Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bennett, C.; Sharpley, R. Interpolation of Operators; Academic Press: London, UK, 1998. [Google Scholar]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Tomar, M.; Agarwal, P.; Jleli, M.; Samet, B. Certain Ostrowski type inequalities for generalized s-convex functions. J. Nonlinear Sci. Appl. 2017, 10, 5947–5957. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef]
- Grinalatt, M.; Linnainmaa, J.T. Jensen’s Inequality, parameter uncertainty, and multiperiod investment. Rev. Asset Pricing Stud. 2011, 1, 1–34. [Google Scholar] [CrossRef]
- Bracamonte, M.; Gimménez, J.; Vivas-Cortez, M.J. Hermite–Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense. Appl. Math. Inf. Sci. 2016, 10, 2045–2053. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 4, 775–788. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecc. J. Math. 2015, 32, 323–341. [Google Scholar] [CrossRef]
- İscan, İ. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet J. Math. Stats 2014, 43, 935–942. [Google Scholar] [CrossRef]
- İscan, İ. Hermite–Hadamard type inequalities for harmonically (α,m)-convex functions. arXiv 2015, arXiv:1307.5402v3. [Google Scholar] [CrossRef]
- İscan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
- İscan, İ.; Selim, N.; Bekar, K. Hermite–Hadamard and Simpson type inequalities for differentiable harmonically P-functions. Br. J. Math. Comput. Sci. 2014, 4, 1908–1920. [Google Scholar]
- Kashuri, A.; Liko, R. Some new fractional integral inequalities for generalized relative semi-(m-(r,h1, h2)-preinvex mappings via generalized Mittag-Leffler function. Arab J. Math. Sci. 2019. [Google Scholar] [CrossRef]
- Anastassiou, G.; Kashuri, A.; Liko, R. Local fractional integrals involving generalized strongly m-convex mappings. Arab. J. Math. 2019, 8, 95–107. [Google Scholar] [CrossRef]
- Noor, M.A. Some new classes of non-convex functions. Nonlinear Funct. Anal. Appl. 2006, 11, 165–171. [Google Scholar]
- Vivas-Cortez, M.; García, C.; Kashuri, A.; Hernández Hernández, J.E. New Ostrowski Type Inequalities for Coordinated (s,m)-Convex Functions in the Second Sense. Appl. Math. Inf. Sci. 2019, 13, 821–829. [Google Scholar]
- Vivas Cortez, M. Féjer type inequalities for (s, m)-convex functions in Second Sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; García, C. Ostrowski Type inequalities for functions whose derivatives are (m, h1, h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Vivas, M.; Hernández Hernández, J.E.; Merentes, N. New Hermite–Hadamard and Jensen type inequalities for h-convex functions on fractal sets. Rev. Colomb. Mat. 2016, 50, 145–164. [Google Scholar] [CrossRef]
- Vivas Cortez, M. Relative strongly h-convex functions and integral inequalities. Appl. Math. Inf. Sci. Lett. 2016, 4, 39–45. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 2019, 11, 1513. [Google Scholar] [CrossRef]
- Rangel-Oliveros, Y.; Vivas-Cortez, M. Ostrowski type inequalities for functions whose second derivative are convex generalized. Appl. Math. Inf. Sci. 2018, 12, 1055–1064. [Google Scholar]
- Vivas-Cortez, M.; Rangel-Oliveros, Y. An Inequality Related to s-ϕ-Convex Functions. Appl. Math. Inf. Sci. 2020, 14, 151–154. [Google Scholar]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Some Inequalities Using Generalized Convex Functions in Quantum Analysis. Symmetry 2019, 11, 1402. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Om konvexe Funktioner og Uligheder mellen Middelvaerdier. Nyt Tidsskr. Math. 1905, 16, 49–69. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Hernández Hernández, J.E. Some fractional integral inequalities of Hermite Hadamard and Minkowski type. Sel. Mat. Univ. TRujillo Perú 2019, 6, 41–48. [Google Scholar]
- Sambandham, S.; Vatsala, A.S. Basic Results for Sequential Caputo Fractional Differential Equations. Mathematics 2015, 3, 76–91. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Almohsen, B.A. Two dimensional extensions of Hermite–-Hadamard’s inequalities via preinvex functions. Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. 2019, 113, 541–555. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. On the Hermite–Hadamard–type inequalities for co-ordinated convex function via fractional integrals. Integr. Transf. Spec. Func. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. The Hadamard’s inequality for s-convex function of 2-variables on the coordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Bai, S.P.; Qi, F. Some inequalities for (s1,m1)-(s2,m2)-convex functions on the co–ordinates. Glob. J. Math. Anal. 2013, 1, 22–28. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S. Some Hermite–Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inf. 2013, 28, 257–270. [Google Scholar]
- Mihai, M.V. New inequalities for co–ordinated convex functions via Riemann–Liouville fractional calculus. Tamkang J. Math. 2014, 45, 285–296. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Integral inequalities for coordinated harmonically convex functions. Complex Var. Elliptic Equat. 2015, 60, 776–786. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New quantum estimates of trapezium–type inequalities for generalized ϕ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms 2020, 9, 117. https://doi.org/10.3390/axioms9040117
Vivas-Cortez M, Kashuri A, Liko R, Hernández JEH. Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms. 2020; 9(4):117. https://doi.org/10.3390/axioms9040117
Chicago/Turabian StyleVivas-Cortez, Miguel, Artion Kashuri, Rozana Liko, and Jorge Eliecer Hernández Hernández. 2020. "Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions" Axioms 9, no. 4: 117. https://doi.org/10.3390/axioms9040117
APA StyleVivas-Cortez, M., Kashuri, A., Liko, R., & Hernández, J. E. H. (2020). Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms, 9(4), 117. https://doi.org/10.3390/axioms9040117