Effect of the Occurrence State of Dodecylamine on the Adsorption Behavior of Calcium Sulfate Dihydrate and Silica
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of pH on the Occurrence State of Dodecylamine
3.2. Calculation
3.3. The Effect of pH on Selective Adsorption of Dodecylamine
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Liu, Y.; Huang, J.; Mei, Y. Improved Length of Calcium Sulfate Crystal Seeds and Whiskers via Ball Milling and Hydration Treatment. Chin. J. Chem. Eng. 2024, 71, 102–109. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.-L. Exploring the potential reuse of phosphogypsum: A waste or a resource? Sci. Total Environ. 2024, 908, 168196. [Google Scholar] [CrossRef] [PubMed]
- Murali, G.; Azab, M. Recent research in utilization of phosphogypsum as building materials: Review. J. Mater. Res. Technol. 2023, 25, 960–987. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Xiang, L. Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. Materials 2023, 16, 5630. [Google Scholar] [CrossRef]
- Jia, W.; Li, J.; Shen, C.; Li, G.; Li, H.; Fan, G.; Zhou, G.; Cao, Y. Research advances in phosphogypsum flotation purification: Current status and prospects. Sep. Purif. Technol. 2025, 354, 129244. [Google Scholar] [CrossRef]
- Mymrin, V.; Aibuldinov, E.K.; Avanci, M.A.; Alekseev, K.; Argenda, M.A.; Carvalho, K.Q.; Erbs, A.; Catai, R.E. Material cycle realization by hazardous phosphogypsum waste, ferrous slag, and lime production waste application to produce sustainable construction materials. J. Mater. Cycles Waste Manag. 2021, 23, 591–603. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Z.; Ma, X.; Yang, X.; Zhang, X.; Pan, H.; Wu, J.; Xu, M.; Lin, L.; Zhang, Y.; et al. Promoting coordinative development of phosphogypsum resources reuse through a novel integrated approach: A case study from China. J. Clean. Prod. 2022, 374, 134078. [Google Scholar] [CrossRef]
- Sun, T.; Li, W.; Xu, F.; Yu, Z.; Wang, Z.; Ouyang, G.; Xu, D. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: Mechanical properties and environmental benefits. J. Clean. Prod. 2023, 400, 136555. [Google Scholar] [CrossRef]
- Costa, E.T.d.S.; Lopes, G.; Carvalho, G.S.; Penha, H.G.V.; Curi, N.; Guilherme, L.R.G. Phytoremediation of Arsenic-Contaminated Soils Amended with Red Mud Combined with Phosphogypsum. Water Air Soil Pollut. 2021, 232, 417. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Juliano, P.H.G.; de Souza, I.M.D.; Rodrigues, L.N.F.; Hipólito, J.L.; Andreotti, M. New Methodologies for the Surface Application of Limestone and Gypsum in Different Crop Systems. Sustainability 2022, 14, 8926. [Google Scholar] [CrossRef]
- Oszako, T.; Pasławski, T.; Szulc, W.; Rutkowska, B.; Rutkiewicz, A.; Kukina, O.; Bakier, S.; Borowik, P. Short-Term Growth Response of Young Pine (Pinus silvestris) Seedlings to the Different Types of Soil Media Mixture with Phosphogypsum Formulations under Poland Forest Environmental Conditions. Forests 2023, 14, 518. [Google Scholar] [CrossRef]
- Liu, H.; Jin, X.; Chen, L.; Chang, X.; Li, J.; An, Y.; Liu, J.; Pang, C.; Gao, Y. Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets. TAPPI J. 2021, 20, 567–578. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; Nie, C.; Xie, G.; Che, Z.; Zhu, D.; Guo, L.; Xiang, Y.; Shi, W. PMMA-Grafted Calcium Sulfate Whiskers for Applications as Fillers in PVC. Polymers 2022, 14, 4199. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Ge, Y.; Chen, Z.; Xing, B.; Bao, S.; Yong, Q.; Chi, R.; Yang, S.; Ni, B.-J. Flotation purification of waste high-silica phosphogypsum. J. Environ. Manag. 2022, 320, 115824. [Google Scholar] [CrossRef]
- Lv, X.; Xiang, L. The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials 2022, 12, 3021. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, F.; Wang, Z.; Yang, F.; Du, M.; Fu, K.; Wang, Z. A novel method for purification of phosphogypsum. Physicochem. Probl. Miner. Process. 2020, 56, 975–983. [Google Scholar] [CrossRef]
- Mweene, L.; Khanal, G.P. New insights into the flotation of quartz in presence of polyoxirane as a novel biotite depressant: Experimental and theoretical approach. Inorg. Chem. Commun. 2025, 177, 114423. [Google Scholar] [CrossRef]
- Qi, M.; Peng, W.; Wang, W.; Cao, Y.; Fan, G.; Huang, Y. Selective flotation separation of gypsum and quartz using dodecyl amine hydrochloride as collector: Mechanism and application. Surf. Interface Anal. 2024, 56, 603–615. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, M.; Ke, X.; Yu, Y.; Tan, X.; Ye, H.; Chen, S. Novel ethylbenzyl and hydroxyethyl quaternary ammonium collectors for co-reverse flotation desilication and impurity removal from phosphogypsum: Flotation performance and mechanism. Sep. Purif. Technol. 2025, 358, 130403. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, T.; Zhuang, Y.; Jin, H. A Novel Process to Recover Gypsum from Phosphogypsum. Materials 2022, 15, 1944. [Google Scholar] [CrossRef]
- Zhang, L.; Lü, Z.; Zhang, Y.; Wu, Z.; Zhang, X.; Tan, X. Experimental study on improving quality and reducing impurity of phosphogypsum. Inorg. Chem. Ind. 2021, 53, 171–173. [Google Scholar] [CrossRef]
- Qi, M.; Peng, W.; Wang, W.; Cao, Y.; Fan, G.; Huang, Y. Simple and efficient method for purification and recovery of gypsum from phosphogypsum: Reverse-direct flotation and mechanism. J. Mol. Liq. 2023, 371, 121111. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Fan, P.; Li, H.; Chen, C.; Du, L.; Xu, S. Experimental Study on a New Flotation Desilication Process for Phosphogypsum from Yunnan. Non-Met. Mines 2022, 45, 53–56. [Google Scholar]
- Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Poly-Atomic Molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Boeyens, J.C.A.; Ichharam, V.V.H. Redetermination of the crystal structure of calcium sulphate dihydrate, CaSO4 • 2H2O. Z. Krist.-New Cryst. Struct. 2002, 217, 9–10. [Google Scholar]
- Teixeira-Dias, J.; de Carvalho, L.; da Costa, A.; Lampreia, I.M.; Barbosa, E.F. Conformational studies by Raman spectroscopy and statistical analysis of gauche interactions in n-butylamine. Spectrochim. Acta Part A Mol. Spectrosc. 1986, 42, 589–597. [Google Scholar] [CrossRef]
- Raghavan, S.R.; Walls, H.J.; Khan, S.A. Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding. Langmuir 2000, 16, 7920–7930. [Google Scholar] [CrossRef]
- Zhukov, A.N.; Varzhel, V.I. Specific Surface Conductivity of Quartz in the Solution of Electrolytes in N-Butanol Close to the Isoelectric Points. Vestn. Leningr. Univ. Seriya Fiz. Khimiya 1985, 2, 108–110. [Google Scholar]
- Kong, X.-F.; Li, C.-X.; Jiang, J.; Huang, L.-B.; Hartley, W.; Wu, C.; Xue, S.-G. Improvement of alkaline electrochemical characteristics of bauxite residue amendment with organic acid and gypsum. J. Cent. South Univ. 2019, 26, 430–439. [Google Scholar] [CrossRef]
- Tarakanova, E.G.; Yukhnevich, G.V. Relationship between the bond lengths in N-H…N, O-H…O, F-H…F, and Cl-H…Cl hydrogen bridges. J. Struct. Chem. 2009, 50, 1015–1020. [Google Scholar] [CrossRef]
- Bleckmann, P.; Breitenbach, P.; Dickhut, K.U.; Keller, D.; Schwittek, C. Intermolecular potentials and force constants from ab initio energies—Application to the N-H…O=C hydrogen bonds in formamide dimers. Anal. Bioanal. Chem. 1997, 359, 115–120. [Google Scholar] [CrossRef]
- Chen, Y.H.; Kang, L.; Zhang, C.R.; Luo, Y.C.; Yuan, L.H.; Li, Y.L. Density functional theory study on the structures and properties of (Ca3N2)n (n = 1–4) clusters. Acta Phys. Sin. 2008, 57, 6265–6270. [Google Scholar] [CrossRef]
- Kohatsu, I.; McCauley, J.W. Re-examination of the crystal structure of α-Si3N4. Mater. Res. Bull. 1974, 9, 917–920. [Google Scholar] [CrossRef]
- Allred, A. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215–221. [Google Scholar] [CrossRef]
- Somasundaran, P.; Wang, D. Solution Chemistry: Minerals and Reagents; Developments in Mineral Processing Series; Wills, B.A., Ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2006; Volume 17. [Google Scholar]
Collector | Frother | Depressant | pH | Gypsum (%) | Silica (%) | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|
DH | FX | None | 2.0 | 96.33 | 9.08→0.62 | 69.85 | [18] |
DDBA | MIBC | None | 2.3–2.5 | 94.88 | 7.28→1.91 | —— | [19] |
2HEAC-12 | MIBC | None | 2.3–2.5 | 93.47 | 7.28→2.71 | —— | [19] |
DDA | Pine Oil | Sodium silicate | 2.5 | 80.65→95.63 | —— | —— | [20] |
ODA | Pine Oil | Sodium silicate | 2.5 | 80.65→92.80 | —— | —— | [20] |
DTAC | Pine Oil | Sodium silicate | 2.5 | 80.65→93.86 | —— | —— | [20] |
Mixed Amine | Pine Oil | Sodium silicate | 2.5 | 80.65→95.89 | —— | 79.93 | [20] |
DDA | None | None | 2.0 | 89.0→97.5 | 12.03→1.17 | 98.58 | [21] |
Adsorption System | Adsorption Energy (eV) | Key Atomic Distances (Å) | Interaction Type | Ref. |
---|---|---|---|---|
CaSO4·2H2O (020)-C12H25NH3+ | −20.105 | H-O: 2.018, 2.708 | Strong electrostatic adsorption | [32,33,36] |
CaSO4·2H2O (020)-C12H25NH2 | −1.998 | H-O: 2.140; Ca-N: 2.501 | Weak coordination | [34,36] |
SiO2(101)-C12H25NH3+ | −13.036 | H-O: 2.707; H-Si: 2.987 | Electrostatic adsorption | [35,36] |
SiO2 (101)-C12H25NH2 | −3.169 | H-O: 2.423, 2.637; Si-N: 1.885 | Coordination/Electrostatic | [35,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, R.; Xiang, L. Effect of the Occurrence State of Dodecylamine on the Adsorption Behavior of Calcium Sulfate Dihydrate and Silica. Minerals 2025, 15, 413. https://doi.org/10.3390/min15040413
Li X, Chen R, Xiang L. Effect of the Occurrence State of Dodecylamine on the Adsorption Behavior of Calcium Sulfate Dihydrate and Silica. Minerals. 2025; 15(4):413. https://doi.org/10.3390/min15040413
Chicago/Turabian StyleLi, Xu, Renjie Chen, and Lan Xiang. 2025. "Effect of the Occurrence State of Dodecylamine on the Adsorption Behavior of Calcium Sulfate Dihydrate and Silica" Minerals 15, no. 4: 413. https://doi.org/10.3390/min15040413
APA StyleLi, X., Chen, R., & Xiang, L. (2025). Effect of the Occurrence State of Dodecylamine on the Adsorption Behavior of Calcium Sulfate Dihydrate and Silica. Minerals, 15(4), 413. https://doi.org/10.3390/min15040413