, G.A.; Riley, T.L.; Commins, J.; et al. Selection criteria for lung-cancer screening. N. Engl. J. Med. 2013, 368, 728–736, Erratum in N. Engl. J. Med. 2013, 369, 394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoo, S.J.; Park, Y.S.; Choi, H.; Kim, D.S.; Goo, J.M.; Yoon, S.H. Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT. PLoS ONE 2024, 19, e0297390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buys, D.R.; Rennekamp, R. Cooperative Extension as a Force for Healthy, Rural Communities: Historical Perspectives and Future Directions. Am. J. Public Health 2020, 110, 1300–1303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zgodic, A.; Zahnd, W.E.; Advani, S.; Eberth, J.M. Low-dose CT lung cancer screening uptake: A rural-urban comparison. J. Rural Health 2022, 38, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Chauvie, S.; De Maggi, A.; Baralis, I.; Dalmasso, F.; Berchialla, P.; Priotto, R.; Violino, P.; Mazza, F.; Melloni, G.; Grosso, M.; et al. Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial. Eur. Radiol. 2020, 30, 4134–4140. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer With Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Lopci, E.; Castello, A.; Morenghi, E.; Tanzi, D.; Cavuto, S.; Lutman, F.; Chiesa, G.; Vanni, E.; Alloisio, M.; Infante, M. Cost-effectiveness of second-line diagnostic investigations in patients included in the DANTE trial: A randomized controlled trial of lung cancer screening with low-dose computed tomography. Nucl. Med. Commun. 2019, 40, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Balbi, M.; Sabia, F.; Ledda, R.E.; Rolli, L.; Milanese, G.; Ruggirello, M.; Valsecchi, C.; Marchianò, A.; Sverzellati, N.; Pastorino, U. Surveillance of subsolid nodules avoids unnecessary resections in lung cancer screening: Long-term results of the prospective BioMILD trial. ERJ Open Res. 2024, 10, 00167–02024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, G.; Yu, W.; Liu, S.Q.; Xie, M.G.; Liu, M. The value of radiomics based on dual-energy CT for differentiating benign from malignant solitary pulmonary nodules. BMC Med. Imaging 2022, 22, 95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, W.; Hu, Y.; Chang, G.; Qian, H.; Yang, Y.; Song, Y.; Wei, Z.; Gao, L.; Yi, H.; Wu, S.; et al. Development of a clinical prediction model for benign and malignant pulmonary nodules with a CTR ≥ 50% utilizing artificial intelligence-driven radiomics analysis. BMC Med. Imaging 2025, 25, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quanyang, W.; Yao, H.; Sicong, W.; Linlin, Q.; Zewei, Z.; Donghui, H.; Hongjia, L.; Shijun, Z. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Med. 2024, 13, e7140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, W.; Zhao, Y.; Huang, W.; Gao, Y.; Xu, W.; Tao, J.; Yang, M.; Li, L.; Ping, W.; Shen, H.; et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics 2019, 9, 2056–2070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bordi, P.; Tiseo, M.; Rofi, E.; Petrini, I.; Restante, G.; Danesi, R.; Del Re, M. Detection of ALK and KRAS Mutations in Circulating Tumor DNA of Patients With Advanced ALK-Positive NSCLC With Disease Progression During Crizotinib Treatment. Clin. Lung Cancer 2017, 18, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Paci, E.; Puliti, D.; Lopes Pegna, A.; Carrozzi, L.; Picozzi, G.; Falaschi, F.; Pistelli, F.; Aquilini, F.; Ocello, C.; Zappa, M.; et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 2017, 72, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wen, H.; You, H.; Hua, L.; Xiaohua, W.; Qiuting, C.; Jiabao, L. Recognition of Peripheral Lung Cancer and Focal Pneumonia on Chest Computed Tomography Images Based on Convolutional Neural Network. Technol. Cancer Res. Treat. 2022, 21, 15330338221085375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venkadesh, K.V.; Aleef, T.A.; Scholten, E.T.; Saghir, Z.; Silva, M.; Sverzellati, N.; Pastorino, U.; van Ginneken, B.; Prokop, M.; Jacobs, C. Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules. Radiology 2023, 308, e223308. [Google Scholar] [CrossRef] [PubMed]
- Armato, S.G., 3rd; Oxnard, G.R.; Kocherginsky, M.; Vogelzang, N.J.; Kindler, H.L.; MacMahon, H. Evaluation of semiautomated measurements of mesothelioma tumor thickness on CT scans. Acad. Radiol. 2005, 12, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, H.; Lee, S.M.; Ahn, Y.; Kim, W.; Jung, K.; Seo, J.B. Application of computer-aided diagnosis for Lung-RADS categorization in CT screening for lung cancer: Effect on inter-reader agreement. Eur. Radiol. 2022, 32, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.K.; McNitt-Gray, M.F.; Rogers, S.R.; Goldin, J.G.; Suh, R.D.; Sayre, J.W.; Petkovska, I.; Kim, H.J.; Aberle, D.R. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad. Radiol. 2005, 12, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.J.; Madtes, D.K.; Burbridge, B.; Johnston, J.; Goldberg, I.G.; Siegel, E.L.; Babyn, P.; Nair, V.S.; Calhoun, M.E. Clinical Impact and Generalizability of a Computer-Assisted Diagnostic Tool to Risk-Stratify Lung Nodules With CT. J. Am. Coll. Radiol. 2023, 20, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.G.; Kim, H.J.; Lee, E.H.; Hong, W.; Park, J.; Hwang, E.J.; Park, C.M.; Goo, J.M. Value of a deep learning-based algorithm for detecting Lung-RADS category 4 nodules on chest radiographs in a health checkup population: Estimation of the sample size for a randomized controlled trial. Eur. Radiol. 2022, 32, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Jain, A.; Mangalagiri, J.; Menon, S.; Nguyen, P.; Chapman, D.R. Lung Nodule Classification Using Biomarkers, Volumetric Radiomics, and 3D CNNs. J. Digit. Imaging 2021, 34, 647–666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoo, H.; Lee, S.H.; Arru, C.D.; Doda Khera, R.; Singh, R.; Siebert, S.; Kim, D.; Lee, Y.; Park, J.H.; Eom, H.J.; et al. AI-based improvement in lung cancer detection on chest radiographs: Results of a multi-reader study in NLST dataset. Eur. Radiol. 2021, 31, 9664–9674. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Choi, D.; Choi, J.Y.; Hyun, S.H. Performance evaluation of a Deep Learning System for Differential diagnosis of Lung Cancer with Conventional CT and FDG PET/CT using transfer learning and Metadata. Clin. Nucl. Med. 2021, 46, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Qi, S.; Wu, Y.; Pan, X.; Yao, Y.; Qian, W.; Guan, Y. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images. Comput. Methods Programs Biomed. 2022, 222, 106946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Grant, B.M.M.; Hope, A.J.; Hung, R.J.; Warkentin, M.T.; Lam, A.C.L.; Aggawal, R.; Xu, M.; Shepherd, F.A.; Tsao, M.S.; et al. Using Recurrent Neural Networks to Extract High-Quality Information From Lung Cancer Screening Computerized Tomography Reports for Inter-Radiologist Audit and Feedback Quality Improvement. JCO Clin. Cancer Inform. 2023, 7, e2200153. [Google Scholar] [CrossRef] [PubMed]
- Tandon, Y.K.; Bartholmai, B.J.; Koo, C.W. Putting artificial intelligence (AI) on the spot: Machine learning evaluation of pulmonary nodules. J. Thorac. Dis. 2020, 12, 6954–6965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karimzadeh, M.; Momen-Roknabadi, A.; Cavazos, T.B.; Fang, Y.; Chen, N.C.; Multhaup, M.; Yen, J.; Ku, J.; Wang, J.; Zhao, X.; et al. Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer. Nat. Commun. 2024, 15, 10090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Y.; Mu, W.; Shi, Y.; Qi, Q.; Wang, W.; He, Y.; Sun, X.; Yang, B.; Cui, P.; Li, C.; et al. Development and validation of an integrated system for lung cancer screening and post-screening pulmonary nodules management: A proof-of-concept study (ASCEND-LUNG). EClinicalMedicine 2024, 75, 102769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, J.; Wang, B.; Tao, J.; Liu, Q.; Peng, M.; Xiong, S.; Li, J.; Cheng, B.; Li, C.; Jiang, S.; et al. Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: A model development and external validation study. Lancet Digit. Health 2023, 5, e647–e656. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yu, H.; Feng, H.; Duan, J.; Wang, K.; Tong, B.; Zhang, Y.; Li, W.; Wang, Y.; Liang, C.; et al. Enhancing the differential diagnosis of small pulmonary nodules: A comprehensive model integrating plasma methylation, protein biomarkers, and LDCT imaging features. J. Transl. Med. 2024, 22, 984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwyzer, M.; Martini, K.; Benz, D.C.; Burger, I.; Ferraro, D.; Kudura, K.; Treyer, V.; von Schulthess, G.K.; Kauhmann, P.A.; Huellner, M.W.; et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: Impact of image reconstructions on diagnostic performance. Eur. Radiol. 2020, 30, 2031–2040. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Pintelas, E.G.; Livieris, I.E.; Apostolopoulos, D.J.; Papathanasiou, N.D.; Pintelas, P.E.; Panayiotakis, G.S. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques. Med. Biol. Eng. Comput. 2021, 59, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zheng, D.; Chen, H.; Wang, Y.; Chen, C.; Xu, L.; Li, G.; Wang, Y.; He, X.; Li, W. Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Med. Phys. 2022, 49, 6384–6394. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yang, Z.; Wang, M.; Zhao, W.; Zhu, Q.; Shi, W.; Yu, H.; Liang, Z.; Chen, L. A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules. Respir. Res. 2022, 23, 96. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, N.; Huang, N.; Liu, X.; Zheng, Y.; Fu, Y.; Li, X.; Wu, H.; Xu, J.; Cheng, J. Determining the invasiveness of ground-glass nodules using a 3D multi-task network. Eur. Radiol. 2021, 31, 7162–7171. [Google Scholar] [CrossRef]
- Yin, P.; Wang, W.; Wang, S.; Liu, T.; Sun, C.; Liu, X.; Chen, L.; Hong, N. The potential for different computed tomography-based machine learning networks to automatically segment and differentiate pelvic and sacral osteosarcoma from Ewing’s sarcoma. Quant. Imaging Med. Surg. 2023, 13, 3174–3184. [Google Scholar] [CrossRef]
- Cheng, D.; Zhuo, Z.; Du, J.; Weng, J.; Zhang, C.; Duan, Y.; Sun, T.; Wu, M.; Guo, M.; Hua, T.; et al. A fully automated Deep-Learning Model for Predicting the Molecular subtypes of posterior Fossa Ependymomas using T2-Weighted images. Clin. Cancer Res. 2024, 30, 150–158. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Du, B.; Li, Y.; Li, X. Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point 18F-FDG PET/CT. Cancer Imaging 2025, 25, 17. [Google Scholar] [CrossRef] [PubMed Central]
- Chen, G.; Zhang, J.; Zhuo, D.; Pan, Y.; Pang, C. Identification of pulmonary nodules via CT images with hierarchical fully convolutional networks. Med. Biol. Eng. Comput. 2019, 57, 1567–1580. [Google Scholar] [CrossRef]
Study | Objective | Methodology | Data | Key Findings/Results |
---|---|---|---|---|
Armato et al. (2005) [35] | To evaluate an automated lung nodule detection method on low-dose CT scans from a lung cancer screening program. | Automated nodule detection using gray-level thresholding, morphologic modifications, and rule-based/linear discriminant classifiers. | 470 nodules from low-dose CT scans. | A 70% sensitivity was achieved with a mean of 1.6 false positives per section. Performance varied based on nodule malignancy, size, subtlety, and radiographic opacity. |
Shah et al. (2005) [37] | To investigate computer-aided diagnosis (CAD) in differentiating malignant from benign nodules using volumetric and contrast enhancement features. | Quantitative analysis of nodule size, shape, attenuation, and enhancement from volumetric CT data before and after contrast injection. Classifiers included LDA, QDA and logistic regression. | 35 volumetric CT datasets of solitary pulmonary nodules (SPN) with known diagnoses. | Logistic regression classifier on solid ROI features achieved an AZ of 0.926. Addition of GGO features often did not improve performance6. Semi-automated ROI segmentation was a limitation |
Zhang B. et al. (2022) [43] | To develop a lung tumor segmentation model using attention mechanisms. | Segmentation squeeze and excitation UNet with multi-scale strategy and dense connected CRF, using different attention mechanisms like SegSE, SE, and CBAM blocks. | 759 CT scans (402 NSCLC, 162 LIDC). | The M-SegSEUNet model achieved a Dice coefficient of 0.84211. The model can be extended to other medical image segmentation problems. |
Adams et al. (2022) [38] | To evaluate an imaging classifier (mSI) combined with Lung-RADS for lung nodule classification. | Machine learning classifier trained using National Lung Screening Trial (NLST) data, with retrospective testing on external cohorts. | Data from NLST, tertiary referral screening, and non-screening CT datasets. | The mSI, combined with Lung-RADS, showed comparable results to existing clinical risk models and can reclassify nodules15. The mSI may help reduce false positives16. |
Shi et al. (2025) [27] | To develop an AI-driven radiomics model to predict the nature of solid-component-predominant pulmonary nodules with CTR ≥ 50%. | Radiomics features extracted from CT images, combined with clinical data; logistic regression to develop a predictive model. | Data from five medical centers, with 370 cases total. | Patient age, volume of solid components, and mean CT value were significant predictive factors. The AUC was 0.721 (training) and 0.757 (validation), indicating moderate accuracy. |
Cheng et al. (2022) [33] | To classify peripheral lung cancer (PLC) and focal pneumonia on chest CT images using a 3D CNN with various window settings. | 3D CNN trained on segmented lung regions, with orientation alignment and varying window settings. | Retrospective data from 357 patients with PLC or focal pneumonia from chest CT scans. | The neural network achieved an average accuracy of 91.596% in 5-fold cross-validation. Evaluated impact of window settings on AI results. |
Park et al. (2021) [42] | To analyze the computer-aided detection (CAD) of subsolid nodules (SSNs) in CT scans. | CAD system applied to CT images to analyze subsolid nodules. | 308 patients with SSN and a control group of 182, from a single medical center. | Evaluated the CAD system for detecting subsolid nodules with varying characteristics. |
Chauvie et al. (2020) [22] | To compare the performance of different approaches in reducing false positives in a lung cancer screening program. | Comparison of binary visual analysis, lung-RADS, linear regression, machine learning (Random Forest, Neural Network) for nodule classification using Digital Tomosynthesis (DTS). | 1594 subjects enrolled in the study. | Neural network was the best predictor with a PPV of 0.95 and a sensitivity of 0.9026. Radiomics features were computed on the central slices. |
Zhang Y. et al. (2022) [11] | To evaluate lung nodule detection using AI-assisted reading in actual radiology reports. | AI-assisted analysis using InferRead CT Lung software (V1), compared to radiologist observations. | 860 asymptomatic patients who underwent low-dose CT screening. | AI sensitivity for solid and non-solid nodules was 0.988–1, while radiologists had lower sensitivities (0.252 for non-solid and 0.524 for solid). |
Zhang R. et al. (2022) [12] | To determine the diagnostic and prognostic value of deep learning/radiomics for solid lung nodules. | 3D CNN and Random Forest models were used with clinical and radiomics features. | 720 patients with 720 solid lung nodules. | CNN with clinical features had a sensitivity of 0.778, RF with radiomics features had a sensitivity of 0.747, and junior radiologists had a sensitivity of 0.884. Models had higher specificity than radiologists. |
Zhang Y. et al. (2023) [44] | To build a high-performance, open-source NER model for LDCT reports and compare it with Stanza model. | Training of rule-based and Bi-LSTM models for named-entity recognition, evaluated against a published open-source model (Stanza). | 8305 LDCT reports, with manual annotation for training and testing. | The Bi-LSTM model (F1 score of 0.950) outperformed Stanza (F1 score of 0.872). The model identifies clinically relevant information with high precision and recall. |
Chamberlin et al. (2021) [4] | To determine if AI can identify risk factors for cardiopulmonary disease on low-dose chest CT. | AI prototype for detection of lung nodules and coronary artery calcium; per-patient validation against expert radiologists. | Large set of chest CT scans. | The AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on low dose CT. Age is associated with false positives, and AI may be more sensitive in detection than experts |
Study Name | Year | Population Description | Key Findings |
---|---|---|---|
National Lung Screening Trial (NLST) | 2011 | U.S. adults aged 55–74 years, heavy smokers or former smokers | LDCT screening reduced lung cancer mortality by 20% vs. chest X-ray |
NELSON Trial | 2020 | European adults aged 50–75 years, at high risk due to smoking history | LDCT screening reduced lung cancer mortality by 26% in men and 61% in women |
ITALUNG Trial | 2020 | Italian adults aged 55–74 years, heavy smokers | LDCT screening reduced lung cancer mortality by 39% in men and 50% in women |
Lung Cancer Screening Trial (LUST) | 2018 | Korean adults aged 55–74 years, former smokers | LDCT reduced lung cancer mortality by 15% |
BioMild Study | 2021 | Italian adults aged 50–75 years, moderate-to-high risk of lung cancer | LDCT screening reduced lung cancer mortality by 39% and increased early-stage detection by 30% |
DANTE Study | 2023 | Italian adults aged 55–74 years, heavy smokers or former smokers | LDCT screening resulted in a 26% reduction in lung cancer mortality and a 40% early detection rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duranti, L.; Tavecchio, L.; Rolli, L.; Solli, P. New Perspectives on Lung Cancer Screening and Artificial Intelligence. Life 2025, 15, 498. https://doi.org/10.3390/life15030498
Duranti L, Tavecchio L, Rolli L, Solli P. New Perspectives on Lung Cancer Screening and Artificial Intelligence. Life. 2025; 15(3):498. https://doi.org/10.3390/life15030498
Chicago/Turabian StyleDuranti, Leonardo, Luca Tavecchio, Luigi Rolli, and Piergiorgio Solli. 2025. "New Perspectives on Lung Cancer Screening and Artificial Intelligence" Life 15, no. 3: 498. https://doi.org/10.3390/life15030498
APA StyleDuranti, L., Tavecchio, L., Rolli, L., & Solli, P. (2025). New Perspectives on Lung Cancer Screening and Artificial Intelligence. Life, 15(3), 498. https://doi.org/10.3390/life15030498