Inverse Problems of Recovering Lower-Order Coefficients from Boundary Integral Data
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Theorems
3.1. Additional Conditions on the Data
3.2. The Main Result
3.3. Some Applications of the Results
3.4. Example
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alifanov, O.M.; Artyukhin, E.A.; Nenarokomov, A.V. Inverse Problems in the Study of Complex Heat Transfer; Janus-K: Moscow, Russia, 2009. [Google Scholar]
- Ozisik, M.N.; Orlande, H.R.B. Inverse Heat Transfer; Taylor & Francis: New York, NY, USA, 2000. [Google Scholar]
- Prilepko, A.I.; Orlovsky, D.G.; Vasin, I.A. Methods for Solving Inverse Problems in Mathematical Physics; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Belov, Y.Y. Inverse Problems for Parabolic Equations; VSP: Utrecht, The Netherlands, 2002. [Google Scholar]
- Isakov, V. Inverse Problems for Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kabanikhin, S.I. Inverse and III-Posed Problems; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar]
- Frolenkov, I.V.; Romanenko, G.V. On Solving an Inverse Problem for a Multidimensional Parabolic Equation. Sib. J. Ind. Math. 2012, 15, 139–146. [Google Scholar]
- Pyatkov, S.G.; Samkov, M.L. On Some Classes of Coefficient Inverse Problems for Parabolic Systems of Equations. Sib. Adv. Math. 2012, 22, 287–302. [Google Scholar] [CrossRef]
- Pyatkov, S.G.; Tsybikov, B.N. On Some Classes of Inverse Problems for Parabolic and Elliptic Equations. J. Evol. Eq. 2011, 11, 155–186. [Google Scholar] [CrossRef]
- Pyatkov, S.G. On Some Classes of Inverse Problems for Parabolic Equations. J. Inv. III-Posed Probl. 2011, 18, 917–934. [Google Scholar] [CrossRef]
- Kostin, A.B.; Prilepko, A.I. On Some Problems of the Reconstruction of a Boundary Condition for a Parabolic Equation, II. Differ. Eq. 1996, 32, 1515–1525. [Google Scholar]
- Pyatkov, S.G. On Some Classes of Inverse Problems with Overdetermination Data on Spatial Manifolds. Sib. Math. J. 2016, 57, 870–880. [Google Scholar] [CrossRef]
- Pyatkov, S.G.; Rotko, V.V. On some parabolic inverse problems with the pointwise overdetermination. Siber. Adv. Math. 2020, 30, 124–142. [Google Scholar] [CrossRef]
- Pyatkov, S.G. Identification of Thermophysical Parameters in Mathematical Models of Heat and Mass Transfer. J. Comput. Eng. Math. 2022, 9, 52–66. [Google Scholar] [CrossRef]
- Pyatkov, S.G.; Rotko, V.V. Inverse Problems with Pointwise Overdetermination for some Quasilinear Parabolic Systems. AIP Conf. Proc. 2017, 1907, 020008. [Google Scholar] [CrossRef]
- Pyatkov, S.; Soldatov, O.; Fayazov, K. Inverse problems of recovering the heat transfer coefficient with integral data. J. Math. Sci. 2023, 274, 255–268. [Google Scholar] [CrossRef]
- Kozhanov, A.I. Linear Inverse Problems for Some Classes of Nonlinear Nonstationary Equations. Sib. Electron. Rep. 2015, 12, 264–275. [Google Scholar]
- Verzhbitskiy, M.A.; Pyatkov, S.G. On Some Inverse Problems of Recovering Boundary Regimes. Math. Notes NEFU 2016, 23, 3–18. [Google Scholar]
- Dihn, N.; Hao, D.N.; Thanh, P.X.; Lesnik, D. Determination of the Heat Transfer Coefficients in Transient Heat Conduction. Inverse Probl. 2013, 29, 095020. [Google Scholar]
- Hao, D.N.; Huong, B.V.; Thanh, P.X.; Lesnik, D. Identification of Nonlinear Heat Transfer Laws from Boundary Observations. Appl. Anal. 2014, 94, 1784–1799. [Google Scholar] [CrossRef]
- Lorenzi, A.; Messina, F. Identifying a Spherically Symmetric Conductivity in a Nonlinear Parabolic Equation. Appl. Anal. 2006, 85, 867–889. [Google Scholar] [CrossRef]
- Hussein, M.S.; Lesnik, D. Simultaneous Determination of Time-Dependent Coefficients and Heat Source. Intern. J. Comput. Methods Eng. Sci. Mech. 2016, 17, 401–411. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Pei, D. Identification of a Time-Dependent Coefficient in Heat Conduction Problem by New Iteration Method. Adv. Math. Phys. 2018, 2018, 4918256. [Google Scholar] [CrossRef]
- Murguia-Flores, F.; Arndt, S.; Ganesan, A.L.; Murray-Tortarolo, G.; Hornibrook, E.R.C. Soil Methanotrophy Model (MeMo v1.0): A Process-Based Model to Quantify Global Uptake of Atmospheric Methane by Soil. Geosci. Model Dev. 2018, 11, 2009–2032. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems of Mathematical Physics; Walter de Gruyter GmbH & Co. KG: Berlin, Germany; Boston, MA, USA, 2007. [Google Scholar]
- Huntul, M.J. Identification of the Timewise Thermal Conductivity in a 2D Heat Equation from Local Heat Flux Conditions. Inverse Probl. Sci. Eng. 2021, 29, 903–919. [Google Scholar] [CrossRef]
- Pyatkov, S.G.; Soldatov, O.A. Identification of the Heat Transfer Coefficient from Boundary Integral Data. Sib. Math. J. 2024, 65, 824–839. [Google Scholar] [CrossRef]
- Pyatkov, S.; Pronkina, T. Coefficient Inverse Problems of Identification of Thermophysical Parameters from Boundary Integral Data. J. Math. Sci. 2024, 282, 241–252. [Google Scholar] [CrossRef]
- Triebel, H. Interpolation Theory. Function Spaces. Differential Operators; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1978. [Google Scholar]
- Amann, H. Compact embeddings of vector-valued sobolev and besov spaces. Glas. Mat. 2000, 35, 161–177. [Google Scholar]
- Amann, H. Linear and Quasilinear Parabolic Problems; Birkhauser Verlag: Basel, Switzerland, 1995. [Google Scholar]
- Ladyzhenskaya, O.A.; Solonnikov, V.A.; Uraltseva, N.N. Linear and Quasilinear Equations of Parabolic Type; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Baranchuk, V.A.; Pyatkov, S.G. On some classes of inverse problems with pointwise ovedetermination for mathematical models of heat and mass transfer. Bull. Yugra State Univ. 2020, 3, 38–48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyatkov, S.; Soldatov, O. Inverse Problems of Recovering Lower-Order Coefficients from Boundary Integral Data. Axioms 2025, 14, 116. https://doi.org/10.3390/axioms14020116
Pyatkov S, Soldatov O. Inverse Problems of Recovering Lower-Order Coefficients from Boundary Integral Data. Axioms. 2025; 14(2):116. https://doi.org/10.3390/axioms14020116
Chicago/Turabian StylePyatkov, Sergey, and Oleg Soldatov. 2025. "Inverse Problems of Recovering Lower-Order Coefficients from Boundary Integral Data" Axioms 14, no. 2: 116. https://doi.org/10.3390/axioms14020116
APA StylePyatkov, S., & Soldatov, O. (2025). Inverse Problems of Recovering Lower-Order Coefficients from Boundary Integral Data. Axioms, 14(2), 116. https://doi.org/10.3390/axioms14020116