Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt
Abstract
:1. Introduction
2. Geological Setting
2.1. Basement Rocks
2.2. Phanerozoic Rocks
2.3. Tectonic Setting
2.4. The Reported Thermochronological Data and Problem
3. Materials and Methods
4. Results
4.1. ZFT Results
4.2. AFT Results
4.3. Time–Temperature History Reconstruction
5. Discussion and Interpretation
5.1. ZFT Data
5.2. AFT Data
5.3. Thermal-Tectonic History Reconstruction
5.4. Geological Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansour, S.; Hasebe, N.; Meert, J.G.; Tamura, A.; Khalaf, F.I.; El-Shafei, M.K. Evolution of the Arabian-Nubian Shield in Gabal Samra Area, Sinai; Implications from Zircon U–Pb Geochronology. J. Afr. Earth Sci. 2022, 192, 104538. [Google Scholar] [CrossRef]
- Stern, R.J. ARC Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Meert, J.G. A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics 2003, 362, 1–40. [Google Scholar] [CrossRef]
- Bosworth, W.; Stockli, D.F.; Helgeson, D.E. Integrated Outcrop, 3D Seismic, and Geochronologic Interpretation of Red Sea Dike-Related Deformation in the Western Desert, Egypt—The Role of the 23Ma Cairo “Mini-Plume”. J. Afr. Earth Sci. 2015, 109, 107–119. [Google Scholar] [CrossRef]
- Feinstein, S.; Eyal, M.; Kohn, B.P.; Steckler, M.S.; Ibrahim, K.M.; Moh’d, B.K.; Tian, Y. Uplift and Denudation History of the Eastern Dead Sea Rift Flank, SW Jordan: Evidence from Apatite Fission Track Thermochronometry: Uplift History of Dead Sea Rift Flank. Tectonics 2013, 32, 1513–1528. [Google Scholar] [CrossRef]
- Kohn, B.P.; Eyal, M. History of Uplift of the Crystalline Basement of Sinai and Its Relation to Opening of the Red Sea as Revealed by Fission Track Dating of Apatites. Earth Planet. Sci. Lett. 1981, 52, 129–141. [Google Scholar] [CrossRef]
- Mansour, S. Tectonic Development of Wadi Mi’ar Area, Sinai, Egypt: Implications of Low-Temperature Thermochronology Techniques. Alfarama J. Basic Appl. Sci. 2023, 4, 727–738. [Google Scholar] [CrossRef]
- Mansour, S. Long-Term Topographic Evolution of the African Plate, Causes and Consequences for Surrounding Lithospheric Plates. Ph.D. Thesis, Universität Heidelberg, Heidelberg, Germany, 2015. [Google Scholar]
- Mansour, S.; Hasebe, N.; Khedr, M.Z.; Tamura, A.; Shehata, A.A. Tectonic-Thermal Evolution of the Wadi El-Dahal Area, North Eastern Desert, Egypt: Constraints on the Suez Rift Development. Minerals 2023, 13, 1021. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Abdelrahman, K.; Fnais, M.S.; Tamura, A. Reconstructing the Tectonic History of the Arabian–Nubian Shield in Sinai: Low-Temperature Thermochronology Implications on Wadi Agar Area. Minerals 2023, 13, 574. [Google Scholar] [CrossRef]
- Morag, N.; Haviv, I.; Eyal, M.; Kohn, B.P.; Feinstein, S. Early Flank Uplift along the Suez Rift: Implications for the Role of Mantle Plumes and the Onset of the Dead Sea Transform. Earth Planet. Sci. Lett. 2019, 516, 56–65. [Google Scholar] [CrossRef]
- Omar, G.I.; Steckler, M.S.; Buck, W.R.; Kohn, B.P. Fission-Track Analysis of Basement Apatites at the Western Margin of the Gulf of Suez Rift, Egypt: Evidence for Synchroneity of Uplift and Subsidence. Earth Planet. Sci. Lett. 1989, 94, 316–328. [Google Scholar] [CrossRef]
- Omar, G.I.; Steckler, M.S. Fission Track Evidence on the Initial Rifting of the Red Sea: Two Pulses, No Propagation. Science 1995, 270, 1341–1344. [Google Scholar] [CrossRef]
- Barbarand, J.; Marques, F.O.; Hildenbrand, A.; Pinna-Jamme, R.; Nogueira, C.R. Thermal Evolution of Onshore West Iberia: A Better Understanding of the Ages of Breakup and Rift-to-Drift in the Iberia-Newfoundland Rift. Tectonophysics 2021, 813, 228926. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Glasmacher, U.A.; Tamura, A.; El-Shafei, M.K. New Insights into the Thermo-tectonic Development of the Suez Rift within the Framework of the Northern Arabian–Nubian Shield. Earth Surf. Process. Landf. 2025, 50, e6054. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Abdelrahman, K.; Fnais, M.S.; Tamura, A. The Gulf of Suez Rifting: Implications from Low-Temperature Thermochronology. Int. Geol. Rev. 2024, 67, 694–710. [Google Scholar] [CrossRef]
- Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; Feinstein, S. Provenance of North Gondwana Cambrian–Ordovician Sandstone: U–Pb SHRIMP Dating of Detrital Zircons from Israel and Jordan. Geol. Mag. 2006, 143, 367–391. [Google Scholar] [CrossRef]
- Schott, B.; Schmeling, H. Delamination and Detachment of a Lithospheric Root—ScienceDirect. Tectonophysics 1998, 296, 225–247. [Google Scholar] [CrossRef]
- Bosworth, W.; McClay, K. Structural and Stratigraphic Evolution of the Neogene Gulf of Suez, Egypt: A Synthesis; Memoires du Museum National d’Histrorie Naturelle de Paris: Peritethys Programme (PTP) and International Geological Correlation Program (IGCP): Paris, Frace, 2001; Voluem 186. [Google Scholar]
- Kohn, B.P.; Eyal, M.; Feinstein, S. A Major Late Devonian-Early Carboniferous (Hercynian) Thermotectonic Event at the NW Margin of the Arabian-Nubian Shield: Evidence from Zircon Fission Track Dating. Tectonics 1992, 11, 1018–1027. [Google Scholar] [CrossRef]
- Stampfli, G.M.; von Raumer, J.F.; Borel, G.D. Paleozoic Evolution of Pre-Variscan Terranes: From Gondwana to the Variscan Collision. In Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement; Geological Society of America: Boulder, CO, USA, 2002; ISBN 978-0-8137-2364-8. [Google Scholar]
- Alsharhan, A.S.; Nairn, A.E.M. Sedimentary Basins and Petroleum Geology of the Middle East; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 978-0-444-82465-3. [Google Scholar]
- Meneisy, M.Y. Mesozoic Igneous Activity in Egypt. Qatar Univ. Sci. Bull. 1986, 6, 317–328. [Google Scholar]
- Sakran, S.; Shehata, A.A.; Osman, O.; El-Sherbiny, M. Superposed Tectonic Regimes in West Beni Suef Basin, Nile Valley, Egypt: Implications to Source Rock Maturation and Hydrocarbon Entrapment. J. Afr. Earth Sci. 2019, 154, 1–19. [Google Scholar] [CrossRef]
- Shehata, A.A.; El Fawal, F.M.; Ito, M.; Aboulmagd, M.A.; Brooks, H.L. Senonian Platform-to-Slope Evolution in the Tectonically-Influenced Syrian Arc Sedimentary Belt: Beni Suef Basin, Egypt—ScienceDirect. J. Afr. Earth Sci. 2020, 170, 103934. [Google Scholar] [CrossRef]
- Said, R. The Geology of Egypt, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Said, R. The Geology of Egypt, 2nd ed.; A.A. Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar]
- Mansour, S.; Abdelfadil, K.M.; Hasebe, N.; Tamura, A.; Abdelrahman, K.; Gharib, M.A.; Fnais, M.S.; Shehata, A.A. Thermochronological Constraints on the Tectonic History of the Arabian–Nubian Shield’s Northern Tip, Sinai, Egypt. Minerals 2024, 14, 1246. [Google Scholar] [CrossRef]
- Moustafa, A.R.; Saoudi, A.; Moubasher, A.; Ibrahim, I.M.; Molokhia, H.; Schwartz, B. Structural Setting and Tectonic Evolution of the Bahariya Depression, Western Desert, Egypt. GeoArabia 2003, 8, 91–124. [Google Scholar] [CrossRef]
- Kohn, B.; Weissbrod, T.; Chung, L.; Farley, K.; Bodorkos, S. Low-temperature Thermochronology of Francolite: Insights into Timing of Dead Sea Transform Motion. Terra Nova 2019, 31, 205–219. [Google Scholar] [CrossRef]
- Mansour, S.; Gharib, M.A.; Hasebe, N.; Abdelrahman, K.; Fnais, M.S.; Tamura, A. Tectonic Evolution of the Gabal Loman Area, North Eastern Desert, Egypt: Implications from Low-Temperature Multithermochronometry on the Arabian-Nubian Shield. Front. Earth Sci. 2023, 11, 15. [Google Scholar] [CrossRef]
- Vermeesch, P.; Avigad, D.; McWilliams, M.O. 500 m.y. of Thermal History Elucidated by Multi-Method Detrital Thermochronology of North Gondwana Cambrian Sandstone (Eilat Area, Israel). GSA Bull. 2009, 121, 1204–1216. [Google Scholar] [CrossRef]
- Rabeh, T. Geotectonic Studies of Southern Sinai and Gulf of Suez Areas, Egypt. Ann. Geophys. 2003, 46, 1325–1337. [Google Scholar]
- Bojar, A.-V.; Fritz, H.; Kargl, S.; Unzog, W. Phanerozoic Tectonothermal History of the Arabian–Nubian Shield in the Eastern Desert of Egypt: Evidence from Fission Track and Paleostress Data. J. Afr. Earth Sci. 2002, 34, 191–202. [Google Scholar] [CrossRef]
- Kohn, B.P.; Feinstein, S.; Foster, D.A.; Steckler, M.S.; Eyal, M. Thermal History of the Eastern Gulf of Suez, II. Reconstruction from Apatite Fission Track and K-Feldspar Measurements. Tectonophysics 1997, 283, 219–239. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Azab, E.; Elnaggar, A.Y.; Tamura, A. Combined Zircon/Apatite U-Pb and Fission-Track Dating by LA-ICP-MS and Its Geological Applications: An Example from the Egyptian Younger Granites. Minerals 2021, 11, 1341. [Google Scholar] [CrossRef]
- Omar, G.I.; Kohn, B.P.; Lutz, T.M.; Faul, H. The Cooling History of Silurian to Cretaceous Alkaline Ring Complexes, South Eastern Desert, Egypt, as Revealed by Fission-Track Analysis. Earth Planet. Sci. Lett. 1987, 83, 94–108. [Google Scholar] [CrossRef]
- Kröner, A.; Kröger, J.; Rashwan, A.A.A. Age and Tectonic Setting of Granitoid Gneisses in the Eastern Desert of Egypt and South-West Sinai. Geol. Rundsch. 1994, 83, 502–513. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Tamura, A.; Abdelrahman, K.; Fnais, M.S.; Gharib, M.A.; Khedr, M.Z. Geochronological Assessment of the Arabian-Nubian Shield Plutonic Intrusions in the Arc Assemblages along the Qift-Quseir Transect, Central Eastern Desert of Egypt. J. Afr. Earth Sci. 2024, 220, 105456. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Abdelrahman, K.; Fnais, M.S.; Gharib, M.A.; Habou, R.; Tamura, A. Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu Transect, Central-Eastern Desert, Egypt: Geochemical Implementation of Zircon U-Pb Geochronology. Geochem. Trans. 2024, 25, 11. [Google Scholar] [CrossRef]
- Stern, R.J.; Hedge, C.E. Geochronologic and Isotopic Constraints on Late Precambrian Crustal Evolution in the Eastern Desert of Egypt. Am. J. Sci. 1985, 285, 97. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Tamura, A. Erosional Reservoir for the Northern Segment of the Arabian-Nubian Shield: Constrains from U-Pb Geochronology of the Lower Palaeozoic Succession, North Eastern Desert, Egypt. Precambrian Res. 2023, 388, 107017. [Google Scholar] [CrossRef]
- Platt, J.P.; England, P.C. Convective Removal of Lithosphere beneath Mountain Belts; Thermal and Mechanical Consequences. Am. J. Sci. 1994, 294, 307–336. [Google Scholar] [CrossRef]
- Barron, T. The Topography and Geology of the Peninsula of Sinai (Western Portion); The Egyptian Geological Survey Department: Cairo, Egypt, 1907; Section III; pp. 123–130. [Google Scholar]
- Hassan, A.A. A New Carboniferous Occurrencein Abu Durba, Sinai, Egypt. In Proceedings of the 6th Arab Petroleum Congress, Baghdad, Iraq, 6–13 March 1967; Volume 2, pp. 1–8. [Google Scholar]
- Said, R. Explanatory Notes to Accompany the Geological Map of Egypt; Geological Survey of Egypt and Mining Authority: Cairo, Egypt, 1971. [Google Scholar]
- Bosworth, W.; Huchon, P.; McClay, K. The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci. 2005, 43, 334–378. [Google Scholar] [CrossRef]
- Kora, M. The Paleozoic Outcrops of Um Bogma Area, Sinai. Ph.D. Thesis, Mansoura University, Mansoura, Egypt, 1984. [Google Scholar]
- McClay, K.R.; Nichols, G.J.; Khalil, S.M.; Darwish, M.; Bosworth, W. Extensional Tectonics and Sedimentation, Eastern Gulf of Suez, Egypt. In Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden; Purser, B.H., Bosence, D.W.J., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 223–238. ISBN 978-94-011-4930-3. [Google Scholar]
- Weissbrod, T. The Paleozoic of Israel and Adjacent Countries. Pt 1: The Subsurfacealeozoic Stratigraphy of Southern Israel. Isr. Geol. Surv. Bull. 1969, 47, 1–35. [Google Scholar]
- Klitzsch, E. Paleozoic. In The Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; Volume 24, pp. 451–486. [Google Scholar]
- Klitzsch, E.; Wycisk, P. Geology of the Sedimentary Basins of Northern Sudan and Bordering Areas. Berl. Geowiss. Abh. Reihe A Geol. Und Palaeontol. 1987, 75, 97–136. [Google Scholar]
- Abdallah, A.M.; El-Adindani, A. Stratigraphy of Upper Paleozoic Rocks of Western Side of Gulf of Suez PDF|PDF. Geol. Surv. Egypt 1963, 25, 1–18. [Google Scholar]
- Abu-Zied, R. Palaeoenvironmental Significance of Early Cretaceous Foraminifera from Northern Sinai, Egypt. Cretac. Res. 2007, 28, 765–784. [Google Scholar] [CrossRef]
- Kassem, A.; Sharaf, L.; Baghdady, A.; Abd El-Naby, A. Cenomanian/Turonian Oceanic Anoxic Event 2 in October Oil Field, Central Gulf of Suez, Egypt. J. Afr. Earth Sci. 2020, 165, 103817. [Google Scholar] [CrossRef]
- Sultan, I.Z. On the Presence of Middle Jurassic Miospores at Gebel El Iseila, West Central Sinai, Egypt. Bull. Fac. Sci. Alex. Univ. 1985, 25, 26–40. [Google Scholar]
- El Sharawy, M.S.; Nabawy, B.S. Geological and Petrophysical Characterization of the Lower Senonian Matulla Formation in Southern and Central Gulf of Suez, Egypt. Arab. J. Sci. Eng. 2016, 41, 281–300. [Google Scholar] [CrossRef]
- Osman, A. Upper Cretaceous Foraminifera of Western Sinai. Fac. Eng. Bull. Cairo Univ. 1954, 26, 335–365. [Google Scholar]
- El-Azabi, M.H. Sedimentological Characteristics, Palaeoenvironments and Cyclostratigraphy of the Middle Eocene Sequences in Gabal El-Ramliya, Maadi-Sukhna Stretch, North Eastern Desert. In Proceedings of the Egyptian 8th International Conference on the Geology of Arab World, Cairo, Egypt, 13–16 February 2006; pp. 1–31. [Google Scholar]
- Refaat, A.A.; Imam, M.M. The Tayiba Red Beds: Transitional Marine-Continental Deposits in the Precursor Suez Rift, Sinai, Egypt. J. Afr. Earth Sci. 1999, 26, 467–506. [Google Scholar] [CrossRef]
- El-Anwar, E. Geochemical Studies of Carbonates of the Tayiba Formation (Upper Eocene), Abu Zenima Area, West Central Sinai. Bull. Natl. Res. Cent. 2019, 43, 209. [Google Scholar] [CrossRef]
- Moustafa, A.R.; Yousif, M.S.M. Structural Evolution of the Eastern Shoulder of the Suez Rift: Um Bogma Area. Neues Jahrb. Geol. Paläontologie—Monatshefte 1993, 1993, 655–668. [Google Scholar] [CrossRef]
- El-Heiny, I.; Martini, E. Miocene Foraminiferal and Calcareous Nannoplankton Assemblages from the Gulf of Suez Region and Correlations. Geol. Mediterr. 1981, 8, 101–108. [Google Scholar] [CrossRef]
- Sallam, E.S.; Afife, M.M.; Fares, M.; van Loon, A.J.; Ruban, D.A. Sedimentary Facies and Diagenesis of the Lower Miocene Rudeis Formation (Southwestern Offshore Margin of the Gulf of Suez, Egypt) and Implications for Its Reservoir Quality. Mar. Geol. 2019, 413, 48–70. [Google Scholar] [CrossRef]
- Darwish, M.; El Araby, A. Petrography and Diagenetic Aspects of Some Siliclastic Hydrocarbon Reservoirs in Relation to Rifting of the Gulf of Suez, Egypt. Geodynamics and Sedimentation of the Red Sea—Gulf of Aden Rift System. Egypt. J. Geol. 1994, 3, 1–25. [Google Scholar]
- Tewfik, N.; Harwood, C.; Deighton, I. The Miocene, Rudeis and Kareem Formations in the Gulf of Suez: Aspects of Sedimentology and Geochemistry. EGPC Explor. Semin. Cairo I 1992, 11, 84–113. [Google Scholar]
- Kennedy, W.Q. The Structural Differentiation of Africa in the Pan-African (±500 m.y.) Tectonic Episode. Leeds Univ. Res. Inst. Afr. Geol. Dep. Earth Sci. Annu. Rep. Sci. Results 1964, 8, 48–49. [Google Scholar]
- Mansour, S.; Gharib, M.A. Tectonic Assessment of the Northwestern Nubian Shield at Southern Sinai, Egypt. Spectr. Sci. J. 2025, 2, 17–31. [Google Scholar] [CrossRef]
- Perron, P.; Le Pourhiet, L.; Guiraud, M.; Vennin, E.; Moretti, I.; Portier, É.; Konaté, M. Control of Inherited Accreted Lithospheric Heterogeneity on the Architecture and the Low, Long-Term Subsidence Rate of Intracratonic Basins. BSGF-Earth Sci. Bull. 2021, 192, 15. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Raulin, C.; Mouchot, N.; Wrobel-Daveau, J.; Blanpied, C.; Ringenbach, J. The Southernmost Margin of the Tethys Realm during the Mesozoic and Cenozoic: Initial Geometry and Timing of the Inversion Processes. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Klitzsch, E. Plate Tectonics and Cratonal Geology in Northeast Africa (Egypt, Sudan). Geol. Rundsch. 1986, 75, 755–768. [Google Scholar] [CrossRef]
- Abdullin, F.; Solari, L.; Solé, J.; Ortega-Obregón, C. Mesozoic Exhumation History of the Grenvillian Oaxacan Complex, Southern Mexico. Terra Nova 2021, 33, 86–94. [Google Scholar] [CrossRef]
- Maldonado, R.; Ortega-Gutiérrez, F.; Ortíz-Joya, G.A. Subduction of Proterozoic to Late Triassic Continental Basement in the Guatemala Suture Zone: A Petrological and Geochronological Study of High-Pressure Metagranitoids from the Chuacús Complex. Lithos 2018, 308–309, 83–103. [Google Scholar] [CrossRef]
- Girdler, R.W. Problems Concerning the Evolution of Oceanic Lithosphere in the Northern Red Sea. Tectonophysics 1985, 116, 109–122. [Google Scholar] [CrossRef]
- Dewey, J.F.; Pitman, W.C.; Ryan, W.B.F.; Bonnin, J. Plate Tectonics and the Evolution of the Alpine System. Geol. Soc. Am. Bull. 1973, 84, 3137. [Google Scholar] [CrossRef]
- Boone, S.C.; Balestrieri, M.-L.; Kohn, B. Thermo-Tectonic Imaging of the Gulf of Aden-Red Sea Rift Systems and Afro-Arabian Hinterland. Earth-Sci. Rev. 2021, 222, 103824. [Google Scholar] [CrossRef]
- Steckler, M.S.; Feinstein, S.; Kohn, B.P.; Lavier, L.L.; Eyal, M. Pattern of Mantle Thinning from Subsidence and Heat Flow Measurements in the Gulf of Suez: Evidence for the Rotation of Sinai and along-Strike Flow from the Red Sea. Tectonics 1998, 17, 903–920. [Google Scholar] [CrossRef]
- Wagner, G.A. Spaltspurenalter von Mineralen Und Natürlichen Gläsern: Eine Übersicht. Fortschritte Mineral. 1972, 114–145. [Google Scholar] [CrossRef]
- Ketcham, R.A. Fission-Track Annealing: From Geologic Observations to Thermal History Modeling. In Fission-Track Thermochronology and Its Application to Geology; Malusà, M.G., Fitzgerald, P.G., Eds.; Springer Textbooks in Earth Sciences, Geography and Environment; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–75. ISBN 978-3-319-89419-5. [Google Scholar]
- Kohn, B.P.; Ketcham, R.A.; Vermeesch, P.; Boone, S.C.; Hasebe, N.; Chew, D.; Bernet, M.; Chung, L.; Danišík, M.; Gleadow, A.J.W.; et al. Interpreting and Reporting Fission-Track Chronological Data. Geol. Soc. Am. Bull. 2024, 136, 3891–3920. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite Fission-Track Analysis. In Low-Temperature Thermochronology; Reiners, P.W., Ehlers, T.A., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2005; pp. 49–94. ISBN 978-1-5015-0957-5. [Google Scholar]
- Gleadow, A.J.W.; Duddy, I.R. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks 1981, 5, 169–174. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Balestrieri, M.L.; Zattin, M. Reproducibility of Apatite Fission-Track Length Data and Thermal History Reconstruction. Earth Planet. Sci. Lett. 2009, 284, 504–515. [Google Scholar] [CrossRef]
- Garver, J.I. Etching Zircon Age Standards for Fission-Track Analysis. Radiat. Meas. 2003, 37, 47–53. [Google Scholar] [CrossRef]
- Yamada, R.; Tagami, T.; Nishimura, S.; Ito, H. Annealing Kinetics of Fission Tracks in Zircon: An Experimental Study. Chem. Geol. 1995, 122, 249–258. [Google Scholar] [CrossRef]
- Yamada, R.; Murakami, M.; Tagami, T. Statistical Modelling of Annealing Kinetics of Fission Tracks in Zircon; Reassessment of Laboratory Experiments. Chem. Geol. 2007, 236, 75–91. [Google Scholar] [CrossRef]
- Bernet, M.; Brandon, M.; Garver, J.; Balestieri, M.L.; Ventura, B.; Zattin, M. Exhuming the Alps through Time: Clues from Detrital Zircon Fission-Track Thermochronology. Basin Res. 2009, 21, 781–798. [Google Scholar] [CrossRef]
- Ketcham, R.A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Gleadow, A.J.W.; Duddy, I.R.; Green, P.F.; Lovering, J.F. Confined Fission Track Lengths in Apatite: A Diagnostic Tool for Thermal History Analysis. Contrib. Mineral. Petrol. 1986, 94, 405–415. [Google Scholar] [CrossRef]
- Tamura, A.; Sagawa, T.; Okino, K.; Morishita, T. Determination of Whole-Rock Trace-Element Compositions of Siliceous Rocks Using MgO-Diluted Fused Glass and LA-ICP-MS. Geochem. J. 2022, 56, 231–239. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Geoanal. Res. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Walder, A.J.; Platzner, I.; Freedman, P.A. Isotope Ratio Measurement of Lead, Neodymium and Neodymium–Samarium Mixtures, Hafnium and Hafnium–Lutetium Mixtures with a Double Focusing Multiple Collector Inductively Coupled Plasma Mass Spectrometer. J. Anal. At. Spectrom. 1993, 8, 19–23. [Google Scholar] [CrossRef]
- Gagnevin, D.; Daly, J.S.; Waight, T.E.; Morgan, D.; Poli, G. Pb Isotopic Zoning of K-Feldspar Megacrysts Determined by Laser Ablation Multi-Collector ICP-MS: Insights into Granite Petrogenesis. Geochim. Cosmochim. Acta 2005, 69, 1899–1915. [Google Scholar] [CrossRef]
- Sokolov, V.A. Arc Furnace Assisted Carbothermal Decomposition of Zircon. Refract. Ind. Ceram. 2005, 46, 208–211. [Google Scholar] [CrossRef]
- Morgan, P.; Boulos, F.K.; Hennin, S.F.; El-Sherif, A.A.; El-Sayed, A.A.; Basta, N.Z.; Melek, Y.S. Heat Flow in Eastern Egypt: The Thermal Signature of a Continental Breakup. J. Geodyn. 1985, 4, 107–131. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved Measurement of Fission-Track Annealing in Apatite Using c-Axis Projection. Am. Miner. 2007, 92, 789–798. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. Variability of Apatite Fission-Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. Am. Mineral. 1999, 84, 1235–1255. [Google Scholar] [CrossRef]
- Feinstein, S.; Kohn, B.P.; Steckler, M.S.; Eyal, M. Thermal History of the Eastern Margin of the Gulf of Suez, I. Reconstruction from Borehole Temperature and Organic Maturity Measurements. Tectonophysics 1996, 266, 203–220. [Google Scholar] [CrossRef]
- Meshref, W. Tectonic Framework of Egypt. In Geology of Egypt; Said, R., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1990; pp. 113–156. [Google Scholar]
- Nasdala, L.; Reiners, P.W.; Garver, J.I.; Kennedy, A.K.; Stern, R.A.; Balan, E.; Wirth, R. Incomplete Retention of Radiation Damage in Zircon from Sri Lanka. Am. Mineral. 2004, 89, 219–231. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Fourdan, B.; Leleu, S.; Leparmentier, F.; de Clarens, P. Style of Rifting and the Stages of Pangea Breakup. Tectonics 2015, 34, 1009–1029. [Google Scholar] [CrossRef]
- Hasebe, N.; Barbarand, J.; Jarvis, K.; Carter, A.; Hurford, A.J. Apatite Fission-Track Chronometry Using Laser Ablation ICP-MS. Chem. Geol. 2004, 207, 135–145. [Google Scholar] [CrossRef]
Sample | Location | Elev. | Rock Type | Formation Period | ZFT | AFT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lat. | Long. | (m.a.s.l.) | Cen. Age | ±1σ | Pooled Age | ±1σ | Cen. Age | ±1σ | Pooled Age | ±1σ | |||
(Ma) | (Ma) | (Ma) | (Ma) | ||||||||||
GQ-01 | 28.483043° | 33.687449° | 327 | Syenogranite | Ediacaran | 219.3 | 4.2 | 217.8 | 4.3 | 22.7 | 1.5 | 22.6 | 2.0 |
GQ-02 | 28.477268° | 33.689510° | 354 | Granodiorite | Cryogenian | 328.7 | 8.7 | 827.6 | 8.9 | 108.3 | 3.9 | 107.8 | 6.8 |
GQ-03 | 28.474865° | 33.690672° | 338 | Tonalite | Cryogenian | 224.6 | 4.8 | 224.2 | 5.1 | 22.1 | 1.2 | 22.2 | 1.6 |
GQ-04 | 28.467483° | 33.691157° | 320 | Tonalite | Cryogenian | 323.7 | 6.7 | 324.1 | 6.9 | 110.7 | 5.1 | 110.5 | 5.6 |
GQ-05 | 28.462869° | 33.690657° | 304 | Granodiorite | Cryogenian | 320.7 | 5.9 | 321.8 | 6.3 | 112.2 | 7.4 | 111.9 | 8.7 |
GQ-06 | 28.458348° | 33.690521° | 260 | Quartz Syenite | Ediacaran | 220.8 | 6.0 | 221.3 | 6.5 | 25.3 | 1.7 | 25.1 | 2.1 |
GQ-07 | 28.455981° | 33.691517° | 263 | Gneiss | Tonian | 320.7 | 7.1 | 320.2 | 6.8 | 111.7 | 5.2 | 111.2 | 7.8 |
GQ-08 | 28.450499° | 33.692051° | 269 | Metagabbro | Tonian | 217.2 | 5.9 | 217.1 | 6.1 | 24.1 | 1.5 | 24.1 | 2.0 |
GQ-09 | 28.455703° | 33.695947° | 460 | Metagabbro | Tonian | 217.9 | 5.8 | 217.8 | 5.9 | 24.5 | 1.3 | 24.2 | 1.8 |
Const. No. | Const. Type | T-T Segment (°C) | t-t Segment (Ma) | Comments |
---|---|---|---|---|
1 | Initial | 300–280 | 700–500 | Neoproterozoic ANS plutonic rocks started their history from depth [1,2,41]. |
2 | PAEE | 60–20 | 700–500 | The ANS was completely eroded by the Cambrian [27]. However, it is not stated whether the currently exposed rocks were exposed then or are still buried [15,16]. |
3 | ZFT | 240–180 | 370–250 (Group A) Or 370–250 (Group B) | The temperature limits correspond to the PAZ of the ZFT, and the time limits are slightly variable based on the ZFT age of each sample (Table 1). The time limits were widened to provide more freedom to the modeled t–T paths. |
4 | AFT | 110–60 | 160–60 (Group A) Or 30–5 (Group B) | The temperature limits correspond to the PAZ of the AFT, and the time limits are slightly variable based on the AFT age of each sample (Table 1). The time limits were widened to provide more freedom to the modeled t–T paths. |
S.-No. | Elevation [m a.s.l.] | Coordinates Decimal | Lithology | 238U | n | ρs | Ns | χ2 | p-Values | Cen. Age | 1σ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | E | [µg/g] | (×105 track/cm2) | Value | [Ma] | |||||||
Group A | ||||||||||||
GQ-02 | 354 | 28.477268° | 33.689510° | Granodiorite | 228.3 | 15 | 41.4 | 1912 | 44.2 | 0.51 | 328.7 | 8.7 |
GQ-04 | 320 | 28.467483° | 33.691157° | Tonalite | 360.3 | 18 | 64.2 | 3905 | 27.7 | 0.60 | 323.7 | 6.7 |
GQ-05 | 304 | 28.462869° | 33.690657° | Granodiorite | 355.3 | 19 | 63.0 | 4985 | 40.4 | 0.52 | 320.7 | 5.9 |
GQ-07 | 263 | 28.455981° | 33.691517° | Gneiss | 282.2 | 16 | 49.9 | 3192 | 38.1 | 0.54 | 320.7 | 7.1 |
Group B | ||||||||||||
GQ-01 | 327 | 28.483043° | 33.687449° | Syenogranite | 446.6 | 17 | 53.0 | 4636 | 37.8 | 0.54 | 219.3 | 4.2 |
GQ-03 | 338 | 28.474865° | 33.690672° | Tonalite | 471.4 | 14 | 57.9 | 3710 | 36.2 | 0.55 | 224.6 | 4.8 |
GQ-06 | 260 | 28.458348° | 33.690521° | Quartz Syenite | 213.4 | 18 | 25.8 | 1737 | 41.3 | 0.52 | 220.8 | 6.0 |
GQ-08 | 269 | 28.450499° | 33.692051° | Metagabbro | 257.7 | 15 | 30.6 | 1770 | 35.1 | 0.55 | 217.2 | 5.9 |
GQ-09 | 460 | 28.455703° | 33.695947° | Metagabbro | 263.3 | 17 | 31.4 | 1840 | 43.9 | 0.51 | 217.9 | 5.8 |
S.-No. | Elevation [m a.s.l.] | Coordinates Decimal | Lithology | 238U | n | ρs | Ns | χ2 | p-Values | Cen. Age | 1σ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | E | [µg/g] | (×106 track/cm2) | Value | [Ma] | |||||||
Group A | ||||||||||||
GQ-02 | 354 | 28.477268° | 33.689510° | Granodiorite | 82.9 | 20 | 4.9 | 888 | 27.9 | 0.59 | 108.3 | 3.9 |
GQ-04 | 320 | 28.467483° | 33.691157° | Tonalite | 25.5 | 21 | 1.5 | 122 | 25.4 | 0.61 | 110.7 | 5.1 |
GQ-05 | 304 | 28.462869° | 33.690657° | Granodiorite | 46.4 | 20 | 2.3 | 242 | 22.3 | 0.64 | 112.2 | 7.4 |
GQ-07 | 263 | 28.455981° | 33.691517° | Gneiss | 71.6 | 22 | 4.0 | 482 | 28.4 | 0.59 | 111.7 | 5.2 |
Group B | ||||||||||||
GQ-01 | 327 | 28.483043° | 33.687449° | Syenogranite | 37.2 | 20 | 0.5 | 230 | 7.7 | 0.78 | 22.7 | 1.5 |
GQ-03 | 338 | 28.474865° | 33.690672° | Tonalite | 65.8 | 20 | 0.7 | 347 | 4.8 | 0.82 | 22.1 | 1.2 |
GQ-06 | 260 | 28.458348° | 33.690521° | Quartz Syenite | 60.4 | 17 | 0.7 | 240 | 22.9 | 0.63 | 25.3 | 1.7 |
GQ-08 | 269 | 28.450499° | 33.692051° | Metagabbro | 79.9 | 20 | 0.9 | 264 | 37.9 | 0.54 | 24.1 | 1.5 |
GQ-09 | 460 | 28.455703° | 33.695947° | Metagabbro | 52.6 | 20 | 0.6 | 377 | 47.4 | 0.49 | 24.5 | 1.3 |
Sample | HCTLs No. | HCTLs Mean (µm) | HCTLs Std. (µm) | HCTLs Skew. | Lc Mean (µm) | Lc Std. (µm) | Lc Skew. | Dpar No. | Dpar Mean (µm) | Dpar Std. (µm) | Dpar Skew. |
---|---|---|---|---|---|---|---|---|---|---|---|
GQ-01 | 102 | 13.0 | 1.7 | −0.249 | 14.1 | 1.3 | −0.191 | 150 | 1.5 | 0.1 | −0.217 |
GQ-02 | 104 | 11.4 | 1.8 | −0.021 | 12.9 | 1.3 | 0.393 | 304 | 1.6 | 0.1 | −0.938 |
GQ-03 | 85 | 13.5 | 1.3 | −0.519 | 14.4 | 0.8 | −0.022 | 174 | 1.4 | 0.1 | −0.135 |
GQ-04 | 105 | 11.9 | 1.9 | −0.055 | 13.0 | 1.5 | −0.004 | 318 | 1.5 | 0.1 | −0.009 |
GQ-05 | 96 | 11.3 | 2.0 | 0.335 | 12.8 | 1.5 | 0.346 | 354 | 1.5 | 0.1 | 0.237 |
GQ-06 | 80 | 13.4 | 1.6 | −0.222 | 14.2 | 1.3 | −0.485 | 276 | 1.4 | 0.1 | 0.476 |
GQ-07 | 77 | 11.5 | 1.3 | 0.637 | 12.8 | 1.0 | 0.842 | 238 | 1.5 | 0.1 | −0.710 |
GQ-08 | 100 | 13.4 | 1.8 | 0.238 | 14.3 | 1.3 | 0.134 | 428 | 1.5 | 0.1 | 0.276 |
GQ-09 | 94 | 12.9 | 1.4 | −0.517 | 14.0 | 1.0 | −0.675 | 363 | 1.5 | 0.1 | −0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, S.; Elkelish, A.; Alawam, A.S.; Gharib, M.A.; Tamura, A.; Hasebe, N. Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt. Minerals 2025, 15, 655. https://doi.org/10.3390/min15060655
Mansour S, Elkelish A, Alawam AS, Gharib MA, Tamura A, Hasebe N. Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt. Minerals. 2025; 15(6):655. https://doi.org/10.3390/min15060655
Chicago/Turabian StyleMansour, Sherif, Amr Elkelish, Abdullah S. Alawam, Mohamed A. Gharib, Akihiro Tamura, and Noriko Hasebe. 2025. "Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt" Minerals 15, no. 6: 655. https://doi.org/10.3390/min15060655
APA StyleMansour, S., Elkelish, A., Alawam, A. S., Gharib, M. A., Tamura, A., & Hasebe, N. (2025). Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt. Minerals, 15(6), 655. https://doi.org/10.3390/min15060655