Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples, DNA Extraction and Sequencing
2.2. Morphological Analysis
2.3. Genome Assembly and Annotation
2.4. Codon Usage Analysis
2.5. Analysis of Repeated Sequences
2.6. Comparative Analysis of the mtDNA and cpDNA
2.7. Chloroplast-to-Mitochondrion DNA Transformation
3. Results
3.1. Morphological of N. incerta
3.2. General Features of mtDNA of N. incerta
3.3. Anatomization of Repeat Sequence in the mtDNA of N. incerta
3.4. Comparative Analysis of mtDNA of N. incerta and Related Species
3.5. General Features of cpDNA of N. incerta
3.6. Anatomization of Repeat Sequence in the cpDNA of N. incerta
3.7. Comparative Analysis of cpDNA of N. incerta and Related Species
3.8. Sequence Similarity Between the mtDNA and cpDNA of N. incerta
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.C.; Wang, J.; Chen, Y.; Liu, S.Y.; Zhao, Y.F.; Chen, N.S. Comparative Analysis of Bacillariophyceae Chloroplast Genomes Uncovers Extensive Genome Rearrangements Associated with Speciation. Int. J. Environ. Res. Public Health 2022, 19, 10024. [Google Scholar] [CrossRef] [PubMed]
- Kamikawa, R.; Yubuki, N.; Yoshida, M.; Taira, M.; Nakamura, N.; Ishida, K.; Leander, B.S.; Miyashita, H.; Hashimoto, T.; Mayama, S.; et al. Multiple losses of photosynthesis in Nitzschia (Bacillariophyceae). Phycol. Res. 2015, 63, 19–28. [Google Scholar] [CrossRef]
- Encinas-Arzate, J.J.; Marquez-Ríos, E.; López-Elías, J.A.; Torres-Areola, W.; Huerta-Ocampo, J.A.; Ramírez-Suárez, J.C. Effect of the deficiency of nitrate and silicate on the growth and composition of the benthic diatom Navicula incerta. Lat. Am. J. Aquat. Res. 2020, 48, 280–286. [Google Scholar] [CrossRef]
- González-Vega, R.I.; Cárdenas-López, J.L.; López-Elías, J.A.; Ruiz-Cruz, S.; Reyes-Díaz, A.; Perez-Perez, L.M.; Cinco-Moroyoqui, F.J.; Robles-Zepeda, R.E.; Borboa-Flores, J.; Del-Toro-Sánchez, C.L. Original Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi J. Biol. Sci. 2021, 28, 1401–1416. [Google Scholar] [CrossRef]
- Sorokina, M.; Barth, E.; Zulfiqar, M.; Kwantes, M.; Pohnert, G.; Steinbeck, C. Draft genome assembly and sequencing dataset of the marine diatom Skeletonema cf. costatum RCC75. Data Brief 2022, 41, 107931. [Google Scholar] [CrossRef]
- Pogoda, C.S.; Keepers, K.G.; Hamsher, S.E.; Stepanek, J.G.; Kane, N.C.; Kociolek, J.P. Comparative analysis of the mitochondrial genomes of six newly sequenced diatoms reveals group II introns in the barcoding region of cox1. Mitochondrial DNA Part A 2019, 30, 43–51. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, J. Comparative analysis of organelle genomes provides conflicting evidence between morphological similarity and phylogenetic relationship in diatoms. Front. Mar. Sci. 2024, 10, 1283893. [Google Scholar] [CrossRef]
- Liu, X.F.; Luo, J.J.; Chen, H.; Li, T.Y.; Qu, T.M.; Tang, M.; Fu, Z.X. Comparative analysis of complete chloroplast genomes of Synotis species (Asteraceae, Senecioneae) for identification and phylogenetic analysis. BMC Genom. 2024, 25, 769. [Google Scholar] [CrossRef]
- Velmurugan, N.; Deka, D. Transformation techniques for metabolic engineering of diatoms and haptophytes: Current state and prospects. Appl. Microbiol. Biotechnol. 2018, 102, 4255–4267. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liu, S.Y.; Wang, J.; Yao, Y.X.; Chen, Y.; Xu, Q.; Zhao, Z.X.; Chen, N.S. Diatom Biodiversity and Speciation Revealed by Comparative Analysis of Mitochondrial Genomes. Front. Plant Sci. 2022, 13, 749982. [Google Scholar] [CrossRef]
- Peticca, A.; Fodil, M.; Gateau, H.; Mouget, J.L.; Sabot, F.; Chenais, B.; Casse, N. Complete mitochondrial genome and draft chloroplastic genome of Haslea ostrearia (Simonsen 1974). Mitochondrial DNA Part B-Resour. 2023, 8, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Schober, A.F.; Bártulos, C.R.; Bischoff, A.; Lepetit, B.; Gruber, A.; Kroth, P.G. Organelle Studies and Proteome Analyses of Mitochondria and Plastids Fractions from the Diatom Thalassiosira pseudonana. Plant Cell Physiol. 2019, 60, 1811–1828. [Google Scholar] [CrossRef] [PubMed]
- Crowell, R.M.; Nienow, J.A.; Cahoon, A.B. The complete chloroplast and mitochondrial genomes of the diatom Nitzschia palea (Bacillariophyceae) demonstrate high sequence similarity to the endosymbiont organelles of the dinotom Durinskia baltica. J. Phycol. 2019, 55, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.D.; Faoro, H.; Fraga, H.P.D.; Rogalski, M.; de Souza, E.M.; Pedrosa, F.D.; Nodari, R.O.; Guerra, M.P. An Improved Protocol for Intact Chloroplasts and cpDNA Isolation in Conifers. PLoS ONE 2014, 9, e84792. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In Gene Prediction: Methods and Protocols; Kollmar, M., Ed.; Methods in Molecular Biology; Springer Nature: Totowa, NJ, USA, 2019; Volume 1962, pp. 1–14. [Google Scholar]
- He, B.; Dong, H.; Jiang, C.; Cao, F.L.; Tao, S.T.; Xu, L.A. Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/Cending. Sci. Rep. 2016, 6, 35927. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Zhang, Z. KaKs_Calculator 3.0: Calculating Selective Pressure on Coding and Non-coding Sequences. Genom. Proteom. Bioinform. 2022, 20, 536–540. [Google Scholar] [CrossRef]
- An, S.M.; Noh, J.H.; Lee, H.R.; Choi, D.H.; Lee, J.H.; Yang, E.C. Complete mitochondrial genome of biraphid benthic diatom, Navicula ramosissima (Naviculales, Bacillariophyceae). Mitochondrial DNA Part B Resour. 2016, 1, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Cruz Plancarte, D.; Solórzano, S. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly. BMC Genom. 2023, 24, 509. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Zhang, M.F.; Xue, J.; Dong, R.; Du, Y.P.; Zhang, X.H. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci. Rep. 2018, 8, 1184. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A.J. Circular chloroplast chromosomes: The grand illusion. Plant Cell 2004, 16, 1661–1666. [Google Scholar] [CrossRef]
- Mann, D.G.; Vanormelingen, P. An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species. J. Eukaryot. Microbiol. 2013, 60, 414–420. [Google Scholar] [CrossRef]
- Mower, J.P. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion 2020, 53, 203–213. [Google Scholar] [CrossRef]
- Yu, M.J.; Ashworth, M.P.; Hajrah, N.H.; Khiyami, M.A.; Sabir, M.J.; Alhebshi, A.M.; Al-Malki, A.L.; Sabir, J.S.M.; Theriot, E.C.; Jansen, R.K. Evolution of the Plastid Genomes in Diatoms. In Plastid Genome Evolution; Chaw, S.M., Jansen, R.K., Eds.; Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2018; Volume 85, pp. 129–155. [Google Scholar]
- Alverson, A.J.; Zhuo, S.; Rice, D.W.; Sloan, D.B.; Palmer, J.D. The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats. PLoS ONE 2011, 6, e16404. [Google Scholar] [CrossRef]
- An, S.M.; Noh, J.H.; Choi, D.H.; Lee, J.H.; Yang, E.C. Repeat region absent in mitochondrial genome of tube-dwelling diatom Berkeleya fennica (Naviculales, Bacillariophyceae). Mitochondrial DNA Part A 2016, 27, 2137–2138. [Google Scholar] [CrossRef]
- Yilmaz, E.; Mann, D.G.; Gastineau, R.; Trobajo, R.; Solak, C.N.; Górecka, E.; Turmel, M.; Lemieux, C.; Ertorun, N.; Witkowski, A. Description of Navicula vanseea sp. nov. (Naviculales, Naviculaceae), a new species of diatom from the highly alkaline Lake Van (Republic of Turkiye) with complete characterisation of its organellar genomes and multigene phylogeny. Phytokeys 2024, 241, 27–48. [Google Scholar] [CrossRef]
- Ke, S.J.; Liu, D.K.; Tu, X.D.; He, X.; Zhang, M.M.; Zhu, M.J.; Zhang, D.Y.; Zhang, C.L.; Lan, S.R.; Liu, Z.J. Apostasia Mitochondrial Genome Analysis and Monocot Mitochondria Phylogenomics. Int. J. Mol. Sci. 2023, 24, 7837. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.Y.; Wu, Z.N.; Tian, C.Y.; Yang, Y.T.; Li, Z.Y. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC Plant Biol. 2024, 24, 830. [Google Scholar] [CrossRef] [PubMed]
- Handa, H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): Comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 2003, 31, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Medlin, L.K.; Desdevises, Y. Phylogenetic reconstruction of diatoms using a seven-gene dataset, multiple outgroups, and morphological data for a total evidence approach. Phycologia 2020, 59, 422–436. [Google Scholar] [CrossRef]
- Filloramo, G.V.; Curtis, B.A.; Blanche, E.; Archibald, J.M. Re-examination of two diatom reference genomes using long-read sequencing. BMC Genom. 2021, 22, 379. [Google Scholar] [CrossRef]
- Majewski, P.; Woloszynska, M.; Janska, H. Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: Genetic and environmental regulation. J. Exp. Bot. 2009, 60, 1163–1178. [Google Scholar] [CrossRef]
- Du, F.C.; Li, Y.H.; Xu, K.D. Phylogeny and Evolution of Cocconeiopsis (Cocconeidaceae) as Revealed by Complete Chloroplast and Mitochondrial Genomes. Int. J. Mol. Sci. 2024, 25, 266. [Google Scholar] [CrossRef]
- He, Z.Y.; Chen, Y.; Cui, Z.M.; Zhang, M.J.; Zhao, Y.F.; Liu, F.; Chen, N.S. Complete mitochondrial genome of the harmful algal bloom species Pseudo-nitzschia delicatissima (Bacillariophyceae, Bacillariophyta). Mitochondrial DNA Part B-Resour. 2021, 6, 2541–2543. [Google Scholar] [CrossRef]
- Dai, Z.Y.; Gao, J.W.; An, K.S.; Lee, J.M.; Edwards, G.E.; An, G.H. Promoter elements controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34. Plant Mol. Biol. 1996, 32, 1055–1065. [Google Scholar] [CrossRef]
- Zhu, A.D.; Guo, W.H.; Gupta, S.; Fan, W.S.; Mower, J.P. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016, 209, 1747–1756. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, J. The complete mitochondrial genome of the benthic diatom Pleurosigma inscriptura. Mitochondrial DNA Part B-Resour. 2021, 6, 2584–2586. [Google Scholar] [CrossRef]
Category | Gene Group | Gene Name |
---|---|---|
Photosynthesis | Subunits of photosystem I | psaA, psaB, psaC, psaD, psaE, psaF, psaI, psaJ, psaL, psaM |
Subunits of photosystem II | psb28, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbN, psbT, psbV, psbX, psbY(2), psbZ | |
Subunits of NADH dehydrogenase | - | |
Subunits of cytochrome b/f complex | petA, petB, petD, petF, petG, petL, petM, petN | |
Subunits of ATP synthase | atpA, atpB, atpD, atpE, atpF, atpG, atpH, atpI | |
Large subunit of rubisco | rbcL, rbcR, rbcS | |
Subunits of photochlorophyllide reductase | chlI | |
Self-replication | Proteins of large ribosomal subunit | rpl1, rpl11, rpl12, rpl13, rpl14, rpl16, rpl18, rpl19, rpl2, rpl20, rpl21, rpl22, rpl23, rpl24, rpl27, rpl29, rpl3, rpl31, rpl32, rpl33, rpl34, rpl35, rpl36, rpl4, rpl5, rpl6 |
Proteins of small ribosomal subunit | rps10, rps11, rps12, rps13, rps14, rps16, rps17, rps18, rps19, rps2, rps20, rps3, rps4, rps5, rps6, rps7, rps8, rps9 | |
Subunits of RNA polymerase | rpoA, rpoB, rpoC1, rpoC2 | |
Ribosomal RNAs | rrn16(2), rrn23(2), rrn5(2) | |
Transfer RNAs | trnA-UGC(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-GAU(2), trnK-UUU, trnL-UAA, trnL-UAG, trnM-CAU(3), trnN-GUU, trnP-UGG(2), trnQ-UUG, trnR-ACG, trnR-CCG, trnR-UCU, trnS-GCU, trnS-UGA, trnT-UGU, trnV-UAC, trnW-CCA, trnY-GUA | |
Other genes | Maturase | - |
Protease | clpC | |
Envelope membrane protein | - | |
Acetyl-CoA carboxylase | - | |
c-type cytochrome synthesis gene | ccs1, ccsA | |
Translation initiation factor | - | |
other | cbbX, dnaB, dnaK, ftsH, groEL, secA, secG, secY, sufB, sufC, syfB, tatC, tufA | |
Genes of unknown function | Conserved hypothetical chloroplast ORF | ycf12, ycf3, ycf33, ycf35, ycf39, ycf4, ycf41, ycf45, ycf46, ycf66, ycf88, ycf89(2), ycf90 |
Type | RNA-Editing | Number | Percentage |
---|---|---|---|
hydrophilic–hydrophilic | CAT (H) ⇒ TAT (Y) | 2 | |
total | 2 | 3.12% | |
hydrophilic–hydrophobic | ACA (T) ⇒ ATA (I) | 4 | |
ACC (T) ⇒ ATC (I) | 1 | ||
ACT (T) ⇒ ATT (I) | 14 | ||
TCA (S) ⇒ TTA (L) | 4 | ||
TCG (S) ⇒ TTG (L) | 1 | ||
TCT (S) ⇒ TTT (F) | 2 | ||
total | 26 | 40.62% | |
hydrophobic–hydrophilic | CCA (P) ⇒ TCA (S) | 4 | |
CCC (P) ⇒ TCC (S) | 1 | ||
CCT (P) ⇒ TCT (S) | 3 | ||
total | 8 | 12.50% | |
hydrophobic–hydrophobic | CCA (P) ⇒ CTA (L) | 1 | |
CCC (P) ⇒ CTC (L) | 1 | ||
CCT (P) ⇒ TTT (F) | 4 | ||
CTC (L) ⇒ TTC (F) | 1 | ||
CTT (L) ⇒ TTT (F) | 4 | ||
GCA (A) ⇒ GTA (V) | 5 | ||
GCC (A) ⇒ GTC (V) | 1 | ||
GCG (A) ⇒ GTG (V) | 1 | ||
GCT (A) ⇒ GTT (V) | 10 | ||
total | 28 | 43.75% | |
All | 64 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wei, X. Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356. Life 2025, 15, 102. https://doi.org/10.3390/life15010102
Wang Z, Wei X. Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356. Life. 2025; 15(1):102. https://doi.org/10.3390/life15010102
Chicago/Turabian StyleWang, Zhaokai, and Xiaoyu Wei. 2025. "Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356" Life 15, no. 1: 102. https://doi.org/10.3390/life15010102
APA StyleWang, Z., & Wei, X. (2025). Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356. Life, 15(1), 102. https://doi.org/10.3390/life15010102